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These proceedings gather the papers presented at the 15th Ukraine
Algebra Conference (XV UAC), held in a hybrid format from July
8–12, 2025 at Ivan Franko National University of Lviv. Tradition-
ally co-organized by Taras Shevchenko National University of Kyiv
and the Institute of Mathematics of the National Academy of Sciences
of Ukraine, the UAC has met biennially since its inaugural meeting
in Slovyansk (1997) to unite established and early-career researchers
in algebra from Ukraine and around the world. Past venues include
Vinnytsia (1999, 2019), Sumy (2001, 2023), Lviv (2003, 2013), Odesa
(2005, 2015), Kamianets-Podilskyi (2007), Kharkiv (2009), Luhansk
(2011), Kyiv (2017, 2021).

We thank all conference participants for their abstracts, the Edito-
rial Committee for its dedicated efforts, and everyone for supporting
Ukraine.

We trust these proceedings will both memorialize the conference’s
vibrant exchanges and inspire future developments in algebra. We look
forward to continuing this tradition of collaboration at the 16th UAC
in 2027.

— The Scientific and Organizing Committees
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Jordan homomorphisms .................................................................... 29

Igor Burban
Exceptional hereditary non-commutative curves
and real curve orbifolds .................................................................... 30

Andrii Chaikovs’kyi, Oleksandr Liubimov
Boundedness of solutions of the first order linear
multidimensional difference equations in critical case .................. 31

Yevhenii Chapovskyi, Anatoliy Petravchuk
Module structure of the Lie algebra Wn(K) over sln(K) ............ 32

Corentin Correia
Isoperimetric profile and quantitative orbit equivalence
for lamplighter-like groups................................................................ 33

Oleksandra Desiateryk
Ideals of inverse symmetric semigroup connection to variants.... 34

Martyn R. Dixon, Leonid A. Kurdachenko, Igor Ya. Subbotin
On the structure of some nilpotent braces ..................................... 35

Mikhailo Dokuchaev
Twisted Steinberg algebras of not necessarily Hausdorff ample
groupoids and regular inclusions ..................................................... 36

Yuriy Drozd
Quasikrullian rings and their divisorial categories ........................ 37

Yuriy Drozd, Andriana Plakosh
Represenations and cohomologies of the alternating group
of degree 4 ........................................................................................... 38

5



Vincent Dumoncel
Scaling groups and subgroups of wreath products ....................... 39

Nataliia Dzhaliuk, Vasyl’ Petrychkovych
Methods for solving Sylvester-type matrix equations and
the investigation of the structure of their solutions ...................... 40

Gabriella D’Este
A theorem on support τ -tilting pairs .............................................. 41

Pavel Etingof
Twisted traces and positive forms on quantized Kleinian singu-
larities of type A ................................................................................ 42

Domink Francoeur, Rostislav Grigorchuk, Paul-Henry Leemann, Ta-
tiana Nagnibeda
On the structure of finitely generated subgroups
of branch groups ................................................................................ 43

Iryna Fryz
Parastrophic orthogonality of ternary quasigroups ...................... 44

Andriy Gatalevych, Mariia Kuchma
Some generalizations of neat range 1 for noncommutative ring . 45

Volodymyr Gavrylkiv
On some functorial extensions of doppelsemigroups .................... 46

Sergiy Gefter, Aleksey Piven’
Ring of copolynomials over a commutative ring ........................... 47

Nikolaj (Mykola) Glazunov
On algebraic dynamics and resurgence
on Minkowski moduli spaces ............................................................ 48

Rostislav Grigorchuk, Dmytro Savchuk
Diagonal actions of groups acting on rooted trees ........................ 49

Rostislav Grigorchuk, Zoran Šunić
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N. Andruskiewitsch1, I. Heckenberger2, L. Vendramin3

Nichols algebras over solvable groups

1 Universidad Nacional de Córdoba, CIEM – CONICET, Córdoba, Argentina
2 Philipps-Universität Marburg, Marburg, Germany
3 Vrije Universiteit Brussel, Brussels, Belgium

Nichols algebras appear in various areas of mathematics, ranging
from Hopf algebras and quantum groups to Schubert calculus and con-
formal field theory. In this talk, I will review the main challenges in
classifying Nichols algebras over groups and discuss some recent classifi-
cation theorems. In particular, I will highlight a recent classification re-
sult, achieved in collaboration with Andruskiewitsch and Heckenberger,
concerning finite-dimensional Nichols algebras over solvable groups.

[1] N. Andruskiewitsch, I. Heckenberger, L. Vendramin. Pointed Hopf algebras of
odd dimension and Nichols algebras over solvable groups. arXiv:2411.02304

[math.QA] (2024)

[2] I. Heckenberger, E. Meir, and L. Vendramin. Finite-dimensional Nichols alge-
bras of simple Yetter–Drinfeld modules (over groups) of prime dimension. Adv.
Math., 444:Paper No. 109637, 2024.

E-mail: � 1nicolas.andruskiewitsch@unc.edu.ar,
� 2heckenberger@mathematik.uni-marburg.de,
� 3leandro.vendramin@vub.be.
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Nicolás Andruskiewitsch1, Olivier Mathieu2

Noetherian enveloping algebras of simple graded Lie algebras

1 Universidad Nacional de Córdoba and CONICET, Córdoba, Argentina
2 CNRS and Université Claude Bernard, Lyon, France

We show that the universal enveloping algebra of an infinite-dimen-
sional simple Zn-graded Lie algebra is not Noetherian, a partial answer
to a well-known conjecture that is unavoidable for the classification of
Noetherian Hopf algebras.

[1] Nicolás Andruskiewitsch and Olivier Mathieu, Noetherian enveloping algebras
of simple graded Lie algebras. J. Math. Soc. Japan 1-15, (May, 2025)
DOI: 10.2969/jmsj/93619361

E-mail: � 1nicolas.andruskiewitsch@unc.edu.ar, � 2mathieu@math.univ-lyon1.fr.
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Nikita Arskyi

On semigroups whose divisibility relation is a partial order

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Let S be a semigroup. The divisibility relation a|b :⇔ b ∈ S1aS1 on
S is a partial order if and only if S is J -trivial, i.e. the Green’s relation
J on S coincides with the equality relation. The class of all J -trivial
semigroups contains, in particular, all nilsemigroups.

Proposition 1. The class of J -trivial semigroups is closed under tak-
ing subsemigroups, arbitrary Cartesian products, Rees quotient semi-
groups and unions of ascending chains.

By Sub(S), LId(S), RId(S) and Id(S) we denote the lattices of
all subsemigroups, left ideals, right ideals and two-sided ideals of a
semigroup S, respectively.

Proposition 2. Let S be a J -trivial semigroup. There is a one-to-one
correspondence between the extensions of the divisibility relation | to a
linear order and maximal chains in the lattice Id(S).

Proposition 3. Let S be a J -trivial semigroup and L be one of the
lattices Sub(S), LId(S), RId(S) and Id(S). Between two elements
T1, T2 ∈ L, T1 < T2, there are no other elements of L if and only
if |T2 ∖ T1| = 1.

Proposition 4. All maximal left, right and two-sided ideals of a J -
trivial semigroup are its maximal subsemigroups. All maximal subsemi-
groups of a nilsemigroup are its maximal ideals.

Theorem 5. Let S be a nilpotent semigroup. Let L be one of the
lattices Sub(S), LId(S), RId(S) or Id(S). Then for any T1, T2 ∈ L
such that T1 < T2, there exist an immediate successor T ′

1 of T1 and an
immediate predecessor T ′

2 of T2, such that

T1 < T ′
1 ≤ T2, T1 ≤ T ′

2 < T2.

[1] Ganyushkin O., Mazorchuk V. Classical Finite Transformation Semigroups: An
Introduction. Springer-Verlag, 2009.

E-mail: � nikitaarskyi@knu.ua.
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Orest D. Artemovych

Minimal non-(finite dimensional) Lie algebras

Department of Mathematics, Silesian University of Technology, ul. Kaszubska 23,
Gliwice 41-100, Poland

A. G. Gein (Dnestr Notebook, Question 3.28) asked: Does there
exist

(a) an infinite dimensional Lie algebra all of whose proper subalgebras
are finite dimensional,

(b) an infinitely generated Lie algebra all of whose proper subalgebras
are finite dimensional,

(c) an infinitely generated Lie algebra all of whose proper subalgebras
are finitely generated.

We obtain an affirmative answer to these question.

E-mail: � oartemovych@polsl.pl.
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Nikita Avramenko

Practical parallel LDPC-based δ-ensemble
of threshold secret-sharing schemes

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Threshold secret sharing schemes are an important component of
modern cryptography, allowing a secret to be split among multiple
parties so that only authorized subsets can reconstruct it. In [1], a
threshold scheme requiring only O(N) additions was introduced by
B. Applebaum, O. Nir, and B. Pinkas, offering a more effective ap-
proach for distributing secrets. Building on this foundation, we present
a practical implementation of this construction with several technical
enhancements.

One notable improvement over our previous implementations is the
use of a more robust library of LDPC (Low-Density Parity-Check)
codes [2]. This updated library offers improved code constructions and
decoding routines that are better aligned with the algebraic structure
of error-correcting codes.

The base scheme was further redesigned to support parallel process-
ing. By dividing the codeword into independent chunks and encoding
them separately, we enable efficient parallelism during both the shar-
ing and reconstruction phases. For example, with a threshold setting
of 4/5 and the Phif64 decoder, tests on a 6-core CPU demonstrated a
7-8x speedup compared to the sequential version.

Notably, certain modifications made to simplify and streamline the
implementation have inadvertently resulted in the emergence of an en-
semble of secret sharing schemes. When operating over sufficiently large
finite groups, this construction exhibits the behavior of a δ-ensemble,
where δ denotes the failure probability of the ensemble and is a negli-
gible function of n.

Taken together, the revised implementation offers concrete technical
enhancements that improve scalability. Parallelism boosts throughput,
and framing the constructions as a δ-ensemble opens new avenues for
analyzing scheme behavior.

[1] B. Applebaum, O. Nir, and B. Pinkas, “How to Recover a Secret with O(n)
Additions,” In CRYPTO 2023, Springer-Verlag, 2023, pp. 236–262.

[2] D. Estevez, ldpc-toolbox, Version v0.7.0, October 4th 2024. Available at:
https://crates.io/crates/ldpc-toolbox

E-mail: � nikitaavramenko@knu.ua.
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Taras Banakh

The interplay between Fano and Desargues axioms

Ivan Franko National University of Lviv, Lviv, Ukraine

A projective plane is a pair (Π,L) consisting of a nonempty set Π
of points and a nonempty set L of lines (which are subsets of Π) such
that the following two axioms are satisfied:
� any distinct points x, y ∈ Π are contained in a unique line x y ∈ L,
� any two distinct lines contain a unique common point.
A triangle in a projective plane is any triple abc of non-collinear

points. Two triangles abc and a′b′c′ are perspective if the lines a a′, b b′,
c c′ are distinct and contain a common point.

A projective plane (Π,L) is defined to be
� Fano if for any quadrangle abcd in Π the set

(a b ∩ c d) ∪ (a c ∩ b d) ∪ (a d ∩ b c) is contained in a line;
� Desarguesian if for any perspective triangles abc and a′b′c′ in Π,

the set (a b∩a′ b′)∪ (b c∩b′ c′)∪ (a c∩a′ c′) is contained in a line;
� uno-Desarguesian (resp. bi-Desarguesian) if for any perspective

triangles abc and a′b′c′ in Π with a′ ∈ b c (and b′ ∈ a c), the set
(a b ∩ a′ b′) ∪ (b c ∩ b′ c′) ∪ (a c ∩ a′ c′) is contained in a line.

Theorem 1. For a projective plane Π, the following are equivalent:
(1) Π is bi-Desarguesian;
(2) Π is uno-Desarguesian or Fano;
(3) for every ternar (R, T ) of Π, the binary operations + : (x, y) 7→

T (x, 1, y) and ♡ : (x, y) 7→ T (1, x, y) are commutative;
(4) for every ternar (R, T ) of Π, the binary operations + and ♡ are

commutative and associative.
If the projective plane Π is finite, then (1)–(4) are equivalent to:

(5) Π is Desargusian;
(6) for every ternar (R, T ) of Π, the operation + is commutative;
(7) for every ternar (R, T ) of Π, the operation + is associative;
(8) for every ternar (R, T ) of Π, the operation ♡ is commutative;
(9) for every ternar (R, T ) of Π, the operation ♡ is associative.

The equivalence (2) ⇔ (5) is a combined result of Moufang and
Gleason; (5)⇔ (6)⇔ (7) was proved by Kegel and Lüneburg in 1963.

[1] T. Banakh, Linear Geometry and Algebra, (arxiv.org/abs/2506.14060).

E-mail: � t.o.banakh@gmail.com.
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Taras Banakh1, Vladyslav Pshyk2

A characterization of 3-dimensional affine spaces

Ivan Franko National University of Lviv, Lviv, Ukraine

In this talk we will present a simple characterization of an affine 3-
dimensional space X by merely 4 axioms describing properties of lines.
A liner is a pair (X,L) consisting of a set X of points and a family L
of subsets of X, called lines.

A set of point A ⊆ X in a liner (X,L) is called flat if a line L ∈ L
is a subset of A whenever it has at least two common points with L.
For a set of point A ⊆ X we denote by A the smallest flat subset of
X that contains the set A. The rank of a subset A ⊆ X is defined as
the smallest cardinality |B| of a subset B ⊆ X such that A ⊆ B. Flat
subsets of rank 3 in liners are called planes.

The principal result of this talk is the following theorem character-
izing 3-dimensional affine spaces over corps.

Theorem 1. Assume that a liner (X,L) satisfies the following four
axioms:
� (Euclid) Any two distinct points belong to a unique line;
� (Playfair) For every plane P ⊆ X, line L ⊆ P and point x ∈ P \L

there exists a unique line Λ in X such that x ∈ Λ ⊆ P \ L;
� (Hilbert) If two planes in X have a common point, then they have

at least two common points;
� (Rank) There exist four points that do not belong to any plane.

Then there exists a 3-dimensional vector space V over a skew-field R
and a bijective function f : X → V such that

{f [L] : L ∈ L} = {x+R·v : x ∈ V, v ∈ V \ {0}}.

[1] T. Banakh, Geometry and Algebra in Liners, Lviv, 2025
https://www.researchgate.net/publication/383409915.

[2] V. Pshyk. A characterization of 3-dimensional affine spaces,
Bachelor Thesis, Lviv, 2025.

E-mail: � 1t.o.banakh@gmail.com, � 2vladyslav.pshyk@lnu.edu.ua.
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V. V. Bavula

∆-locally nilpotent algebras, their ideal structure
and simplicity criteria

SMPS, Division of Mathematics, University of Sheffield, Sheffield, UK

The class of ∆-locally nilpotent algebras introduced in [2] is a wide
generalization of the algebras of differential operators on commutative
algebras. Examples include all the rings D(A) of differential operators
on commutative algebras in arbitrary characteristic, the universal en-
veloping algebras of nilpotent, solvable and semi-simple Lie algebras,
the Poisson universal enveloping algebra of an arbitrary Poisson alge-
bra, iterated Ore extensions A[x1, . . . , xn; δ1, . . . , δn], certain general-
ized Weyl algebras, and others.

In [1], simplicity criteria are given for the algebras differential op-
erators on commutative algebras. To find the simplicity criterion was
a long standing problem from 60’th. The aim of the talk is to describe
the ideal structure of ∆-locally nilpotent algebras and as a corollary to
give simplicity criteria for them. These results are generalizations of
the results of [1]. Examples are considered.

[1] V. V. Bavula, Simplicity criteria for rings of differential operators, Glasgow
Math. J., 64 (2021), no. 2, 347–351; arXiv:1912.07379.

[2] V. V. Bavula, ∆-locally nilpotent algebras, their ideal structure and
simplicity criteria, J. Pure Appl. Algebra 229 (2025), 107861, doi:
https://doi.org/10.1016/j.jpaa.2024.107861.

E-mail: � v.bavula@sheffield.ac.uk.
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Leonid Bedratyuk

First order joint projective invariants

Khmelnytskyi National University, Khmelnytskyi, Ukraine

Let G = PGL(3,R) act diagonally on n copies of the affine plane.
Each point (xi, yi) is mapped via a projective transformation, and a
smooth function u(i) = u(xi, yi) is attached to each point.

We consider the first jet space, that is, the space with coordinates

(xi, yi, u
(i)
10 , u

(i)
01 ), i = 1, . . . , n,

where u
(i)
10 := ∂u(i)/∂xi and u

(i)
01 := ∂u(i)/∂yi.

Let Jn denote the field of rational functions in these variables. The
subfield JGn ⊂ Jn consists of absolute first–order projective invariants,
that is, rational functions invariant under the diagonal action of G.

We define the basic first–order expressions

Φi,j,k := (xi − xj)u(k)10 + (yi − yj)u(k)01 , 1 ≤ i < j ≤ n, k ∈ {i, j}.

Each Φi,j,k transforms covariantly under G, and the products

Ii,j := Φi,j,i · Φi,j,j

are invariant under the projective group action.
We prove that the field JGn is generated by all such expressions:

JGn = R(Ii,j | 1 ≤ i < j ≤ n).

Among them, exactly 4n− 8 elements form a transcendence basis.
This provides a complete algebraic description of the absolute first–

order differential invariants under the diagonal projective action.

E-mail: � leonidbedratyuk@khmnu.edu.ua.
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Jonah Berggren1, Khrystyna Serhiyenko2

Consistent dimer models on surfaces with boundary

University of Kentucky, Lexington, USA

A dimer model is a quiver with faces embedded in a surface, which
gives rise to certain noncommutative algebras called dimer algebras.
Consistent dimer models on tori have been studied extensively in the
physics literature, in relation to phase transitions in solid state physics,
while those on the disk are related to Grassmannian cluster algebras.
We define and investigate various notions of consistency for dimer mod-
els on general surfaces with boundary in [2]. We prove that the dimer
algebra of a strongly consistent dimer model is bimodule internally
3-Calabi-Yau with respect to its boundary idempotents. As a conse-
quence, its Gorenstein-projective module category categorifies the clus-
ter algebra given by the underlying quiver.

Moreover, in [1] we give an explicit combinatorial description of
boundary algebras of consistent dimer models on disks, which provide
categorification of cluster structures on positroid varieties in the Grass-
mannian.

[1] Jonah Berggren and Khrystyna Serhiyenko, Boundary Algebras of Positroids,
preprint arXiv:2404.02886, 2024.

[2] Jonah Berggren and Khrystyna Serhiyenko, Consistent Dimer Models on Sur-
faces with Boundary, preprint arXiv:2310.02454, 2023.

E-mail: � 1jrberggren@uky.edu, � 2khrystyna.serhiyenko@uky.edu.
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Jordan homomorphisms of algebras of triangular matrices

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Let A,B be associative algebras over a commutative associative ring
Φ. A Φ-linear mapping f : A→ B is called a Jordan homomorphism if
f(a2) = f(a)2, f(aba) = f(a) f(b) f(a) for all a, b ∈ A.

Reduction of Jordan homomorphisms to homomorphisms and anti-
homomorphisms of the underlying associative algebras is known: (a)
if the algebra A contains three pairwise orthogonal full idempotents
(W. S. Martindale [4], N. Jacobson [3]); (b) if B is semiprime and f is
injective (M. Brešar [2]).

Note that the algebra of n× n upper-triangular matrices is neither
semiprime nor does it in general contain proper full idempotents.

D. Benkovič [1] described Jordan homomorphisms of algebras of
upper-triangular matrices over an associative commutative ring Φ ∋ 1

2
that are Φ-linear. We extend this result to noncommutative rings.

LetR be an associative algebra over an associative commutative ring
Φ ∋ 1

2 , with unit 1. Denote by T (n,R) =
{
A = (aij) ∈Mn(R)

∣∣ aij =

0 for i > j
}
. Let T0(n,R) =

{
A ∈ T (n,R)

∣∣ aii = 0 for 1 ≤ i ≤ n
}

be
its ideal of strictly upper-triangular matrices, and let Diag(Φ) denote
the subalgebra of all diagonal matrices with entries in Φ on the main
diagonal.

Theorem 1. Let n ≥ 2 and let φ : Tn(R) −→ S be a Jordan homo-
morphism. Then there exist a unique homomorphism φ : T (n,R)→ S,
and a unique anti-homomorphism ψ : T (n,R)→ S such that φ = ψ on
Diag(Φ), and φ(a)ψ(b) = ψ(b)φ(a) = 0 for all a, b ∈ T0(n,R), and
f = φ = ψ on Diag(Φ), f = φ+ ψ on T0(n,R).

Theorem 2. Under the assumptions R = Φ, the same conclusion holds
without any additional restriction on additive torsion.

1. Benkovič D. Jordan homomorphisms on triangular matrices. Linear
Multilinear Algebra 2005, 13, 345–356.

2. Brešar M. Commuting traces of biadditive mappings, commutativity
preserving mappings, and Lie mappings. Trans. Amer. Math. Soc.
1993, 335, 525–546.

3. Jacobson N., Rickart C. Jordan homomorphisms of rings. Trans. Amer.
Math. Soc. 1950, 69, 479–502.

4. Martindale W.S. 3rd. Lie isomorphisms of prime rings. Trans. Amer.
Math. Soc. 1969, 142, 437–455.

E-mail: � bezushchak@knu.ua.
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Collin Bleak

Embedding certain automatic groups into
the rational group R

School of Mathematics and Statistics University of St Andrews,
Scotland, UK

We introduce left-continuous automatic groups as a subclass of
the well-known automatic groups. The class of left-continuous auto-
matic groups is a bit mysterious as a subclass of the automatic groups,
but, we know at least that the class contains the CAT(0) Cubical
Complex groups (CCC groups), which themselves represent a broad
class of groups of topical interest. Our main theorem states that all
left-continuous automatic groups embed as subgroups of the rational
group R, a group introduced in 2000 by Grigorchuk, Nekrashevych, and
Suschanskii. We will provide definitions and examples of these various
groups along the way, and have some discussion as well of different
forms of boundaries of groups. We also discuss how similar embedding
theorems have been of use in larger programs of discovery. Joint work
with Belk, Chatterji, Matucci and Perego.

E-mail: � cb211@st-andrews.ac.uk.
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Ievgen Bondarenko

The word problem and growth of groups

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Let G be a finitely generated group with a finite generating set S.
The word problem of G with respect to S is the decision problem WPG,
which asks whether a given word over S ∪ S−1 represents the identity
element in G.

In this talk, I will discuss the time complexity of the word problem
with respect to deterministic Turing machines with a single tape. Let
DTIME(t(n)) be the complexity class of all languages solved in time
O(t(n)) by such a machine. By a result of Anisimov (1971), WPG ∈
DTIME(n) if and only if G is finite. Kobayashi (1985) showed that
DTIME(n) = DTIME(o(n log n)).

Theorem 1. Let G be a finitely generated group. Then WPG ∈
DTIME(n log n) if and only if G is virtually nilpotent.

I will present a connection between the word problem and the
growth rate of a group. In particular, the word problem for groups
of exponential growth requires at least quadratic time (on a determin-
istic single-tape Turing machine). A natural question arises:

Question. Does WPG ∈ DTIME(o(n2)) imply G is virtually nilpo-
tent?

The question concerns specifically groups of intermediate growth
between polynomial and exponential. A notable class of such groups
arises as automaton groups. I will present results on the complexity
of the word problem in automaton groups generated by bounded and
polynomial automata.

[1] I. Bondarenko. The word problem and growth of groups. Journal of Algebra,
Volume 677, P. 252–266, 2025.

E-mail: � ievgbond@gmail.com.
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Nataliia Bondarenko

Matrix representations of infinitely iterated wreath products
of one-dimensional Lie algebras

Kyiv National University of Construction and Architecture, Kyiv, Ukraine.

Let p be a prime number and n > 2 a fixed integer. It is shown in [1]
that the Lie algebra Lp,n associated with the lower central series of the
Sylow p-subgroup Sp,n of the symmetric group Sym(pn) decomposes
as the n-th iterated wreath product of one-dimensional Lie algebras
over the field Fp. We study matrix representations of the Lie algebras
Ln := L2,n and of the infinite-dimensional Lie algebra L∞, which is
the inverse limit of Ln, that is, the infinitely iterated wreath product
of one-dimensional Lie algebras over the field F2. It is worth noting that
an embedding of the Lie algebra UTm(Fp) into the Lie algebra Lp,n was
previously constructed in [2]. We construct an explicit embedding ϕ of
Ln into the Lie algebra UTm(F2) of strictly upper triangular matrices
for the minimal possible order m = 2n−1 + 1. As a consequence, we
obtain an explicit embedding ϕ of the Lie algebra L∞ into the Lie
algebra UT∞(F2) of infinite strictly upper triangular matrices. We
show that this embedding can be constructed recursively using matrix
schemes sh, introduced in [3].

Theorem. The mapping ϕ : L∞ → UT∞ satisfies the recursion:

sh(ϕ(u)) =

(
ϕ(u|0) u1E

ϕ(u|0) + ϕ(u|1) ϕ(u|0)

)
,

where for a tableau u = [u1, u2(x1), u3(x1, x2), . . .] ∈ L∞, two tableaux
u|0 and u|1 are defined as follows: u|c = [u′1, u

′
2(x1), u′3(x1, x2), . . .] ∈

L∞, c = 0, 1, and u′k(x1, . . . , xk−1) is obtained from uk+1(x1, . . . , xk) by
applying the substitution: x1 7→ c, x2 7→ x1, x3 7→ x2, . . . , xk 7→ xk−1.

[1] Suschanskiy V.I., Netreba N.V. (2005). Wreath product of Lie algebras and Lie
algebras associated with Sylow p-subgroups of finite symmetric groups Algebra
and Discrete Mathematics, vol. 4, pp. 122–132.

[2] Bondarenko N.V. (2006). Lie algebras associated with Sylow p-subgroups of
some classical linear groups Bulletin of Kyiv University. Series: physical and
mathematical sciences., vol. 2, pp. 21–27.

[3] Leonov Yu.G. (2004). Representation of finite-approximate 2-groups by infi-
nite unitriangular matrices over a field of two elements Mathematical studies,
vol. 22(2), pp. 134–140.

E-mail: � natvbond@gmail.com.

26



Vitaliy Bondarenko

On representation type of the Hasse commutative quiver
of nodal extensions of positive posets

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Through all posets are finite without the element 0 and subposets
are full. A subposet A of a poset S is said to be upper if from x < y
with x ∈ A and y ∈ S it follows that y ∈ A. A poset S is called positive
if so is its Tits quadratic form

qS(z) := z20 +
∑
i∈S

z2i +
∑

i<j,i,j∈S
zizj − z0

∑
i∈S

zi.

All positive posets are first described in [2]). They can be serial if
there is an infinite increasing sequence S ⊂ S(1) ⊂ S(2) ⊂ . . . with
positive terms, and non-serial if otherwise. The number of non-serial
positive posets is equal to 108, up to isomorphism and duality. The
serial positive posets consist of two 2-parameter and one 3-parameter
series.

For a poset S, denote by
−→
H (S) its (oriented) Hasse diagram as a

commutative quiver. We call such quiver the Hasse commutative quiver

of the poset S. A full subquiver of
−→
H (S) is said to be upper if so is the

corresponding subposet of S.
We call an extension T ⊃ S of a poset S upper if so is the subposet

S of T , and nodal if any element of the subposet T \ S of T is a node,
i.e. is comparable to all elements of T ; the number m = |T \S| is called
the order of the extension T . In the case when T is an upper nodal
extension of S we write T = S(m).

Theorem 1. The commutative Hasse quiver
−→
H (S(m)) of an upper

nodal extension of order m of a non-serial positive poset S is of finite
representation type over a field k if and only if any its upper subquiver
without cycles is a Dynkin graph.

Theorem 2. Let S and k be as in Theorem 1. If
−→
H (S(m)) is of fi-

nite and
−→
H (S(m+1)) of infinite representation types, then

−→
H (S(m+2))

is wild.

These studies were carried out together with M. Styopochkina.

[1] V. M. Bondarenko, M. V. Styopochkina. (Min, max)-equivalence of partially
ordered sets and the Tits quadratic form. Collection of works of Inst. of Math.
NAS Ukraine – Problems of Analysis and Algebra. 2(3):18–58, 2005.

E-mail: � vitalij.bond@gmail.com.
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Alexandre Borovik1, Şükrü Yalçınkaya2

Black Box Algebra

1 Manchester University, Manchester, United Kingdom
2 Istinye University, Istanbul, Turkey

We shall give a compact survey of principal ideas of probabilistic
methods in computational algebra: what can be said about an alge-
braic structure (group, ring, Boolean or Heyting algebra, etc.) from
observation of behaviour of a random sample of its elements? In the
wider mathematics similar approaches are known under the umbrella
term the Monte Carlo method and have a fantastic range of applica-
tions. The first, and still the most famous of them was the analysis, in
1946, of neutron diffusion paths for the hydrogen bomb.

In the case of finite algebraic structures, the Monte Carlo Method
allows to analyse structures of astronomic size, not accessible to any
deterministic approaches. We have interesting parallels with (logical)
model theory and, which is even stranger, the Internal Set Theory of
Edward Nelson, a conservative extension of the ZFC set theory which
erases the boundary between finite and infinite.

In the first part of talk we will discuss these games on the boundary
of infinity and explain the ‘Black Box’ ideology, in the second – give
some concrete practically usable examples of Monte Carlo algorithms
for finite groups.

In particular, we will look at a class of deceptively innocuous prob-
lems: You are given a few non-degenerate matrices x1, . . . , xm of size
n× n over a large finite field F . What can you say about the group X
generated by them in GLn(F )? For example, what is the order of X?
The biggest group X of that kind where we managed to compute (with-
out any supercomputers, on an old laptop) significant and important
subgroups, and say something sensible about them, had about 10960 el-
ements. The Observable Universe contains around 1080 electrons. We
were computing in something which was 10880 times bigger than the
Observable Universe.

E-mail: � 1alexandre@borovik.net, � 2sukru.yalcinkaya@istinye.edu.tr.
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Matej Brešar

Jordan homomorphisms

University of Ljubljana and University of Maribor, Slovenia

In the first part of the talk, a brief historical overview of the theory
of Jordan homomorphisms will be given. In the second part, new results
will be presented. Some of them were obtained in collaboration with
Efim Zelmanov.

E-mail: � matej.bresar@fmf.uni-lj.si.
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Igor Burban

Exceptional hereditary non-commutative curves
and real curve orbifolds

Paderborn University, Germany

An exceptional hereditary non-commutative curve over an alge-
braically closed field is a weighted projective line of Geigle and Lenz-
ing. However, over arbitrary fields, the theory of exceptional curves is
significantly richer. In my talk I am going to explain the definition, ex-
amples and key properties of these classes of non-commutative curves,
including their invariants and relation to squid algebras and canonical
algebras.

E-mail: � burban@math.uni-paderborn.de.
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Andrii Chaikovs’kyi1, Oleksandr Liubimov2

Boundedness of solutions of the first order linear
multidimensional difference equations in critical case

Taras Shevchenko National University of Kyiv, Ukraine

In space Cd with Euclidean norm we consider the following differ-
ence equation

x(n+ 1) = Ax(n) + y(n), n ≥ 1 (1)

with respect to unknown sequence {x(n)}n≥1 ⊂ Cd. The first element
of this sequence x(1), sequence {y(n)}n≥1 ⊂ Cd and square matrix
A ∈Md(C) of order d are supposed to be known.

Let J
(M)
λ denote the Jordan matrix of order M corresponding to an

eigenvalue λ. The investigation of the boundedness of the solution of
(1) can be fairly easy reduced to the investigation of the boundedness
of the solutions of all the difference equations

x(n+ 1) = J
(Mj)
λj

x(n) + y(λj)(n), n ≥ 1

where λj ∈ σ(A) are eigenvalues of A.
The case of our interest is the so-called critical case: σ(A) ∩

{z ∈ C | |z| = 1} ≠ ∅. In our paper [1] we present the following result

Theorem 1. Let M ≥ 2, |λ| = 1, {ỹm(n)}n≥1 ⊂ C, 1 ≤ m ≤ M and
the following conditions hold:

� For all 1 ≤ m ≤M : ym(n) = ỹm(n)
nm−1 , n ≥ 1

� For each m ∈ {1, . . . ,M} sequence of sums
{∑N

n=1 ỹm(n)λ−n
}
N≥1

is bounded.
Then solution of the equation x(n + 1) = J

(M)
λ x(n) + y(n), n ≥ 1 is

bounded if and only if for each m ∈ {2, . . . ,M} we have:

xm(1) = −
M−m∑
r=0

{
(−1)r ·

∞∑
k=1

((
k + r − 1

r

)
· λ−k−r · yr+m(k)

)}
.

Here x(n) = (x1(n), . . . , xM (n)), y(n) = (y1(n), . . . , yM (n)).

[1] A. Chaikovs’kyi, O. Liubimov, Boundedness of solutions of the first order linear
multidimensional difference equations, Bulletin of Taras Shevchenko National
University of Kyiv, Physics and Mathematics. (To be published).

E-mail: � 1andriichaikovskyi@knu.ua, � 2liubimov oleksandr@knu.ua.
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Module structure of the Lie algebra Wn(K) over sln(K)

1 Institute of Mathematics of National Academy of Sciences of Ukraine, Kyiv,
Ukraine
2 Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Let K be an algebraically closed field of characteristic zero, and
let Wn := Wn(K) denote the Lie algebra of all K-derivations on the
polynomial ring K[x1, . . . , xn]. The Lie algebra Wn was studied by
many authors from different viewpoints: maximal subalgebras of Wn

were studied in [1; 2], solvable and nilpotent subalgebras in [4], auto-
morphisms and derivations of K[x1, . . . , xn] and related structures in

[1; 3]. The Lie algebra Wn admits a natural grading Wn =
⊕

i≥−1W
[i]
n ,

where W
[i]
n consists of all homogeneous derivations whose coefficients

are homogeneous polynomials of degree i+ 1 or zero.

Theorem 1. Let the Lie algebra Wn(K) = Wn, n ≥ 2 be written as a
direct sum of homogeneous components of the standard grading

Wn = W [−1]
n ⊕W [0]

n ⊕ · · · ⊕W [m]
n ⊕ . . . . (1)

Then L = W
[0]
n is a subalgebra of Wn, L ≃ gln(K) and every summand

of the sum (1) is a finite dimensional module over L and over the sub-

algebra M0 ⊆W [0]
n isomorphic to sln(K). Every L-module W

[m]
n ,m ≥ 0

is a direct sum W
[m]
n = Mm⊕Nm of two irreducible submodules, where

Mm consists of divergence-free derivations and Nm consists of all the

derivations from W
[m]
n that are polynomial multiple of the Euler deriva-

tion En = x1
∂
∂x1

+ · · ·+ xn
∂
∂xn

.

[1] V. Bavula, The groups of automorphisms of the Lie algebras of polynomial vec-
tor fields with zero or constant divergence, Communications in Algebra, (2013),
45(3), 1114-1133.

[2] J. Bell, L. Buzaglo, Maximal dimensional subalgebras of general Cartan-type
Lie algebras, Bulletin of the London Mathematical Society, (2024), v.57, issue
2, 605-624.

[3] O. Bezushchak, Derivations and automorphisms of locally matrix algebras. Jour-
nal of Algebra, (2021), v.576, 1-26.

[4] Ie. A. Makedonskyi, A.P. Petravchuk, On nilpotent and solvable Lie algebras of
derivations. Journal of Algebra, (2014), 401, 245-257.

E-mail: � 1safemacc@gmail.com, � 2apetrav@gmail.com.
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Corentin Correia

Isoperimetric profile and quantitative orbit equivalence
for lamplighter-like groups

Université Paris Cité, Paris, France

It is a joint work with Vincent Dumoncel.
Two groups G and H are orbit equivalent if there exist two free

probability measure-preserving G- and H-actions on a standard prob-
ability space, having the same orbits.

However Orstein and Weiss proved that two infinite amenable groups
are orbit equivalent. To get an interesting theory, we add some quan-
titative restrictions on two maps called cocycles, which describe more
precisely the orbit equalities of a given orbit equivalence between G
and H. If G and H are amenable, quantitative orbit equivalence pro-
vides interesting information on their geometry, since the isoperimetric
profiles of the groups give obstructions to the existence of quantitative
versions of orbit equivalence (see [1, Theorems 1.1, Corollary 4.7]). In
some sense, this is a more quantitative comparison between groups.
The highest quantification we can get answers to the following ques-
tion: if two groups are not quasi-isometric, how much do their geometry
differ?

In a joint work with Vincent Dumoncel, we study quantitative orbit
equivalence and isoperimetric profile for lampshuffler groups. Given a
group H, the lampshuffler group over H is

Shuffler(H) := FSym(H) ⋊H,

where FSym(H) is the set of permutations of H of finite support, and
the action of H on it is given by k · σ : h ∈ H → kσ(k−1h).

Lampshufflers belong to a large class of groups which look like lamp-
lighter group. They have been intensively studied in [2], where the au-
thors found conditions for two lamplighters to be quasi-isometric, for
two lampshufflers to be quasi-isometric, etc.

[1] T. Delabie, J. Koivisto, F. Le Mâıtre, and R. Tessera. Quantitative measure
equivalence between amenable groups. Annales Henri Lebesgue, 5:1417–1487,
2022.

[2] A. Genevois, R. Tessera. Lamplighter-like geometry of groups. ArXiv, 2024.

E-mail: � corentin.correia@imj-prg.fr.
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Oleksandra Desiateryk

Ideals of inverse symmetric semigroup connection to variants

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Ideals of the symmetric inverse semigroup ISn, of all partial injec-
tive transformations of the set N = {1, 2, . . . , n} are considered.

In the paper [1] it was proved that a Brandt semigroup is not iso-
morphic to the variant of any semigroup.

It is well known that the set of all ideals of ISn form the next chain
with respect to inclusion {0} = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ In = ISn.

In paper [2] it was shown that for every 1 ≤ k ≤ n, the Rees quotient
Ik/Ik−1 is isomorphic to the finite Brandt semigroup.

Then it is obvious that I1 is a Brandt semigroup. To be precise I1
is a smallest Brandt semigroup which consists of five elements.

Earlier there was stated a hypothesis that such a statement holds
for other ideals.

Now this hypothesis is proved. Hence we state it as following

Theorem 1. Any ideal Ik, 1 ≤ k ≤ n− 1 of ISn is not isomorphic to
a variant of any semigroup.

[1] Oleksandra O. Desiateryk, Olexandr G. Ganyushkin, Sandwich semigroups and
Brandt semigroups. Algebra and Discrete mathematics Vol 38, No 1, 34-42
(2024)

[2] Olexandr Ganyushkin, Ivan Livinsky, Length of the inverse symmetric semi-
group. Algebra and Discrete mathematics Vol 12, No 2, 64-71 (2011)

E-mail: � sasha.desyaterik@gmail.com.
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On the structure of some nilpotent braces

1 University of Alabama, Tuckaloosa, USA
2 Oles Honchar Dnipro National University, Dnipro, Ukraine
3 National University, Los Angeles, USA

A left brace is a set A with two binary operations + and · satisfying
the following conditions: A is an abelian group by addition +, A is a
group by multiplication ·, and a(b+ c) = ab+ ac− a for every a, b, c ∈
A.To facilitate the study of involutive set-theoretic solutions of the
Yang–Baxter equation, W. Rump introduced the concept of braces in
2005 as a generalization of Jacobson radical rings. Let A be a left
brace. Put a ⋆ b = ab − a − b for any elements a and b. If K,L are
subbraces of A, then denote by K ⋆ L the subgroup of the additive
group of A generated by the elements x ⋆ y, where x ∈ K, y ∈ L. Put
A(1) = A and, recursively, A(α+1) = A(α) ⋆ A for all of ordinal α and

A(λ) =
⋂
µ<λ

A(µ) for limit ordinals λ, and put A1 = A and, recursively,

Aα+1 = A ⋆Aα for all of ordinals α and Aλ =
⋂
µ<λ

Aµ for limit ordinals

λ. Note that A(α) is a ideal of A,while Aα is a left ideal for every α.
We consider one-generator braces A such that A3 = ⟨0⟩. We say that
A is called Smoktunowicz-nilpotent (⋆ – nilpotent) if there are positive
integers n, k such that A(n) = ⟨0⟩ = Ak. Denote by NS(n,k) the class of

left braces satisfying A(n) = ⟨0⟩ = Ak where n, k are the least integers
that satisfy this property.

The one–generator braces A satisfying A3 = ⟨0⟩ have been studied
by several researchers. The next natural step is the investigation of left
braces belonging to the class NS(4,4). All considerations here become
quite cumbersome. Note that the left braces in this class A are ⋆ –
nilpotent nilpotent of class at most 16. This naturally leads to the
idea of slightly changing the approach and focusing on a systematic
study of the one-generator ⋆ – nilpotent braces. Our talk is dedicated
to some results we have obtained in the study of such braces. We will
also discuss new findings concerning the structure of two-generated ⋆ –
nilpotent braces.

E-mail: � 1mdixon@ua.edu, � 2lkurdachenko@gmail.com, � 3isubboti@nu.edu.

35
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Twisted Steinberg algebras of not necessarily Hausdorff
ample groupoids and regular inclusions

Instituto de Matemática e Estat́ıstica, Universidade São Paulo, Brasil

In a joint work with Ruy Exel and Héctor Pinedo, given a field K
and an ample (not necessarily Hausdorff) groupoid G, we define the
concept of a line bundle over G inspired by the well known notion from
the theory of C*-algebras. If E is such a line bundle, we construct the
associated twisted Steinberg algebra in terms of sections of E, extend-
ing the original construction introduced independently by Steinberg,
and by Clark, Farthing, Sims and Tomforde. We also generalize the re-
cent construction of (cocycle) twisted Steinberg algebras of Armstrong,
Clark, Courtney, Lin, Mccormick and Ramagge. We then extend Stein-
berg’s theory of induction of modules, not only to the twisted case, but
to the much more general case of regular inclusions of algebras. Among
our main results, we show that, under appropriate conditions, every ir-
reducible module is induced by an irreducible module over a certain
abstractly defined isotropy algebra. We also describe a process of dis-
integration of modules and use it to prove a version of the Effros-Hahn
conjecture, showing that every primitive ideal coincides with the anni-
hilator of a module induced from isotropy.

E-mail: � dokucha@gmail.com.
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Quasikrullian rings and their divisorial categories
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Recall that a commutative ring R with the full ring of fractions Q
is called pseudonoetherian [2] if the following conditions hold:

1. For every element a ∈ R there is a finite set Vmin(a) of prime
ideals containing a such that every prime ideal containing a also
contains an ideal from Vmin(a).

2. For every p ∈ Vmin(a) the ring Rp is noetherian.

We call R pseudokrullian if, moreover, the following conditions
hold:

3. R is reduced, i.e. has no nilpotent elements. Equivalently, Q is
semisimple.

4. R = RP , where P = {p ∈ specR | ht p = 1} and
RP = {q ∈ Q | ∀(p ∈ P)∃(r ∈ R \ p) rq ∈ R}.

Let R be a pseudokrullian ring, N be a full subcategory of R-Mod

consisting of such N that Np = 0 for all p ∈ P, R-M̃od = R-Mod/N
(Serre quotient) and T : R-Mod→ R-M̃od the natural projection. We
also set M = {M ∈ R-Mod | (N ⊆ M &N ∈ N ) ⇒ N = 0}. We
denote by E(M) the injective envelope of the module M .

Theorem 1. 1. If M ∈M, also E(M) ∈M and E(TM)=TE(M).
2. Indecomposable injective modules fromM are E(R/p), where p ∈
P, and Qi, where Qi are the simple components of the semisimple
ring Q.

3. Injective modules fromM are just coproducts of indecomposables.

Theorem 2. 1. inj.dimTM = supp∈P inj.dimMp.

2. gl.dimR-M̃od = supp∈P gl.dimRp.

These results generalizes the results of I. Beck [1].

[1] I. Beck. Injective modules over a Krull domain. J. Algebra, 17, 116–131, 1971.
[2] Y. Drozd. The semigroup of divisors of a commutative ring. Trudy Mat. Inst.

Steklov, 148, 156–167, 1978.

E-mail: � y.a.drozd@gmail.com.
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Represenations and cohomologies of the alternating group
of degree 4
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Let A4 be the alternating group of degree 4. We consider the inte-
gral representations of this group, that is ZA4-modules M such that the
abelian group of M is free of finite rank (A4-lattices). Recall that a clas-
sification of 2-adic representations of A4 was obtained by Nazarova [3].
Unfortunately, this classification gives no idea how to use it to calcu-
late cohomologies of A4-lattices. We propose another approach based
on the technique of Bäckström orders [4]. Namely, since the group ring
is always Gorenstein, all its 2-adic representations, except projective
ones, are actually representations of an overring A [2]. In the case of
Z2A4 this overring is a Bäckström order with the enveloping heredi-
tary order Z2 × Z2[θ] ×Mat(3,Z2), where θ = 3

√
1, and the quotient

A/radA = F2 × F4. Using it, we relate 2-adic representations of A4

with representations of the valued graph of type F̃4 [1]:

• •oo //• ◦
2,1oo //◦,

where the fields associated with • are F2 and those associated with ◦ are
F4. It allows to give a complete description of the Auslander–Reiten
quiver of the category of A-lattices. We also describe all indecom-
posable integral representations of A4 and explain non-uniqueness of
decomposition of representations into indecomposables.

It is known that τM ≃ ΩM for every A-lattice M , where τ is the
Auslander–Reiten transform and Ω is the syzygy of ZA4-lattices [2].
Using it, we calculate Tate cohomologies of all A2-lattices.

1. Dlab V., Ringel C. M. Indecomposable representations of graphs and
algebras. Mem. Amer. Math. Soc., 1976, 73, 1–57.

2. Drozd Yu. A. Rejection lemma and almost split sequences. Ukr. Mat. Zh.,
2021, 73, 908–929.

3. Nazarova L. A. Unimodular representations of the alternating group
of degree four. Ukr. Mat. Zh., 1963, 15, 437–444.

4. Ringel C. M., Roggenkamp K. W. Diagrammatic methods in the rep-
resentation theory of orders. J. Algebra, 1979, 60, 11–42.

E-mail: � 1y.a.drozd@gmail.com, � 2andrianaplakosh@gmail.com.
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Scaling groups and subgroups of wreath products
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The purpose of this talk will be to introduce scaling quasi-isometries
and scaling groups, introduced recently by Genevois and Tessera in [2],
in their quasi-isometric classification of some lamplighters (and, more
generally, of some halo products).

The computation of the scaling group Sc(G) of an amenable group
G can give access to algebraic informations on the group, that are not
obvious to derive in a purely algebraic manner. This represents a good
and elementary instance of the interaction that exists between geometry
and group theory.

In a recent work [1], I proved the following result:

Theorem 1. Let N be a polynomial growth group, and let G be a
finitely presented group in the class Mexp. Then Sc(N ≀G) = {1}.

The class Mexp has been introduced very recently by Bensaid,
Genevois and Tessera [3], and encompasses many amenable groups,
such as solvable Baumslag–Solitar groups BS(1, n), n ≥ 2, or lamp-
lighter groups.

The talk will focus on some nice consequences of Theorem 1, some
algebraic and some geometric. In fact, results from [1] are more general
and allow for instance to deduce a nice criterion to rule out the existence
of quasi-isometries between some iterated wreath products.

References:

[1] Vincent Dumoncel, Quasi-isometric rigidity for lamplighters with
lamps of polynomial growth, arXiv:2502.01849.

[2] Anthony Genevois, Romain Tessera, Measure-scaling quasi-isometries,
Geom. Dedicata, 216, 34, 2022.

[3] Oussama Bensaid, Anthony Genevois, Romain Tessera, Coarse
separation and large-scale geometry of wreath products, arXiv:2401.18025.
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Methods for solving Sylvester-type matrix equations and
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We consider the Sylvester-type matrix equation

AX + Y B = C, (1)

in two variables X, Y over a ring of polynomials F [λ], where F is a
field, and over an adequate ring R. The solvability criterion for (1) is the
well-known Roth’s condition. In addition to the solvability conditions,
solutions with certain properties are also required. In the case where,
in (1) over F [λ] at least one of matrices A or B is regular, it has been
established in [1] the conditions for the existence and uniqueness of the
solution X0, Y0 such that degX0 < degB and degY0 < degA.

In this report, for (1) over F [λ] [2],[3], based on the standard form
of polynomial matrices with respect to semiscalar equivalence, we:
� proved the existence of solutions with bounded degrees in the case

where coefficients A and B are nonregular,
� described their structure in rows and columns,
� pointed out the necessary and sufficient conditions for the exis-

tence of solutions of given degrees,
� established the uniqueness criterion for these solutions.

For (1) over an adequate ring R [2], we used the standard form of a
pair of matrices with respect to generalized equivalence in order to:
� derive the formulas for the general solutions,
� establish the uniqueness criterion for the particular solution.

We proposed methods for the construction of the mentioned solutions
of matrix equation (1) over F [λ] and over an adequate ring R.

[1] Feinstein J., Bar-Ness Y. On the uniqueness of the minimal solution to the
matrix polynomial equation A(λ)X(λ) + Y (λ)B(λ) = C(λ) // J. Franklin Inst.
– 1980. – 310, No. 2. – P. 131–134.

[2] Dzhaliuk N.S., Petrychkovych V.M. Matrix linear bilateral equations over dif-
ferent domains, methods for the construction of solutions, and description of
their structure // Journal of Mathematical Sciences. – 2024. – 282, No. 5. – P.
616–645. https://doi.org/10.1007/s10958-024-07206-w

[3] Dzhaliuk N.S., Petrychkovych V.M. Kronecker product of matrices and solutions
of Sylvester-type matrix polynomial equations // Matematychni Studii. – 2024.
– 61, No. 2. – P. 115–122. doi:10.30970/ms.61.2.115-122

E-mail: � 1nataliya.dzhalyuk@gmail.com, � 2vas petrych@yahoo.com.

40



Gabriella D’Este

A theorem on support τ-tilting pairs
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I will describe a bijection between the indecomposable summands
of two modules of the form P ⊕ T and P ′ ⊕ T ′ such that (T, P ) and
(T ′, P ′) are two basic support τ -tilting pairs in the sense of [1]. The
bijection obtained extends the bijections constructed in [2] and [3].

[1] Adaki T., Iyama O., Reiten I., τ -tilting theory, Composition Mathematica,
150(3), (2014), 415-452.

[2] D’Este G., Tekin Akcin H. M., A bijection between the indecomposable sum-
mands of two multiplicity free tilting modules, Bulletin of the Iranian Mathe-
matical Society, 48 (2022), 2521-2538.

[3] D’Este G., Tekin Akcin H. M., Bijections between τ -rigid modules, to appear
in Contemprorary Mathematics, Proceedings of the 14th Ukraine Algebra Con-
ference.

[4] D’Este G., A theorem on support τ -tilting pairs, preprint.

E-mail: � gabriella.deste@unimi.it.
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Twisted traces and positive forms on quantized Kleinian
singularities of type A

Massachusetts Institute of Technology, USA

I will discuss twisted traces on quantizations of Kleinian singular-
ities of type An−1 and the corresponding orthogonal polynomials of
semiclassical type. In particular, I’ll give explicit integral formulas for
these traces, which may be used to determine when a trace defines a
positive Hermitian form on the corresponding algebra. This leads to
a classification of unitary short star-products for such quantizations,
a problem posed by Beem, Peelaers and Rastelli in connection with
3-dimensional superconformal field theory. In particular, this classifi-
cation confirms their conjecture that for n < 5 a unitary short star-
product is unique, and allows one to compute its parameter as a func-
tion of the quantization parameters, giving exact formulas for the func-
tions computed numerically by Beem, Peelaers and Rastelli. If n = 2,
this, in particular, recovers the theory of unitary spherical representa-
tions of SL2(C) (i.e., Harish-Chandra bimodules for sl2). Thus these
results may be viewed as a starting point for a generalization of the
theory of unitary Harish-Chandra bimodules over enveloping algebras
of simple Lie algebras to more general quantum algebras. Finally, I’ll
describe recurrences to compute the coefficients of short star-products
corresponding to twisted traces, which are generalizations of discrete
Painlevé systems, and a q-deformation of this story due to D. Klyuev.
This is joint work with Daniil Klyuev, Eric Rains, Douglas Stryker.

E-mail: � etingof@math.mit.edu.
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One way to study a group is to understand its subgroups lattice.
Among subgroups, finitely generated subgroups are specifically impor-
tant and having a characterisation of them is useful to study properties
such as subgroup separability (LERF), the Ribs-Zalenski property and
many others. In this work we investigate a class of branch groups
containing the first Grigorchuk group as well as torsion GGS groups.
Every group G in this class is defined by a nice faithful action on a
regular rooted tree T . Technically, we say that G is regularly branch
over some finite index subgroup K, meaning that for every vertex v of
the tree, the subgroup K@v ≤ Aut(Tv) (a copy of K acting below v)
is contained in K.

In a regularly branch group, the K@v are finitely generated sub-
groups. The same remains true for diagonal subgroups diag(K@v ×
K@w) A product of such subgroups is called a block subgroup. This
is a product of copies of K compatible with the action of G on the
tree. Block subgroups are finitely generated subgroups of G. Our main
result is that sometimes the converse holds:

Theorem 1. Let G be either the first Grigorchuk groups or a torsion
GGS group. Then every finitely generated subgroup of G is virtually a
block subgroup.

H =
K

{1}

K)(Kdiag ×

= g =
k2

1

k1k1

k1, k2 ∈ K

Figure 1: A block subgroup.

E-mail: � 1dominik.francoeur@uam.es, � 2grigorch@tamu.edu,
� 3paulhenry.leemann@xjtlu.edu.cn, � 4tatiana.nagnibeda@unige.ch.
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Parastrophic orthogonality of ternary quasigroups
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A ternary operation f defined on Q is called invertible and the pair
(Q; f) is called a quasigroup of the order m, if for every a, b ∈ Q each
of the terms f(x, a, b), f(a, x, b), f(a, b, x) defines a permutation of Q.

A triplet of ternary operations f1, f2, f3 is called orthogonal, if for
all a1, a2, a3 ∈ Q the system of equations {fi(x1, x2, x3) = ai}3i=1 has a
unique solution.

For every permutation σ from the symmetric group S4, a σ-parastro-
phe σf of an invertible ternary operation f is defined by

σf(x1σ, x2σ, x3σ) = x4σ :⇐⇒ f(x1, x2, x3) = x4.

If 4σ = 4, then a σ-parastrophe is called principal. A ternary quasi-
group is called totally self-orthogonal if its all different principal paras-
trophes are orthogonal.

A ternary groupoid is called a group isotope if it is isotopic to a
ternary quasigroup derived from a group. A quasigroup is medial if it
is decomposed over abelian group with pairwise commuting automor-
phisms.

Ps(f) := {σ | σf = f} ⩽ S4 is called parastrophic symmetry group
of f . Let P(H) denote the class of all quasigroups whose parastrophic
symmetry group includes the subgroup H of the group S4. Here, the
group S22 := {ι, (12)(34)} ⩽ S4 is under consideration.

Theorem 1 ([1]). A ternary group isotope (Q; f) belongs to P(S22) iff
there exists a group (Q,+, 0), its automorphism β, a bijection α and
an element a ∈ Q such that β2 = ι, α(0) = 0, β(a) = −a and

f(x1, x2, x3) = α(x1)− βα(x2) + β(x3) + a. (1)

Theorem 2. A ternary medial quasigroup (Q; f) defined by (1) with
parastrophic symmetry group S22 is totally self-orthogonal iff

α+ ι, β + ι, α− β, α+ β − βα, 2α2 + ι+ βα2 + α− βα
are automorphisms of (Q; +).

[1] Pirus Ye. Classification of ternary quasigroups according to their parastrophic
symmetry groups, II. Bulletin of DonNu. Series A. Natural Sciences, 1-2
(2019), 66-75.
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All rings are associative rings with nonzero identity. If every matrix
over R admits a canonical diagonal reduction then R is said to be an
elementary divisor ring.

Right (left) Bezout rings are rings whose finitely generated right
ideals are principal right (left) ideals. Bezout ring is a ring which is a
right and left Bezout ring.

A ring R is said to be a duo ring if every right or left one-sided ideal
in R is two-sided.

A ring R is said to have stable range 1, if for any a, b ∈ R such that
aR+ bR = R there exists t ∈ R such that (a+ bt)R = R.

A ring R is said to have stable range 2 if for all a, b, c ∈ R such that
aR+bR+cR = R, there exists x, y ∈ R such that (a+cx)R+(b+cy)R =
R.

Definition A ring R is said to be a ring of neat range 1 if for
any elements a, b ∈ R such that RaR + RbR = R and for any nonzero
element c ∈ R there exist such elements u, v, t ∈ R that a + bt = uv,
where RuR+RcR = R, RvR+R(1− c)R = R, and RuR+RvR = R.

Theorem 1. Let R be a Bezout duo ring of neat range 1. Then R
is a ring of stable range 2.

Theorem 2. Bezout duo ring R is an elementary divisor ring iff R
is a ring of neat range 1.

[1] Kaplansky I., Elementary divisor rings and modules, Trans. Amer. Math. Soc.
66(1949), 464–491.

[2] Thierrin G., On duo rings, Canad. Math. Bull. 3 (1960), 167–172.
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On some functorial extensions of doppelsemigroups
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A family U of non-empty subsets of a set S is called an upfamily if
for each set U ∈ U any subset F ⊃ U belongs to U . The set υ(S) of all
upfamilies on S is said as the upfamily extension of S. It was shown that
any associative binary operation ∗ : S × S → S can be extended to an
associative binary operation ∗ : υ(S)× υ(S) → υ(S). In this case, the
Stone-Čech compactification β(S) of a semigroup S is a subsemigroup
of the semigroup υ(S). For k ∈ N\{1}, an upfamily U ∈ υ(S) is k-linked
if
⋂
L ≠ ∅ for any subfamily L ⊂ U with |L| ≤ k. The extension Nk(S)

of S consists of all k-linked upfamilies on S. Besides the subsemigroup
Nk(S), the semigroup υ(S) also contains the subsemigroup λ(S) of
maximal 2-linked upfamilies on S. The space λ(S) is well-known in
General and Categorial Topology as the superextension of S.

A doppelsemigroup is an algebraic structure (D,⊣,⊢) consisting of
a non-empty set D equipped with two associative binary operations
⊣ and ⊢ satisfying the axioms (x ⊣ y) ⊢ z = x ⊣ (y ⊢ z) and
(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z). In the talk, we discuss the struc-
ture of the doppelsemigroups (υ(D),⊣,⊢), (λ(D),⊣,⊢), (Nk(D),⊣,⊢),
(β(D),⊣,⊢) on a doppelsemigroup (D,⊣,⊢). In particular, we study
right and left zeros and identities, commutativity, the center, ideals
of these doppelsemigroup extensions. We introduce the functors υ, λ,
Nk, β in the category DSG whose objects are doppelsemigroups and
morphisms are doppelsemigroup homomorphisms, and show that these
functors preserve strong doppelsemigroups, doppelsemigroups with left
(right) zero, doppelsemigroups with left (right) identity, left (right) ze-
ros doppelsemigroups. Also we prove that the automorphism groups of
the aforementioned functorial extensions of a doppelsemigroup (D,⊣,⊢)
contain a subgroup, isomorphic to the automorphism group of (D,⊣,⊢).

[1] V.M. Gavrylkiv, D.V. Rendziak, Interassociativity and three-element dop-
pelsemigroups, Algebra Discrete Math. 28(2) (2019), 224-247.

[2] V.M. Gavrylkiv, On the upfamily extension of a doppelsemigroup, Mat. Stud.
61(2) (2024), 123–135.

[3] V.M. Gavrylkiv, Superextensions of doppelsemigroups, Carpathian Math. Publ.
17 (2025)

[4] V.M. Gavrylkiv, Doppelsemigroups of k-linked upfamilies, J. Algebra Appl. 25
(2026), 2650207.
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Let K be a commutative ring with identity and let K[x1, . . . , xn] be
a ring of polynomials with coefficients in K. By a copolynomial over the
ring K we mean a K-linear functional defined on the ring K[x1, . . . , xn],
i.e. a homomorphism from the module K[x1, . . . , xn] into the ring K.
We denote the module of copolynomials over K by K[x1, . . . , xn]′. Let
T1, T2 ∈ K[x1, . . . , xn]′, ι = (1, . . . , 1) ∈ Nn0 and xα = xα1

1 xα2
2 · · ·xαn

n ,
where α ∈ Nn0 . For multi-indexes α, β ∈ Nn0 , the relation α ≤ β means
that αj ≤ βj for all j = 1, . . . , n. Define a product of T1 and T2 by the
following equality:

(T1T2)(xα) =

{ ∑
β≤α−ι

T1(xβ)T2(xα−ι−β), α ≥ ι,

0, otherwise.

Theorem 1. The module K[x1, . . . , xn]′ with the introduced product is
an associative commutative ring without identity.

Denote by 1
s1s2···snK[[ 1

s1
, . . . , 1

sn
]] the ring of formal Laurent series

of the form
∞∑

|α|=0

cα
sα+ι , where cα ∈ K and |α| =

n∑
j=1

αj .

Theorem 2. The mapping

C : K[x1, . . . , xn]′ → 1

s1s2 · · · sn
K[[

1

s1
, . . . ,

1

sn
]], C(T )(s) =

∞∑
|α|=0

T (xα)

sα+ι

is an isomorphism of the rings.

Corollary 3. If K is an integral domain, then K[x1, . . . , xn]′ is also
an integral domain.

E-mail: � 1gefter@karazin.ua, � 2aleksei.piven@karazin.ua.
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On algebraic dynamics and resurgence
on Minkowski moduli spaces
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Let |x|p + |y|p ≤ 1, p > 1, be the solid Minkowski tube [2] with the
surface boundary MT .

Remark 1. For natural p, d, p = 2d the Minkowski curves

S12d = C2d : x2d + y2d = 1 (1)

are algebraic curves. They define algebraic layers of the moduli space
MT and the bundle of their Jacobians.

The Minkowski–Cohn moduli space M of admissible lattices of
Minkowski balls has the form

∆(p, σ) = (τ + σ)(1 + τp)−
1
p (1 + σp)−

1
p , (2)

in the domain

M : ∞ > p > 1, 1 ≤ σ ≤ σp = (2p − 1)
1
p , (3)

of the {p, σ}-plane, where σ is some real parameter.
We define and investigate on (1) dynamical Galois groups [3] and

Tate modules, and on (2) we define semi complex vector bundle, elliptic
curves bundle, bundle of Epstein zeta functions, and investigate their
algebraic and dynamical properties [4–7] (resurgence [1] is included).

[1] Jean Ecalle, Six Lectures on Transseries, Analysable Functions and the Con-
structive Proof of Dulac Conjecture, NATO ASI Bifurcations and Periodic Or-
bits of Vector Fields (Eds: Dana Schlomiuk), vol. 408, Springer Dordrecht,
75-184.

[2] Minkowski H. Diophantische Approximationen. – Leipzig: Teubner, 1907. Neu-
druk –Warzburg: Physica-Verlag, 1961, 235 p.

[3] Ferraguti, A. A survey on abelian dynamical Galois groups, Rend. Semin. Mat.,
Univ. Politec. Torino 80, 41-54 (2022)

[4] Glazunov N. On coverings by Minkowski balls in the plane and a duality,
Comptes rendus de Academie bulgare Sci., Tome 77, No 6 (2024).

[5] Glazunov N. Extremal functions on moduli spaces and applications. 2024,
arXiv:2411.13671v3 [math.NT].

[6] Glazunov N. On the arithmetic and algebraic properties of Minkowski balls and
spheres, arXiv:2407.12048v3 [math.NT]

[7] Glazunov M. On optimal packing of Minkowski spheres, Cybernetics and sys-
tems analysis, vol 61, 192–196, Springer, 2025.
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Any residually finite countable group G embeds in the automor-
phism group Aut(Tm̄) of spherically homogeneous rooted tree Tm̄ de-
termined by a sequence m̄ of integers mn ≥ 2 (called the branch index).
Also every countably based profinite group Γ embeds into Aut(Tm̄) for
suitable m̄. This leads to the actions G ↷ Vn, Γ ↷ Vn, n = 1, 2, . . . ,
G ↷ ∂Tm̄, and Γ ↷ ∂Tm̄, where Vn is the set of vertices of the n-th
level of the tree Tm̄ and ∂Tm̄ is a boundary of this tree supplied with
the natural topology that makes it homeomorphic to a Cantor set.

Many important groups (of Burnside type, with intermediate growth,
non elementary amenable, of branch type, etc.) were constructed as
groups acting on a d-regular rooted tree Td and the boundary dynam-
ics was often used to study various properties of these groups. One of
the first papers in this direction is [2].

Given an action G ↷ X one can consider the diagonal actions
G ↷ Xn for n ≥ 2, and study the level of transitivity of the origi-
nal action and the partition of Xn into orbits. This leads to a new
information about the group as the constructed diagonal actions often
have properties that are essentially different from the original system.

In the case when G acts on a topological space, one may study
ergodic decompositions of the diagonal actions and the, so called, join-
ings.

We restrict ourselves to the case when G = G is a group of inter-
mediate growth constructed by the first author in 1980 [1] and to the
case when Γ = Aut(Td). We introduce the notions of maximal tree
transitivity of diagonal action and show that G is 2, 3 and 4-maximally
transitive but not 5-maximally transitive.

Also we describe the partitions into ergodic components for the
diagonal actions of Aut(Td) on ∂Tnd .

[1] R. I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal.
i Prilozhen., 14(1):53–54, 1980.

[2] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskĭı. Automata, dy-
namical systems, and groups. Tr. Mat. Inst. Steklova, 231(Din. Sist., Avtom. i
Beskon. Gruppy):134–214, 2000.

E-mail: � 1grigorch@tamu.edu, � 2savchuk@usf.edu.
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Conjugates of the shift map and self-similar groups

1 Texas A&M University, College Station, TX, USA
2 Hofstra University, Hempstead, NY, USA
and
CAIR, Ss. Cyril and Methodius University, Skopje, North Macedonia

Consider the action of the group Aut(X∗) of regular rooted tree
automorphisms on the tree boundary ∂X∗, that is, the action on right
infinite words. Denote by SEP(X) the semigroup of tree automorphisms
that preserve the set of eventually periodic words in ∂X∗.

For any degree d ≥ 2, and any rooted d-ary tree automorphisms
α0, . . . , αd−1, we may define a transformation of ∂X∗ given by T (xw) =
αx(w), for x ∈ X and w ∈ ∂X∗. The tree automorphism γ, defined
by γ = (γα0, . . . , γαd−1) conjugates T to the d-ary shift map σ, so
that γTγ−1 = σ. We prove that if α0, . . . , αd−1 are finite state au-
tomophisms, then γ−1 is in SEP(X). On the other hand, we provide
concrete examples of finite state automorphisms of the binary tree for
which γ is not in SEP(X), thus showing that SEP(X) is not a group.
Denote by EP(X) the group of tree automorphisms g such that both
g and g−1 are in SEP(X). The group EP(X) is self-similar, regular
branch group, branching over itself, and it is dense in Aut(X∗).

An interesting example is provided by the Collatz map T , defined
on positive integers by T (2n) = n and T (2n + 1) = 3n + 2, which
can be extended to the ring Z2 of dyadic integers. The ring Z2 can be
represented by right infinite binary words, and under this interpretation
the map T is given by T (0w) = w and T (1w) = µ2(w), where µ2 is the
tree automorphism given by µ2(w) = 3w+ 2. Without using either the
terminology of rooted trees or dyadic integers, Terras, in 1976, while
working on the Collatz 3x + 1 Conjecture, defined a “parity” map γ,
which turns out to be exactly the tree automorphism γ = (γ, γµ2) that
conjugates T to the binary shift map σ, so that γTγ−1 = σ. The
Periodicity Conjecture of Lagarias can be stated as the claim that γ
belongs to the group EP(X). The conjecture, if true, would imply that
every forward T -orbit of a positive integer eventually enters a cycle.

We provide further results regarding both the general case and the
specific example related to the Collatz 3x+1 Conjecture. In particular,
we provide a description of the minimal automaton for the Terras map
γ and show that its Moore diagram has exponential growth.

E-mail: � 1grigorch@tamu.edu, � 2zoran.sunic@hofstra.edu.
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Yaroslav Grushka

On representation of changeable sets in the form
of a self-multiimage

Institute of Mathematics of National Academy of Sciences of Ukraine,
Kyiv, Ukraine

The present talk is devoted to the problem of representation of a
changeable set in the form of multi-image of some its reference frame.
Further we use the system of the notions and denotations from theory
of changeable sets (see, for example, [1; 2]).

Definition 1. We say that the changeable set Z is
a self-multiimage, iff there exists a reference frame l0 ∈
Lk (Z), such that Z = Z im

[
P

(e)
⟨l0,Z⟩, (l0)ˆ

]
, where P

(e)
⟨l0,Z⟩ is

the evolution multi-projector, defined by the formula P
(e)
⟨l0,Z⟩ :=

((Tm (lkα (Z)) ,Bs (lkα (Z)) , ⟨! lkα (Z)← l0⟩ ) | α ∈ Ind (Z)).

From [1, Assertion 3.27.8] it follows that any self-multiimage is an
evolutionarily visible changeable set.

Definition 2. We say that the a precisely changeable set Z is par-
tially time-separated iff there exists the reference frame l0 ∈ Lk (Z)
such that for each l ∈ Lk (Z) and for arbitrary ω1, ω2 ∈ Bs (l) the corre-
lations ω2←

l
ω1 and ω1 ̸= ω2 lead to the correlation tm (⟨! l0← l⟩ω1) ̸=

tm (⟨! l0← l⟩ω2) .

The following theorem gives the simple for verification criterion,
for evolutionarily visible changeable set to be representable a self-
multiimage.

Theorem 1. Any evolutionarily visible changeable set Z is a self-
multiimage if and only if it is partially time-separated.

Using Theorem 1 we can prove the existence of changeable sets,
which can be represented as a self-multiimage as well as the existence
of changeable sets, which cannot be represented as a self-multiimage.

[1] Ya.I. Grushka, Draft Introduction to Abstract Kinematics (Version 2.0).
Preprint: ResearchGate, (2017), DOI: 10.13140/RG.2.2.28964.27521.

[2] Ya.I. Grushka, Set-theoretic methods in relativistic kinematics. Thesis for
the degree of Doctor of Physical and Mathematical Sciences, Kyiv: In-
stitute of Mathematics of NAS of Ukraine, (2023), (in Ukrainian),
DOI: 10.13140/RG.2.2.18858.12481.

E-mail: � grushka@imath.kiev.ua.

51

https://doi.org/10.13140/RG.2.2.28964.27521
http://dx.doi.org/10.13140/RG.2.2.18858.12481


Oleg Gutik

On the bicyclic monoid and bicyclic extensions

Ivan Franko National University of Lviv, Lviv, Ukraine

We shall follow the terminology of [4].
The bicyclic extension BF

ω for any ω-closed subfamily F of ele-
ments of P(ω) and the bicyclic extensions B(G) and B+(G) of ordered
groups are introduced in [2] and [1; 3], respectively.

In our report we discuss on the following topics concerning the bi-
cyclic extensions BF

ω , B(G) and B+(G):
� the algebraic structure;
� topologizations;
� categorical properties;
� the group of automorphisms;
� the semigroup of endomorphisms.

[1] G. L. Fotedar, On a semigroup associated with an ordered group, Math. Nachr.
60 (1974), 297–302.

[2] O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid,
Visnyk L’viv. Univ. Ser. Mech.-Mat. 90 (2020), 5–19 (in Ukrainian).

[3] O. Gutik, D. Pagon, and K. Pavlyk, Congruences on bicyclic extensions of a
linearly ordered group, Acta Comment. Univ. Tartu. Math. 15 (2011), no. 2,
61–80.

[4] M. Lawson, Inverse semigroups. The theory of partial symmetries, World Sci-
entific, Singapore, 1998.

E-mail: � oleg.gutik@lnu.edu.ua.
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Unique eccentric point graphs of diameter at most four

1,2 National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
3 Kyiv School of Economics, Kyiv, Ukraine
4 McGill University, Montreal, Quebec, Canada

The eccentricity of a vertex u in a connected graph G is the value
ecc(u) = max{d(u, v) | v ∈ V (G)}. A vertex v is an eccentric vertex for
u if ecc(u) = d(u, v). A graph is called a unique eccentric point graph
(shortly, uep-graph) [2] if every vertex has exactly one eccentric vertex.
This is equivalent to saying that the corresponding eccentric digraph
ED(G) is functional.

Generally speaking, characterizing uep-graphs and describing their
eccentric digraphs is a non-trivial problem. To construct uep-graphs
with various properties, we have applied evolutionary algorithms, which
helped us characterize them for small diameters.

The only uep-graph of diameter one is K2. Those of diameter two
are exactly the self-centered (n − 2)-regular graphs [2]. A uep-graph
of diameter thee is either self-centered or upper-diameter critical [2].
In [1], we obtained a characterization of non-self-centered uep-graphs
G of diam(G) = 3 as those whose complement G is a bi-star.

We also described eccentric digraphs of uep-graphs via the following
classification of their weak components: bald, if it is D0,0; half-bald,
if exactly one of the two vertices on a 2-cycle has in-degree one; full
otherwise. A digraph D arises as ED(G) for some uep-graph G of
diam(G) = 3 if and only if D consists of l ≥ 3 bald components, or
D ≃ Dm,k for m, k ≥ 1.
For any non-self-centered uep-graph G of diam(G) = 4, it holds [1]:

1. each eccentric vertex in G lies on a cycle in ED(G);
2. A 2-cycle x ↔ y forms a bald weak component in ED(G) if and

only if dG(x, y) = 3;
3. ED(G) has no half-bald weak components.

[1] A. Hak, V. Haponenko, S. Kozerenko, A. Serdiuk, Unique eccentric point graphs
and their eccentric digraphs, Discrete Math., 346(12), (2023), 113614.

[2] K.R. Parthasarathy and R. Nandakumar, Unique eccentric point graphs, Dis-
crete Math. 46(1) (1983), 69–74.

E-mail: � 1artikgak@ukr.net, � 2vladyslav.haponenko@gmail.com,
� 3kozerenkosergiy@ukr.net, � 4andrii serdiuk@outlook.com.
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Waldemar Ho lubowski

Endomorphisms of vector spaces of countable
and uncountable dimensions

Silesian University of Technology, Gliwice, Poland

Let gl(V ) be the Lie algebra of endomorphisms and GL(V ) the
group of automorphisms of a vector space V over a field K.

If dim(V ) is finite, then the ideal structure of gl(V ) and the normal
structure of GL(V ) are very similar. These results can be extended to
infinite dimensions (see [4], [3], [2] for a countable case and [1], [5] for
a general case).

In our talk we survey these results.

[1] O. Bezushchak,W. Ho lubowski, B. Oliynyk, Ideals of general linear Lie algebras
of infinite-dimensional vector spaces. Proc. Amer. Math. Soc. 151 (2023), no.
2, 467–473.

[2] W. Ho lubowski, M. Maciaszczyk, S. Żurek, Normal subgroups in the group of
column-finite infinite matrices, J. Group Theory, 25 (2022), 343–353.

[3] W. Ho lubowski, S. Żurek, Lie algebra of column-finite infinite matrices: ideals
and derivations. J. Algebra 619 (2023), 517–537.

[4] I. Penkov, V. Serganova, Tensor representations of Mackey Lie algebras and
their dense subalgebras, Developments and retrospectives in Lie theory, Dev.
Math. Vol. 38, pp. 291–330. Springer, Cham., 2014.

[5] A. Rosenberg,The structure of the infinite general linear group. Ann. of Math.
(2) 68 (1958), 278–294.

E-mail: � w.holubowski@polsl.pl.
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On the characterization of unitary Cayley graphs
of upper triangular matrix rings

1 Silesian University of Technology, Gliwice, Poland
2 Silesian University of Technology, Gliwice, Poland;
National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
3 National University of Kyiv-Mohyla Academy Kyiv, Ukraine

There are several graphs associated with rings. The unitary Cayley
graph of a ring R is a graph whose vertices are elements of the ring,
and two elements x and y are adjacent if and only if x− y is a unit of
R.

The idea of representing graphs modulo integers was introduced by
Erdös and Evans [1], while the concept of unitary Cayley graphs for
the rings Zn, n ≥ 2, was first presented by Dejter and Giudici [2].

We prove that the unitary Cayley graph CTn(F) of the ring of all
upper triangular matrices Tn(F) over a finite field F is isomorphic to a
semistrong product of complete graph and antipodal graph to Hamming
graph. We prove that the clique number and the chromatic number
of this graph are equal to the number of elements of the field F and
characterize the domination number of CTn(F).

Theorem 1. For any finite field F and a positive integer n, n ≥ 2

n+ 1 ≤ γ(CTn(F)) ≤ 2n.

These bounds are tight.

[1] P. Erdös, A.B. Evans, Representations of graphs and orthogonal Latin square
graphs, J. Graph Theory 13(5) (1989) 593–595.

[2] I. J. Dejter, R. E. Giudici, On Unitary Cayley Graphs, J. Combin. Math.
Combin. Comput 18 (1995) 121–124.

E-mail: � 1w.holubowski@polsl.pl, � 2bogdana.oliynyk@polsl.pl,
� 3viktoriia.solomko20@gmail.com.
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Olena Hryniv1, Yaroslaw Prytula2

History of teaching and research in algebra in Lviv

Ivan Franko National University of Lviv, Lviv, Ukraine

The Department of Mathematics at Lviv University was established
in 1744. In 1850, Professor Ignacy Lemoch (1802–1875) began teaching
higher algebra as a separate course.

The mathematical research of Jakob Kulik (1793–1863), a graduate
of Lviv University focused on the theory of algebraic equations, proper-
ties of certain transcendental, and number theory. The result of his five
years of work was tables of prime divisors for numbers from 3,033,001
to 100,330,201.

Courses on algebraic equations were also taught by Laurentius Żmur-
ko (1824–1889) He attempted to define the analogue of complex num-
bers in space, which he called spatial numbers. In 1881-1883, Wladys-
law Kretkowski announced lecture courses on the application of deter-
minants, and on Hamilton’s theory of quadratic numbers.

Waclaw Sierpiński (1882–1969), a student of the Ukrainian mathe-
matician Georgii Voronoi, taught algebra and number theory at Lviv
University from 1908 to 1919. W. Sierpiński and Józef Puzyna (1856–
1919) organized advanced seminars where students presented abstracts
of mathematical research, including Galois and group theory.

The career of Eustachi Żylinski (1889–1954) is also closely linked
with Lviv. He taught algebra at Lviv University from 1919 to 1946.
His scientific results are related to number theory, algebra, and logic.
Jozef Schreier (1909–1943) and Stanislaw Ulam (1909–1984) also dealt
with algebraic issues related to topological groups.

Between 1894 and 1939, Ukrainian mathematicians in the Shevchenko
Scientific Society: Volodymyr Levytskyi (1872–1956), Mykola Chaikovs-
kyi (1887–1970) published a dozen scientific articles on algebra.

From 1946 to 1953, Yaroslav Lopatynskyi (1906–1981) headed the
Department of Algebra at Lviv University, developing the algebraic
theory of linear differential operators. Together with P. Kazymyrskyi
in Lviv and S. Berman in Uzhhorod, Lopatynski founded Ukrainian
algebraic schools that continue the tradition of algebraic research.

[1] Ya. Prytula Articles on the history of Lviv mathematics. Available at:
http://mmf.lnu.edu.ua/istoriia/vydatni-osobystosti.
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Oleksii Ilchuk

Moufang liners

Ivan Franko National University of Lviv, Lviv, Ukraine.

Subject of my work is the structure called Moufang Liners. Liners
are the set endowed with ternary relation satisfying two basic geometric
properties:
� for every two distinct points exists unique line passing through

them;
� for every line there exist two distinct points which belong to it.
With this geometric stucture, all other known properties of various

geometries can be seen as a specific subset of all liners, for which cer-
tain additional axioms are satisfied. Using notion of liners, I’ve studied
Moufang planes - classical object in geometry and generalized require-
ments for geometry to be Moufang and established some additional
results for Moufang planes as well as preserving already known ones.

Main results in my work are two following theorems:

Theorem 1. The projective completion of regular Moufang affine liner
is the Moufang projective liner.

Theorem 2. The affine liner is Moufang if and only if it is a shear
liner.

Shear liners are specific liners possessing many automorphisms which
with fixed points on hyperplanes.

E-mail: � alexilchuk4@gmail.com.
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Volodymyr Ilkiv

On the criterion for extracting a factor
of a matrix polynomial

Lviv Polytechnic National University, Lviv, Ukraine

In the works of P. S. Kazimirskii from the 60s and 70s, a criterion for
extracting the left unital factor B = B(z) = B0z

r +B1z
r−1 + · · ·+Br

from a square matrix polynomial A = A(z) of order n and degree m
was established, where

A = BD, detA = φ · ψ, detB = φ, B0 = I,

and D = D(z) is also a matrix polynomial, I – identity matrix.

Theorem 1. To uniquely extract the unitary factor B from the matrix
A it is necessary and sufficient to uniquely solve the system of linear
algebraic matrix equations

M⌊A∗,r+1⌋(φ)X = 0, (1)

where MG(φ) is the matrix of values of the matrix G on the root system
of polynomial φ, X = col (Xr, . . . , X1, X0), Xr, . . . , X1, X0 are square
matrices of order n, X0 = I, ⌊H, l⌋ =

(
H(z) zH(z) . . . zl−1H(z)

)
is

the accompanying matrix, A∗ is the adjugate of A.

Consider the system related to system (1)

M(
⌊ψI,r+1⌋ ⌊A,q⌋

)(zq+m)

(
X
Y

)
= 0, (2)

where Y = col (Y(n−1)(m−r), . . . , Y1, Y0), q = (n− 1)(m− r) + 1.
The equivalence of systems (1) and (2) is proved, namely: the X-

component of the solution of system (2) is the solution of system (1)
and, conversely, the solution of system (1) is the X-component of the
solution of system (2) and uniquely determines the Y -component of
the solution of system (2). From this follows the following alternative
criterion for the selection of the factor.

Theorem 2. For the unique extraction of a left unitary matrix poly-
nomial, it is necessary and sufficient to have a unique solvability of the
system of linear algebraic matrix equations (2).

E-mail: � ilkivvv@i.ua.
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Mykola Khrypchenko

Quantum upper triangular matrix algebras

Universidade Federal de Santa Catarina, Florianópolis, Brazil.

Let K be a field of characteristic ̸= 2, n ≥ 2 integer and q ∈ K∗.
We introduce a uniparametric quantization Tq(n) of the K-algebra of
upper triangular n × n matrices. When char(K) = 0 and q is not a
root of unity, we describe the derivations and automorphisms of Tq(2).

This is a joint work with Ednei A. Santulo Jr. (Universidade Es-
tadual de Maringá), Érica Z. Fornaroli (Universidade Estadual de Mar-
ingá) and Samuel Lopes (Universidade do Porto).

E-mail: � nskhripchenko@gmail.com.
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Francisco Klock1, Mykola Khrypchenko2

Local confluence and globalizations of partial actions of
monoids on semigroups

Federal University of Santa Catarina, Florianopolis, Brazil.

Let M be a monoid, X a semigroup and α a strong partial action of
M on X. We can describe a candidate β for a universal globalization of
α as the quotient of the free semigroup generated by the set-theoretic
universal globalization of α by an equivalence relation generated by a
certain abstract rewriting system →. If → is locally confluent, then β
is a universal globalization of α. When M = G⊔{0} for some group G,
and the domain and image of each αm are ideals of X, we give necessary
and sufficient conditions for → to be locally confluent and find weaker
conditions for α to be globalizable.

E-mail: � 1francisco gabriel25@hotmail.com.
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Rostyslava V. Kolyada1, Orest M. Mel’nyk2, Volodymyr M. Prokip3

On solutions of matrix equation
A(λ)X(λ) + Y (λ)B(λ) = C(λ)

1,2 Lviv Polytechnic National University, Lviv, Ukraine
3 IAPMM NAS of Ukraine, Lviv, Ukraine

Let F[λ] be the ring of polynomials over an infinite field F. Further,
let Fn[λ] be the ring of n× n matrices over F[λ]. Consider the matrix
equation

A(λ)X(λ) + Y (λ)B(λ) = C(λ), (1)

where A(λ), B(λ) ∈ Fn[λ] nonsingular matrices, C(λ) ∈ Fn[λ] and
X(λ), Y (λ) unknown matrices. For A(λ) and B(λ) there exist matrices
(see[1]) P ∈ GL(n,F) and Q1(λ), Q2(λ) ∈ GL(n,F[λ]) such that:

PA(λ)Q1(λ) = GA(λ) = [gij(λ)],

where gij(λ) = 0 if i < j; gii(λ) = ai(λ) are invariant divisors of A(λ)
for all i = j and gij(λ) = aj(λ)g̃ij(λ) for all i > j.

PB(λ)Q2(λ) = HB(λ) = [hij(λ)],

where hij(λ) = 0 if i < j; hii(λ) = bi(λ) are invariant divisors of B(λ)

for all i = j and hij(λ) = bj(λ)h̃ij(λ) for all i > j.
Thus, the equation (1) is solvable if and only if the equation

GA(λ)X̃(λ) + Ỹ (λ)HB(λ) = PC(λ)Q2(λ), (2)

is solvable. Put X̃i(λ) = Q−1
1 (λ)Xi(λ)Q2(λ) and Ỹi(λ) = PYi(λ)P−1,

i = 1, 2, . . . .
Theorem. Let pairs of matrices X̃i(λ), Ỹi(λ), i = 1, 2, be solutions

of equation (2). Then the following conditions are held:

1) Matrices Y1(λ) and Y2(λ) are similar if and only if matrices Ỹ1(λ)

and Ỹ2(λ) are similar.
2) Matrices X1(λ) and X2(λ) are equivalent if and only if matrices

X̃1(λ) and X̃2(λ) are equivalent.
Question: When conditions 1) and 2) of the Theorem are held si-

multaneously?

[1] Kazimirs’kyi P.S. Decomposition of matrix polynomials into factors. Naukova
Dumka, Kyiv; 1981, 226 p. (in Ukrainian).
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� 3v.prokip@gmail.com.

61



Andrii Korzhuk1, Andriy Oliynyk2

Accelerated operations for permutational wreath products

1 Postgraduate student, Taras Shevchenko National University of Kyiv, Kyiv,
Ukraine
2 Doctor of Sciences in Physics and Mathematics, Professor of the Department of
Algebra and Computer Mathematics, Taras Shevchenko National University of
Kyiv, Kyiv, Ukraine

Operations with permutational wreath products become computa-
tionally expensive as structure depth and component group sizes in-
crease.

Definition 1 (Permutational Wreath Product). The wreath product
G≀H of permutation groups (G,X) and (H,Y ) consists of pairs [g, h(x)]
where g ∈ G and h(x) ∈ HX acting on X × Y by (x, y)[g,h(x)] =
(xg, yh(x)).

Definition 2 (Portrait). A portrait of an element from ≀d−1
i=0Gi is a

labeled rooted tree of depth d where each node at level l is labeled
with elements from Gl, and level l is |Xl|-regular with total nodes

|π| = 1 +
∑d−1
l=1

∏l−1
k=0 |Xk|.

We introduce a heap-like data structure for representing portraits –
elements of permutational wreath products ≀d−1

i=0Gi. The proposed data
structure allows implementation of optimized algorithms for operations
with portraits, such as action, multiplication, inverse, etc.

Theorem 1 (Portrait Operation Complexity). The portrait multipli-

cation and inverse algorithms have time complexity O
(
d ·
∏d−1
i=0 |Xi|

)
.

Theorem 2 (Cyclic Group Optimization). When each Gi is cyclic,
portrait operations only requires determining permutations by their ac-

tion on generators, reducing complexity to O
(
d ·
∏d−2
i=0 |Xi|

)
.

We validated our approach by identifying all isomorphisms between
Z3 ↑ Z3 and subgroups of Z3 ≀Z3 ≀Z3, expanding example from [1]. From
313 possible candidate pairs, our algorithm identified 40,223,304 valid
isomorphic pairs, demonstrating the efficiency of our representation
with applications to automorphism groups of regular rooted trees.

[1] Oliynyk A., Prokhorchuk V. On exponentiation, p-automata and HNN exten-
sions of free abelian groups. Algebra and Discrete Mathematics Volume 35
(2023). Number 2, pp. 180-190 DOI: 10.12958/adm2132

E-mail: � 1korzhukandrew@gmail.com, � 2aolijnyk@gmail.com.
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Ganna Kudryavtseva

Relating ample and biample topological categories with
Boolean restriction and range semigroups

University of Ljubljana, Faculty of Mathematics and Physics and IMFM
Ljubljana, Slovenia

The aim of the talk is to present the results of the paper [1] where
the dualities between ample groupoids and Boolean inverse semigroups
are extended to the dualities where groupoids are replaced by cate-
gories and inverse semigroups are replaced by restriction and range
semigroups. The latter are the most well-studied non-regular general-
izations of inverse semigroups. We extend the equivalence by Cockett
and Garner between restriction monoids and ample categories to the
setting of Boolean range semigroups which are non-unital one-object
versions of range categories. We show that Boolean range semigroups
are equivalent to ample topological categories where the range map r
is open, and étale Boolean range semigroups are equivalent to biample
topological categories. Our dualities follow from more general adjunc-
tions for the preBoolean case. Our technique builds on the usual con-
structions relating inverse semigroups with ample topological groupoids
via germs and slices.

[1] G. Kudryavtseva, Relating ample and biample topological categories with
Boolean restriction and range semigroups, Adv. Math., vol. 474, July 2025,
110313, 48pp.

E-mail: � ganna.kudryavtseva@fmf.uni-lj.si.
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Ivan Kyrchei

The determinant of the adjacency matrix
of a quaternion unit gain graph

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
of NAS of Ukraine, Lviv, Ukraine

Let H be the quaternion skew field and U(H) = {q ∈ H | |q| = 1}.
Suppose that Γ = (V,E) is the simple graph with the set of vertices
V = {v1, v2, . . . , vn} and edges in the set E denoted by eij = vivj .

Moreover,
−→
E =

−→
E (Γ) is the set of oriented edges of the gain graph. By

eij , we denote the oriented edge from vi to vj , and the gain of eij is
φ(eij). So, a U(H)-gain graph is defined as a triple G = (Γ, U(H), φ)
consisting of an underlying graph Γ = (V,E), the circle group U(H),

and the gain function φ :
−→
E (Γ)→ U(H) such that φ(eij) = φ(eji)

−1 =

φ(eji). Using the Moore noncommutative determinant, the research [1]
started to study the quaternion unit gain graphs. In [2], a combinatorial
description of the determinant of the Laplacian matrix of a quaternion
unit gain graph is provided, based on the theory of row-column non-
commutative determinants [3]. In this presentation, we extend this line
of inquiry by offering a combinatorial description for the determinant
of the adjacency matrix of a quaternion unit gain graph.

Theorem Let G be a U(H)-gain graph and A(G) be its adjacency
matrix. Then

detA(G) =
∑

R∈R(G)

(∏
k1

detA
(
C(k1)

)∏
k2

detA
(
P (k2)

))
,

where the sum is taken over the set R(G) of all needed reductions R
of G. Here R =

⋃
k Sk = C(1) ∪ . . . ∪ C(k1) ∪ P (1)

⋃
. . . ∪ P (k2), where

Si, (i ∈ Ik), is the component of R, C(i), (i ∈ Ik1), is a unique cycle,
and P (i), (i ∈ Ik2), is a path graph. detA(C(i)) and detA(P (j)) have
simple explicit combinatorial descriptions as well.

[1] F. Belardo, M. Brunetti, N.J. Coble, N. Reff, H. Skogman. Spectra of quaternion
unit gain graphs. Linear Algebra Appl. 632, (2022) 15-49.

[2] I.I. Kyrchei, E. Treister, V.O. Pelykh. The determinant of the Laplacian matrix
of a quaternion unit gain graph. Discrete Math. 347(6), (2024) 113955.

[3] I.I. Kyrchei. The theory of the column and row determinants in a quaternion
linear algebra. In: Baswell A.R. (ed.), Advances in Mathematics Research 15,
pp. 301–359. New York, Nova Sci. Publ., 2012.
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(z,k)-equivalence of matrices over quadratic rings

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics
National Academy of Sciences of Ukraine, Lviv, Ukraine

Let K be a Euclidean quadratic ring, M(n,K) be the ring of n× n
matrices over K. The structure of matrices over quadratic rings was
studied only over certain quadratic rings, in particular over Euclidean
quadratic rings, the ring of Gaussian integers. In [1], the cyclotomic
matrices over quadratic rings are studied, a classification of such matri-
ces is given, and the connection with graphs is indicated. Generalized
Klostermann sums are extended over the ring of matrices of Gaussian
integers Z[i] and an estimate of these sums are given [2].

We investigate a special equivalence of matrices over different quad-
ratic rings. Matrices A,B ∈M(n,K) are called (z, k)-equivalent if there
exist invertible matrices S over Z and Q over K, such that A = SBQ.
It is established that each matrix A over the Euclidean quadratic ring is
reduced by (z,k)–equivalent transformations to the following standard
form TA with invariant factors on the main diagonal: TA = SAQ =∥∥∥∥∥∥∥∥∥

µ1 0 . . . 0
t21µ1 µ2 . . . 0

...
... . . .

...
tn1µ1 tn2µ2 . . . µn

∥∥∥∥∥∥∥∥∥, where tij = 0, if µi = 1 and ε(tij) <
ε(µi)
ε(µj)

,

if tij ̸= 0, i, j = 1, ..., n, j < i, ε(·) is the Euclidean norm of an element
from K [3]. The standard form TA of a matrix A is defined ambiguously.
It is established that the number of matrices over imaginary Euclidean
quadratic rings is finite and given an estimate this number. The classes
of matrices over these rings are selected for which the standard form is
uniquely defined and equal to the Smith normal form. Standard form
of matrices are used for solving matrix linear equations over quadratic
rings and for descriptions of the structure of solutions these equations.

[1] Taylor G. Cyclotomic matrices and graphs over the ring of integers of some
imaginary quadratic fields. J. Algebra., 2011, 331, P. 523—545.

[2] Velichko I.N. Generalized Kloosterman sum over the matrix ring. Visn. Odes.
Nats. Univ., Ser. Mat. and Mekh., 2010, 1, No. 19., P. 9—20.

[3] Ladzoryshyn N.B., Petrychkovych V.M. Standard form of matrices over
quadratic rings with respect to the (z,k)-equivalence and the structure of so-
lutions of bilateral matrix linear equations J. Math. Sci., 2021, 253, No. 1., P.
54—62.
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On the norm of non-cyclic pd-subgroups
in torsion locally nilpotent groups

Sumy State Pedagogical University named after A. S. Makarenko, Sumy, Ukraine

The authors study the norm of non-cyclic pd-subgroups, which is
one of the generalizations of the classical concept of the norm of a
group in group theory (see [1]). Recall (see, for example, [2]) that a
pd-group is a group that contains elements of order p for some prime p.
The intersection of the normalizers of all non-cyclic pd-subgroups of a
group G (provided that the system of such subgroups is nonempty) is
called the norm of non-cyclic pd-subgroups of a group and is denoted

by NpdH
G . In the case when a group G does not contain non-cyclic

pd-subgroups, let’s assume that G = NpdH
G .

It is clear that in the class of primary groups the norm of non-cyclic
pd-subgroups coincides with the non-cyclic norm NG of a group (see
[3]). Therefore, in this case all the results got in [3] for the norm NG

hold for the norm NpdH
G .

In this paper the authors consider the properties of the norm of non-
cyclic pd-subgroups in the class of torsion locally nilpotent pd-groups.

Proposition. The norm NpdH
G of a torsion pd-group G is Dedekind

if at least one of the following conditions is satisfied:
� a group G contains a non-cyclic pd-subgroup or a non-cyclic p′-

subgroup that does not intersect with NpdH
G ;

� a group G contains an elementary Abelian subgroup of order p3.
Theorem. Let G be a torsion non-primary locally nilpotent pd-

group. If its norm NpdH
G is non-Dedekind, then any Sylow p′-subgroup

of a group G is cyclic and G = Gp × ⟨x⟩, where (|x|, p) = 1 and

NpdH
G ∩Gp is a non-Dedekind p-group in which all non-cyclic subgroups

are normal.

[1] Baer R. Der Kern, eine Charakteristische Untergruppe. Comp. Math. 1935. 1.
254- 283.

[2] Lyman F. N. Groups with some systems of invariant pd-subgroups. Groups and
systems of their subgroups. Kyiv: Institute of Mathematics of the Academy of
Sciences of the Ukrainian SSR, 1983. 100-118.

[3] Lukashova T. D. On locally-finite p-groups with non-Dedekind non-cyclic norm.
Mathematychui Studii. 2002. 17 (1). 18-22.

E-mail: � 1tanya.lukashova2015@gmail.com, � 2marydru@fizmatsspu.sumy.ua,
� 3anastasialogvin2@gmail.com.
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Symmetric weak multicategories and biprops
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Symmetric multicategories (over sets) can be defined in the style of
Leinster’s book. They can be enriched over categories, which means
that we are given a set of objects; for each tuple

(
(Xi)i∈I , Y

)
of objects

of C (I is finite totally ordered set) we are given not a set C
(
(Xi)i∈I ;Y

)
,

but a category; compositions

µϕ :
[∏
j∈J

C
(
(Xi)i∈ϕ−1j ;Yj

)]
× C

(
(Yj)j∈J ;Z

)
→ C

(
(Xi)i∈I ;Z

)
are functors, where ϕ : I → J is a mapping, not necessarily preserv-
ing the order; etc. In strict category-enriched case the composition
functors satisfy an associativity equation. For weak multicategories
these equations are replaced with a functorial isomorphisms which, in
turn, satisfy the associativity pentagon equations. In particular, weak
multicategories are bicategories. Examples of symmetric weak multi-
categories come from symmetric monoidal bicategories.

Just as ordinary symmetric multicategory C gives rise to a colored
prop FC with the same set of objects as C, the set of operations

FC
(
(X1, . . . , Xn), (Y1, . . . , Ym)

)
=
∐

φ : {1,...,n}→{1,...,m}

m∏
j=1

C
(
(Xi)i∈φ−1(j);Yj

)
,

(φ : {1, . . . , n} → {1, . . . ,m} – any map), weak symmetric multicate-
gory C gives rise to a biprop FC, whose categories of operations are
given by the above formula. We conjecture the coherence result for
weak symmetric multicategories similar to the coherence result for bi-
categories.

E-mail: � lub@imath.kiev.ua.
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Double coset classes and differentiable structures
on non-Hausdorff one-dimensional manifolds

Institute of Mathematics of National Academy of Sciences of Ukraine,
Kyiv, Ukraine

Fix k = 1, . . . ,∞ and let Rneg = (−∞; 0) denote the set of ne-
gavtive reals. Let D := D+(Rneg) be the group of preserving orienta-
tion Ck-diffeomorphisms of Rneg, and E := ER((Rneg)) be its subgroup
consisting of diffeomorphisms h which can be extended to some Ck-
diffeomorphism of all R.

Let also Z2 = {±1} be the cyclic group of order 2, and E ≀ Z2 be
the wreath product of E and Z2. By definition, E ≀ Z2 is the Cartesian
product of sets E × E × Z2 with the following operation:

(a, b, δ)(c, d, 1) := (ac, bd, δ), (a, b, δ)(c, d,−1) := (bc, ad,−δ)

for a, b, c, d ∈ E and δ = ±1.
Then there is a natural action of the wreath product E ≀ Z2 on D

given by
(a, b, δ) · g = (bga−1)δ,

for a, b,∈ E , g ∈ D, and δ = ±1. The corresponding set of orbits of
this action will be denoted by E \ D±/E .

Note that set of orbits under the induced action of the subgroup
E × E × 1 is denoted by E \ D/E and called double E-cosets.

Further let Y =
(
R×{0, 1}

)
/(x,0)∼(x,1),x<0 be the topological space

obtained by gluing two copies of R by the identity homeomorphism.
Then Y is a non-Hausdorff one-dimensional manifold.

It is well known that the real line R admits a unique up to a diffeo-
morphism Ck-structures.

Theorem 1. There is a canonical bijection between the set of all Ck-
structures on Y and the set E \D±/E. In particular, Y has uncountably
many pair-wise non-diffeomorphic Ck-structures.

In the talk we will also discuss a formalism behind the proof of
this theorem, which allows to do similar classifications in more general
contexts.

E-mail: � 1maks@imath.kiev.ua, � 2m.lysynskyi@imath.kiev.ua.
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About finitely-generated weakly-second submodules

Ivan Franko National University of Lviv, Lviv, Ukraine

Let R be associative ring with 1 ̸= 0, M be right R-module. We
write N ≤M to indicate that N is submodule of M .

Definition 1. Module M is called weakly-second module if for all the
ideals A,B of R and every submodule K ≤ M , MAB ⊆ K implies
either MA ⊆ K or MB ⊆ K.

Definition 2. By weakly-second submodule of a module we mean a
submodule, which is also a weakly-second module itself.

Theorem 1. Let N be finitely-generated submodule of R-module M ,
such, that AnnR(N) = AnnR(M). If N is weakly-second submodule,
then M is weakly-second module.

Theorem 2. Let N be finitely-generated submodule of module M , and
AnnR(M) is a prime ideal. If N is weakly-second submodule, then
AnnR(M) = (N : M).

[1] S. Annin, “Associated and Attached Primes Over Noncommutative Rings”,
Ph.D.Thesis, Univ. of Baghdad, (2002).

[2] H. Ansari-Toroghy, F. Farshadifar “The dual notion of some generalizations of
prime submodules”, Comm. Algebra, (2011), Vol. 39, No. 7, pp. 2396-2416

[3] S. Çeken, M. Alkan, “On second submodules”, Contemporary Mathematics, 634
(2015), 67-77.

[4] S. Yassemi, “The dual notion of prime submodules”, Arch. Math (Brno) 37
(2001), 273-278.

E-mail: � martamaloid@gmail.com.
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Stabilization of adjoints
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The term “stabilization” in the title refers to the stabilization of
both categories and functors. Paraphrasing Eilenberg and Mac Lane,
one might say that stable categories are necessary to accommodate
stable functors – and in this lecture, we will indeed focus on stable
functors.

Numerous examples of such functors exist, the most prominent be-
ing the higher (i.e., degree ≥ 1) Ext and Tor, which are familiar to
everyone. In fact, all higher derived functor are stable. A simple yet
surprising fact is that these higher derived functors are entirely de-
termined by their zeroth counterparts. Given any additive functor F
on a module category (or more generally, on an abelian category with
enough injectives or projectives), one can canonically construct a sta-
ble functor, called the stabilization of F . Figuratively speaking, the
stabilization process takes place in degree zero.

In recent years, it has become evident that many results, concepts,
techniques, and theories can be explained, clarified, and expanded
through the lens of stable functors. The goal of this talk is to demon-
strate how applying this philosophy to the stabilization of adjoined
functors allows us to recover Auslander–Reiten theory for finitely gen-
erated modules over artin algebras. Moreover, the generality of our
approach also enables us to establish the existence of Auslander–Reiten
sequences for finite-dimensional comodules over semiperfect coalgebras.

The first author was supported in part by the Shota Rustaveli Na-
tional Science Foundation of Georgia Grants NFR-18-10849 and FR-
24-8249

E-mail: � 1a.martsinkovsky@northeastern.edu, � 2btorreci@ual.es.
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Definition. A metric space X is plastic if every non-expanding bijec-
tion f : X → X is an isometry.

We shall discuss the existence of a dense plastic subspace of a metric
space, and a dense plastic subgroup of a normed space, as described in
our following results.

Definition. A metric space (X, d) is strictly convex if for all a, b ∈ X
and r1, r2 ∈ R+ such that d(a, b) = r1 + r2, the intersection of the
closed balls B[a, r1] ∩B[b, r2] contains exactly one element.

Definition. A topological space X is k-crowded if every non-empty
open set in X contains an uncountable compact subset.

Theorem 1. A k-crowded separable metric space contains a dense plas-
tic subspace.

Theorem 2. A strictly convex separable normed vector space contains
a dense plastic subgroup.

Theorem 3. Every countable dense subspace of a normed vector space
is not plastic.

[1] J. van Mill, A topological group having no homeomorphisms other than trans-
lations, Trans. Amer. Math. Soc. 280 (1983), no. 2, 491–498.

[2] S. A. Naimpally, Z. Piotrowski, and E. J. Wingler, Plasticity in metric spaces,
J. Math. Anal. Appl. 313 (2006), 38–48.

[3] W. Hurewicz and H. Freudenthal, Dehnungen, Verkurzungen, Isometrien, Fun-
damenta Mathematicae 26 (1936), 120–122.
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� 3olesia.zavarzina@yahoo.com.
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On prime subsemimodules of multiplication semimodules

Ivan Franko National University of Lviv, Lviv, Ukraine

We consider left semimodules over semirings, not necessarily com-
mutative.

Theorem 1. Let M be a left R-semimodule. Let P be a subsemimodule
of M with P ̸= M . The following statements are equivalent:

1. P is prime;
2. For any r ∈ R and m ∈M , if (r)(m) ⊆ P , then either m ∈ P or

r ∈ (P : M);
3. For any r ∈ R and m ∈ M , if rRm ⊆ P , then either m ∈ P or

r ∈ (P : M).

Let S be an arbitrary m-system of a semiring R. A non-empty sub-
set X of the semimodule M is called an Sm-system of the semimodule
M if for any s ∈ S and any x ∈ X, there exists an element r ∈ R such
that srx ∈ X.
Theorem 2. Let R be a semiring, M be a left R-semimodule, and N
be a subsemimodule of M such that N ∩ X = ∅, where X is an Sm-
system. Then there exists a maximal subsemimodule P , with P ⊆ N , of
the semimodule M among those subsemimodules satisfying P ∩X = ∅.
This subsemimodule P is prime.

A left R-semimodule M is called a multiplication module if for every
submodule N of M , there exists an ideal I of R such that N = IM .

Theorem 3. The following statements are equivalent for a proper k-
subsemimodule N of M :

1. N is a prime k-subsemimodule of M ;
2. (N : M) is a prime k-ideal of R;
3. N = PM for some prime k-ideal P of R.

[1] Golan J. S. Semirings and their Applications. Kluwer Academic Publishers,
1999. 460 p.

[2] R. E. Atani, S. E. Atani, On subsemimodules of semimodules. Bul. Acad. Stiinte
Repub. Moldova. Matematica. 2010. No. 2 (63). P. 20–30.

[3] R. E. Atani. Prime Subsemimodules of Semimodules. International Journal of
Algebra, 4(26), 2010, pp. 1299–1306.

E-mail: � 1ivannamelnyk@yahoo.com, � 2andrii.andrushko@lnu.edu.ua.

72



Yurii Merkushev

Twisted Cayley machines for finite groups: implementation
and analysis

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Twisted Cayley machines are Mealy-type automata whose states
correspond to elements of a finite group and whose input symbols are
ordered pairs from that group. Such automata generate lamplighter-
type dynamics and are known to produce groups of the form A ≀ Z.

In this work, we present a universal Python-based implementation
for constructing such machines over arbitrary finite groups, including
abelian products and non-abelian structures like the dihedral group D4.
The tool computes transition tables and supports graphical visualiza-
tion.

We experimentally compare automata built from different groups
using graph-theoretic characteristics such as the number of unique tran-
sitions and cycles of fixed length. The results show that automata
structures differ substantially even for groups of equal order. This im-
plementation serves as a practical tool for studying automaton groups
and their properties.

[1] Dominik Francoeur, Bireversible automata generating lamplighter groups, 2022.
Available at: https://arxiv.org/abs/2206.04633

E-mail: � yuri merkushev@knu.ua.

73



Oksana Mykytsei
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We consider the concept of compatibility between continuous semi-
lattices and its connection to adjunctions.

Definition. Let S and S′ be continuous semilattices with bottom ele-
ments 0 and 0′, respectively. A mapping P : S × S′ → {0, 1} is called
a compatibility between S and S′ if:

(1) P preserves bottom elements in both arguments:

P (0, y) = P (x, 0′) = 0 for all x ∈ S, y ∈ S′.

(2) P is Scott-continuous in both arguments.
We denote the set of all such compatibilities by Cw(S, S′).

In [1] we consider various subclasses of Cw(S, S′) and investigate
their connections to a wide range of structures, such as monotone pred-
icates, Galois connections, and completely distributive lattices.

In particular, for a completely distributive lattice L, the subclass
C•∨(S, S′) of compatibilities that preserve pairwise suprema in the sec-
ond argument corresponds to the set M[L]S of L-valued normalized
monotone predicates.

The class C∨∨(S, S′) of compatibilities that preserve pairwise suprema
in both arguments is, as a partially ordered set, anti-isomorphic to the
lattice of contravariant Galois connections between the continuous lat-
tices L and L′.

We define the subclass C↗(S, S′) by the condition:

P (x1 ∧ x2, y) = P (x1, y) ∧ P (x2, y) for y ≤ y1 ∨ y2.

It is shown that

C↗(S, S′) ∼=M∧
[L]S ⊆M[L]S,

where M∧
[L]S consists of all L-valued normalized monotone predicates

on S that map pairwise infima to pairwise suprema.

[1] Mykytsei O.Ya., Koporkh K.M. Compatibilities between continuous semilat-
tices. Carpathian Math. Publ., 2021, Vol. 13, No. 1, P. 5–14.
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Orthogonalization and polarization of Yangians
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For every family of orthogonal polynomials, we define a new re-
alization of the Yangian of gl(n). Except in the case of Chebyshev
polynomials, the new realizations do not satisfy the RTT relation. We
obtain an analogue of the Christoffel-Darboux formula. Similar con-
struction can be made for any family of functions satisfying certain
recurrence relations, for example, q-Pochhhammer symbols and Bessel
functions. Furthermore, using an analogue of the Jordan-Schwinger
map, we define the ternary Yangian for an arbitrary finite dimensional
Lie algebra as a flat deformation of the current algebra of a certain
ternary extension of the given Lie algebra. The talk is based on a joint
work [1] in progress with V. Futorny, W. Bock, and J. Zhang.

[1] W. Bock, V. Futorny, M. Neklyudov, J. Zhang, Orthogonalization and polar-
ization of Yangians, arXiv:2504.00259

E-mail: � misha.neklyudov@gmail.com.
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Program algebras and logics over nominative data
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The widespread use of artificial intelligence actualizes the question
of its theoretical foundations to which logic belongs. Mathematical
logic is based on algebras of various types. Interpreting algebras as
models of activity in subject domains, we propose an approach that
allows to describe algebras (and logics based on them) which take into
account such specific domain features as intensionality, nominativity,
compositionality, and partiality.

Intensionality. It specifies the basic behavioral characteristics of
subject domains and is complementary to their extensional character-
istics. Intensional characteristics can be classified according to the fol-
lowing levels of activity: pure, becoming, determinate, real, and actual
levels. The pure level means that no activity is identified, the becoming
level means that transitions are allowed, the determinate level is related
to the qualities of things, the real level is based on properties of things,
and actual level is associated with actions in the domain. Each of the
levels specifies some action algebras, in particular, program algebras.

Nominativity. The models of states of the subject domains can be
specified by classes of nominative data [1]. These data are based on the
name-value relation. Various data structures used in subject domain
models can be represented by hierarchical nominative data.

Compositionality. The main means of program constructions are
formalized as compositions. We identify compositions with respect
to the levels of activity. Thus, the considered algebras can be called
composition-nominative algebras.

Partiality. In conventional algebras and logics functions and pred-
icates are considered as total mappings. But in applications we often
encounter situations with partiality. This requires constructing alge-
bras with partiality both in data and mappings.

Here we define composition-nominative program algebras and logics
with partial predicates and functions over hierarchical nominative data.
We investigate such algebras and construct for the corresponding logics
sequent calculi in the style of multimodal logics.

[1] Nikitchenko, M. Composition-Nominative Methods and Models in Program De-
velopment. SN COMPUT. SCI. 3, 507 (2022).
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Lamplighter groups and reversible automata
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Let G be a finite group. The lamplighter group LG is defined as
the restricted wreath product G ≀Z, i.e. as

⊕
ZG⋊Z, where Z acts on⊕

ZG by shifts. We discuss approaches to constructing finite automata
such that their automaton groups are lamplighter groups. For any
nontrivial finite abelian group G, we construct a reversible automaton
whose automaton group is LG.

The talk is based on the paper [1].

[1] Piotr W. Nowak, Andriy Oliynyk, Veronika Prokhorchuk On reversible au-
tomata generating lamplighter groups, Journal of Algebra, V.661, 2025, P.578-
594.
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We shall follow the terminology of [1; 2].
The bicyclic monoid C (p, q) is the semigroup with the identity 1

generated by two elements p and q subjected only to the condition
pq = 1. The semigroup operation on C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

In [4] the following subsemigroup

C+(a, b) =
{
biaj ∈ C (a, b) : i ⩽ j, i, j ∈ ω

}
of the bicyclic monoid is studied.

In [3] we describe monoid endomorphisms of the semigroup C+(a, b)
which are generated by the family of all congruences of the bicyclic
monoid and all injective monoid endomorphisms of C+(a, b).

In our report we describe difference types of monoid endomorphisms
of the semigroup C+(a, b) and their semigroup structures.

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

[3] O. Gutik and Sh.-A. Penza, On the semigroup of monoid endomorphisms of the
semigroup C+(a, b), Algebra Discr. Math. 38 (2024), no. 2, 233–247.

[4] S. O. Makanjuola and A. Umar, On a certain subsemigroup of the bicyclic
semigroup, Commun. Algebra 25 (1997), no. 2, 509–519.
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Automorphism group of some non-nilpotent Leibniz algebras
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Let L be an algebra over a field F with the binary operations +
and [, ]. Then L is called a (left) Leibniz algebra if it satisfies the left
Leibniz identity:

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all elements a, b, c ∈ L [1,2].
A linear transformation f of L is called an endomorphism of L, if

f([a, b]) = [f(a), f(b)]

for all elements a, b ∈ L. A bijective endomorphism of L is called an au-
tomorphism of L. We note that the set Aut[,](L) of all automorphisms
of L is a group by a multiplication.

Consider the following type of 3-dimensional non-nilpotent Leibniz
algebras:

L = Fa1 ⊕ Fa2 ⊕ Fa3, where [a1, a1] = [a1, a3] = a3,

[a1, a2] = −a2, [a2, a1] = a2,

[a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Thus, Leib(L) = ζ left(L) = Fa3, [L,L] = Fa2 ⊕ Fa3.

Theorem 1. Let G be the automorphism group of a Leibniz algebra L.
Then G is isomorphic to a subgroup of GL3(F ) consisting of matrices
of the following form:  1 0 0

α2 β2 0
α3 β3 1 + α3

 ,

where α2, α3, β2, β3 ∈ F , β2 ̸= 0, 1 + α3 ̸= 0.

[1] Blokh A. On a generalization of the concept of Lie algebra. Dokl. Akad. Nauk
SSSR, 1965, 165(3), 471–473.

[2] Loday J.-L. Cyclic homology. – New York: Springer-Verlag, 1992, 451 p.
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A ring right (left) almost stable range 1

Ivan Franko National University of Lviv, Lviv, Ukraine

Let R be an associative ring with a nonzero identity element. We
say that a ring R is a ring of stable range 1 if for any elements a, b ∈ R
the equality aR + bR = R implies (a+ bλ)R = R for some λ ∈ R. We
say that a ring R is a ring of stable range 2 if for any elements a, b, c ∈ R
the equality aR + bR + cR = R implies (a + cλ)R + (b + cµ)R = R
for some λ, µ ∈ R. Element a ∈ R\{0} is said to be an element of a
right (left) almost stable range 1 if for any elements b, c ∈ R such that
aR + bR + cR = R (Ra+ Rb+ Rc = R) we have aR + (b+ cλ)R = R
(Ra + R(b + µc) = R) for some λ, µ ∈ R. A ring R is a ring right
(left) almost stable range 1 if every nonzero element R is an element
of right (left) almost stable range 1. We will remind that a right (left)
Bezout ring it is a ring in which every right (left) finitely generated
ideal is principal right (left) ideal. A Bezout ring is a ring which is a
right Bezout and left Bezout an one time.

Theorem 1. Let R be a right Bezout ring of stable range 2. Then
for any a, b ∈ R, there exist elements d, a1, b1 ∈ R such that a = da1,
b = db1 and a1R+ b1R = R.

Theorem 2. A right Bezout ring R of stable range 1 is a ring of right
almost stable range 1.

Theorem 3. A right (left) Bezout ring of a right (left) almost stable
range 1 is a ring of stable range 2.

Theorem 4. A ring R is a ring of right almost stable range 1 if and
only if R/J(R) is a ring of right almost stable range 1, where J(R) is
the Jacobson radical of R.

Theorem 5. Let R be a right Bezout ring in which for any elements
a, b ∈ R such that aR + bR = R there exists an element λ ∈ R such
that a + bλ is an element of right almost stable range 1. Then R is a
ring of stable range 2.

[1] H. Bass, K-theory and stable algebra, Publ. Inst. Hautes Etude Sci., 22 (1964).
[2] W. McGovern, Bezout rings with almost stable range 1, J. Pure Appl. Algebra

212 (2007) 340–348.
[3] B. V. Zabavsky, A. M. Romaniv, S. I. Bilavska, Adequate properties of the ele-

ments with almost stable range 1 of a commutative elementary divisor domain,
Applied Problems of Mechanics and Mathematics 16 (2018) 33–35.
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On the construction of high order elements in finite fields
given by binomial

Lviv Polytechnic National University, Lviv, Ukraine.

It is well known that the multiplicative group of a finite field is
cyclic. A generator of this group is called primitive element. The
problem of constructing efficiently a primitive element for a given finite
field is notoriously difficult in the computational theory of finite fields.
That is why on considers less restrictive question: to find an element
with high multiplicative order [4]. We are not required to compute the
exact order of the element. It is sufficient in this case to obtain a lower
bound on the order. High order elements are needed for a number of
applications, including cryptography and coding theory.

Fq denotes a finite field of q elements, where q is a power of a
prime number. The extension of the field given by binomial is of the
form Fq[x]/(xm − a). It is shown in [3] how to construct high order
elements in such extension with the condition that m divides q − 1.
The lower bound 5, 8m is obtained in this case. High order elements
are constructed in [2] for extensions Fqm (m = 2t, q ≡ 1 (mod 4) ,

lower bound 2(m
2+3m)/2+ord2(q−1)) and (m = 3t, q ≡ 1 (mod 3), q ̸=

4, lower bound 3(m
2+3m)/2+ord3(q−1)) without the division condition.

For arbitrary m and without the division condition, the best known

results are: the lower bound 2
3√2m = 2, 3

3
√
m [5] and the refined bound

5
3
√
m/2 = 3, 5

3
√
m [1].

We consider any extension of the form Fq[x]/(xm−a) and explicitly

construct in it elements with the multiplicative order at least 2
√
2m.

[1] V. Bovdi, A. Diene, R. Popovych, Elements of high order in finite fields specified
by binomials, Carpathian Math. Publ. 14 (1) (2022) 238-246.

[2] J.F. Burkhart et al., Finite field elements of high order arising from modular
curves, Des. Codes Cryptogr. 51 (3) (2009) 301-314.

[3] Q. Cheng, On the construction of finite field elements of large order, Finite
Fields Appl. 11 (3) (2005) 358-366.

[4] G.L. Mullen, D. Panario, Handbook of Finite Fields, CRC Press (2013).
[5] R. Popovych, Elements of high order in finite fields of the form Fq [x]/(xm − a),

Finite Fields Appl. 19 (1) (2013) 86-92.
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On endomorphisms of the semigroup BF
Z

Ivan Franko National University of Lviv, Lviv, Ukraine

We shall follow the terminology of [1; 2].
On the set BZ×F , where F is an ω-closed subfamily of P(ω), we

define the semigroup operation “·” by the formula

(i1, j1, F1)·(i2, j2, F2)=

{
(i1−j1+i2, j2, (j1−i2+F1) ∩ F2), if j1⩽i2;
(i1, j1−i2+j2, F1 ∩ (i2−j1+F2)), if j1⩾i2.

In [3] it is proved that (BZ × F , ·) is a semigroup. Moreover, if an
ω-closed family F ⊆ P(ω) contains the empty set ∅ then the set
I = {(i, j,∅) : i, j ∈ Z} is an ideal of the semigroup (BZ ×F , ·). For
any ω-closed family F ⊆P(ω) the following semigroup

BF
Z =

{
(BZ ×F , ·)/I, if ∅ ∈ F ;
(BZ ×F , ·), if ∅ /∈ F

is defined and studied in [3].
A subset A of ω is said to be inductive, if i ∈ A implies i+1 ∈ A. In

[4] we study automorphisms of the semigroup BF
Z with the family F of

inductive nonempty subsets of ω and prove that the group Aut(BF
Z )

of automorphisms of the semigroup BF
Z is isomorphic to the additive

group of integers.

In our report we describe all endomorphisms of the semigroup BF2

Z

for a two-element family F 2 of inductive nonempty subsets of ω.

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.

[2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. II.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.

[3] O. V. Gutik and I. V. Pozdniakova, On the semigroup generating by extended
bicyclic semigroup and an ω-closed family, Mat. Metody Fiz.-Mekh. Polya 64
(2021), no. 1, 21–34 (in Ukrainian).

[4] O. Gutik and I. Pozdniakova, On the group of automorphisms of the semigroup
BF

Z with the family F of inductive nonempty subsets of ω, Algebra Discrete
Math. 35 (2023), no. 1, 42–61.
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Mykola Pratsiovytyi, Sofiia Ratushniak

Numeral systems with redundant alphabet and their
applications in geometry of numerical series

and fractal analysis

Dragomanov Ukrainian State University, Institute of Mathematics of NAS of
Ukraine, Kyiv, Ukraine

Let s and r be fixed natural parameters such that 2 ≤ s ≤ r; let
Ar ≡ {0, 1, . . . , r} be an alphabet, and let Lr ≡ Ar × Ar × . . . be the
set of all sequences of elements from the alphabet Ar.

For every x ∈ [0; r
s−1 ] there exists a sequence (αn) ∈ Lr such that

x =

∞∑
n=1

αns
−n = ∆rs

α1α2...αn.... (1)

The expansion of x in the series (1) is called the rs-expansion of the
number, and the notation ∆rs

α1α2...αn... is called the rs-representation of
the number. The digits αn are called the rs-digits of the rs-expansion.

In general, numbers from the interval [0; r
s−1 ] may admit more than

one rs-expansion. Each pair of parameters r and s defines a specific ge-
ometry, which is effectively revealed through the study of the properties
of cylinder sets.

Fractal analysis, as a component of the theory of fractals, includes
the study of structural, topological, and metric properties of sets, func-
tions, measures, and dynamical systems, based on the theory of fractal
dimensions.

The term geometry of number series generally refers to the topo-
logical, metric, and fractal analysis of sets of partial sums of absolutely
convergent number series.

Given a convergent series S = a1 + a2 + . . .+ an + . . . the set of its
partial sums is defined as

E(an) = {x :
∞∑
n=1

εnan, (εn) ∈ L2} ⊂ [0;S].

This talk focuses on the number of rs-representations of a real num-
ber, their relationship with rs-expansions in terms of partial sums of
corresponding series, and further applications. Special attention will
be devoted to the case s = r that is, to systems with one redundant
digit.

E-mail: � prats4444@gmail.com, ratush404@gmail.com.
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Volodymyr M. Prokip

On the uniqueness of solutions of a matrix equation
AX − Y B = C over the ring of integers

IAPMM NAS of Ukraine, Lviv, Ukraine

Let Zm,n be the set of m × n matrices over the ring of integers Z.
Consider the matrix equation

AX − Y B = C, (1)

where A ∈ Zm,m, B ∈ Zn,n, C ∈ Zm,n and X,Y are unknown m × n-
matrices over Z.

The following question naturally arises: Under which conditions
does equation (1) have a unique solution? See also [1]–[3] and refer-
ences therein. The purpose of this report is to present the following
statement.

Theorem. Let A ∈ Zm,m and B ∈ Zn,n be nonsingular matrices
and C ∈ Zm,n. Further, let W ∈ GL(m,Z) be such that

AW = HA =


h1 0 . . . . . . 0
h21 h2 0 . . . 0
. . . . . . . . . . . . . . .
hm1 hm2 . . . hm,m−1 hm

 ∈ Zm,m

is the Hermitian normal form of the matrix A, i.e., hi > 0 for all
1 ≤ i ≤ m and 0 ≤ hij < hi for all j < i, 1 ≤ j < i.

The matrix equation AX + Y B = C has a unique solution

X0, Y0 =


y11 y12 . . . y1n
y21 y22 . . . y2n
. . . . . . . . . . . .
ym1 ym2 . . . ymn

 ∈ Zm,n

such that 0 ≤ yij < hi for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n if and
only if (detA,detB) = 1.

[1] Prokip V.M. About the uniqueness solution of the matrix polynomial equation
A(λ)X(λ) − Y (λ)B(λ) = C(λ). Lobachevskii J. Math. 29.3 (2008): 186–191.

[2] Prokip V.M. On the divisibility of matrices with remainder over the domain of
principal ideals. J. Math. Sciences. 243, N.1 (2019): 45–55.

[3] Prokip V.M., Mel’nyk O.M., Kolyada R.V. On divisibility with remainder of
polynomial matrices over an arbitrary field. Math. methods and phys.-mech.
fields. 66.1-2 (2023): 23–39.
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Classification of groups of finite type by isomorphism

Texas A& M University of Texas, United States

Groups of finite type (also known as finitely constrained groups)
are closed subgroups of Aut(T ), the automorphism group of a regular
rooted tree T , whose action locally around every vertex is determined
by a finite group of allowed actions of a certain depth D. They were
introduced in 2005 by Grigorchuk in [3], who proved that the closure
of regular branch groups belongs to this class. In 2006, Sunic proved
the converse in [5]. In 2014, Bondarenko and Samoilovich gave results
to check if a group of finite type is topologically finitely generated and
calculated all the groups of finite type in the binary tree with depth 2,
3 and 4 (see [1]).

It is of interest to know whether two groups of finite type are isomor-
phic or not. This can be used as a tool to prove whether two abstract
groups whose closure in Aut(T) is of finite type are not isomorphic (if
the corresponding closures are not isomorphic) or it can also be used
to prove that the groups are not profinite rigid (if the closures are
isomorphic).

In my talk, I will present theorems that allow the classification of
groups of finite type. With these results, we will classify groups of finite
type in the binary tree for depth 2, 3 and 4 and in the ternary tree for
depths 2 and 3. With another theorem, we will also compute the closure
of some famous groups in the literature such as Grigorchuk groups [2]
and GGS groups [4], and we will derive conclusions comparing their
closures.

[1] I. Bondarenko and I. Samoilovych, On finite generation of self-similar groups of
finite type, International Journal of Algebra and Computation, 23 (1) (2013),
69–79.

[2] R. Grigorchuk, On Burnside’s problem on periodic groups, Akademiya Nauk
SSSR. Funktsionalny̆ı Analiz i ego Prilozheniya, 14 (1) (1980), 53–54.

[3] R. Grigorchuk, Solved and Unsolved Problems Around One Group, Birkhäuser
Basel, (2005), 117–218.

[4] N. Gupta and S. Sidki, On the Burnside Problem for Periodic Groups, Mathe-
matische Zeitschrift, 182 (1983), 385–388.

[5] Z. Šunić, Hausdorff dimension in a family of self-similar groups, Geometriae
Dedicata, 124 (2007), 213–236.
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On direct products of metacyclic Miller–Moreno p-groups
and cyclic p-groups as additive groups of local nearrings

Institute of Mathematics of National Academy of Sciences of Ukraine,
Kyiv, Ukraine

A nearring R with an identity is called local if the set of all non-
invertible elements of R forms a subgroup of the additive group of R.
In paper [1] it was given a full classification of the metacyclic Miller–
Moreno p-groups which appear as the additive groups of finite local
nearrings. Moreover, if G is such an additive group, then we describe
all possible multiplications “·” on G for which the system (G,+, ·) is a
local nearring. In the report we consider the direct products of Miller–
Moreno p-groups and cyclic p-groups as additive groups of nearrings
with identity and local nearrings.

In what follows we use the following notation: F (pm, pn, pk) denotes
an additively written group with generators a, b and c of orders pm, pn

and pk, respectively, so that −b + a + b = a(1 + pm−1), c + a = a + c
and c+ b = b+ c, where m ≥ 2, n ≥ 1 and k ≥ 1.

We will give examples of local nearrings.

Lemma 1. Let R be a local nearring whose additive group of R+ is
isomorphic to F (pm, pn, pk), |R : L| = p, m ≥ n and m ≥ k. If
x = ax1+bx2+cx3, y = ay1+by2+cy3, then the mappings α : R→ Zpm ,
β : R → Zpn , γ : R → Zpk , ϕ : R → Zpm , ψ : R → Zpn and ξ : R →
Zpk can be the following: ϕ(x) = 0 (mod pm), ψ(x) = 0 (mod pm),
α(x) = 0 (mod pm), γ(x) = 0 (mod pk), ξ(x) = 1 (mod pk),

β(x) =

{
1, if x1 ̸≡ 0 (mod p);
0, if x1 ≡ 0 (mod p).

Theorem 2. For each odd prime p, m ≥ n and m ≥ k there exists a lo-
cal nearring R whose additive group R+ is isomorphic to F (pm, pn, pk).

[1] Raievska I. Yu., Sysak Ya. P. Finite local nearrings on metacyclic Miller–Moreno
p-groups. Algebra Discrete Math., 2012, 13, No. 1, 111–127.
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p-Groups with cyclic subgroup of index p and local nearrings
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Kyiv, Ukraine

p-Groups with cyclic subgroup of index p as the additive groups and
the multiplicative groups of local nearrings are investigated. Further-
more, the classifications of such nearrings are given.

However, it is not true that any finite group is the additive group
of a nearring with identity. Therefore the determination of the non-
abelian finite p-groups which are the additive groups of local nearrings
is an open problem (see [1]).

In present report we study p-groups with cyclic subgroup of index
p (see, for example, [2]) as the additive groups and the multiplicative
groups of local nearrings. Furthermore, the classifications of such near-
rings are given.

Theorem 1. Let G be a non-cyclic p-group with cyclic subgroup of
index p. There exist 501 local nearrings whose multiplicative groups
are isomorphic to G.

[1] Feigelstock S. Additive groups of local near-rings. Com. in Alg., 2006, 34, 743–
747.

[2] Hall M. Jr. The Theory of Groups. The Macmillan Company, New York, 1959.
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Oversupercritical partially ordered sets

Polissia National University, Zhytomyr, Ukraine

Using the idea of minimax equivalence of posets [1], the author to-
gether with V. M. Bondarenko described in 2005 [2], up to isomorphism,
all (finite) posets S critical with respect to posets with positive Tits
quadratic form qS(z) := z20 +

∑
i∈S z

2
i +

∑
i<j,i,j∈S zizj − z0

∑
i∈S zi,

which are called P -critical posets. In 2009 [4], we described all posets
S critical with respect to posets with nonnegative Tits quadratic form,
which are called NP -critical posets. In this situation the next question
arises: is it possible to continue the series “P -critical posets — NP -
critical posets” taking into account that the quadratic forms that are
not nonnegative do not have a natural gradation?

The author (together with V. M. Bondarenko) have been proposed
the following solution:

1) describe the (pairwise nonisomorphic) posets that differ from the
Nazarova supercritical posets in the same extend as the supercritical
posets differ from the Kleiner critical posets; they are called oversuper-
critical (in more detail see, e.g., [5]);

2) take all posets minimax isomorphic to supercritical (see [2]).
The motivation for this decision are the following facts (presented

in terms of the paper [6]): the Kleiner critical posets form a minimax
system of generators for the P -critical posets [2] and the Nazarova
supercritical posets — for the NP -critical posets [3].

[1] V. M. Bondarenko. On (min, max)-equivalence of posets and applications to the
Tits forms. Bulletin of Taras Shevchenko Universityof Kyiv (series: Physics &
Mathematics), (1):24–25, 2005.

[2] V. M. Bondarenko, M. V. Styopochkina. (Min, max)-equivalence of partially
ordered sets and the Tits quadratic form. Collection of works of Inst. of Math.
NAS Ukraine – Problems of Analysis and Algebra, 2(3):18–58, 2005.

[3] V. M. Bondarenko, M. V. Styopochkina. (Min, max)-equivalence of posets and
nonnegative Tits forms. Ukr. Math. J., 60(9):1349–1359, 2008.

[4] V. M. Bondarenko, M. V. Styopochkina. Description of posets critical with re-
spect to the nonnegativity of the quadratic Tits form. Ukr. Math. J., 61(5):734–
746, 2009.

[5] Bondarenko V. M., Styopochkina M. V. Classification of the posets of minmax
types which are symmetric oversupercritical posets of the eighth order. Mathe-
matical methods and physicomechanical fields, 66(1-2):5–15, 2023.

[6] Bondarenko V. M. Minimax equivalence method: initial ideas, first applications
and new concepts. Algebra Discrete Math., 38(1):1–22, 2024.
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Rationality and solvable subgroups in the Cremona group

University of Padua, Padua, Italy

In this talk I will present the following two results about the group
of birational transformations (which we denote by Bir(X)) of an irre-
ducible variety X:

The first one: If Bir(X) is isomorphic to Bir(Pn), then X is rational.
The second one: a closed connected solvable subgroup of Bir(X) has

derived length less than or equal to 2dimX and the equality holds iff X
is rational. Moreover, all Borel subgroups (maximal connected solvable
subgroups) of Bir(Pn) of derived length 2n are conjugate. Furthermore,
Borel subgroups of Bir(Pn) of derived length stricktly smaller than 2n
exist. This talk is based on the joint work with C. Urech and I. Van
Santen.

E-mail: � andriyregeta@gmail.com.
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Andrii Romaniv

On reduction of invertible matrices to simpler forms

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, Lviv,
Ukraine

Let R be a commutative Bezout domain of stable range 1.5 [2].
According to Theorem 1 from [3], R is an elementary divisor domain
[1], i.e., for every nonsingular matrix D ∈Mn(R), there exist invertible
matrices PD and QD of appropriate sizes, such that

PDDQD = diag(φ1, φ2, . . . , φn) =: Φ, where φi|φi+1, i = 1, . . . , n−1.

The matrices PD and QD are the left and right transforming matri-
ces for D, respectively. We denote by PD the set of all left transforming
matrices of the matrix D. It is known that PD = GΦPD where, the set
GΦ is a multiplicative group (Zelisko group).

Consider a diagonal matrix

diag(ψ1, ψ2, . . . , ψn) =: Ψ, where ψi|ψi+1, i = 1, . . . , n− 1.

Let α ∈ R. We denote by K(α) the set of representatives of the
residue classes of the factor ring R/Rα. Let MLTn(R) be the ring of
lower triangular matrices over R.

Theorem. Let S = ∥sij∥n1 ∈ MLTn(R). Then there exist lower
unitriangular matrices H ∈ GΦ and L ∈ GΨ, such that

HSL =

∥∥∥∥∥∥∥∥∥∥
1 0 . . . 0 0
k21 1 . . . 0 0
. . . . . . . . . . . . . . .

kn−1.1 kn−1.2 . . . 1 0
kn1 kn2 . . . kn.n−1 1

∥∥∥∥∥∥∥∥∥∥
= K,

where K is the canonical form of the matrix S, in which kij ∈ K(νij),

νij =
(
φi

φj
, ψi

ψj

)
, for i = 2, . . . , n, j = 1, . . . , n− 1, i > j.

[1] Kaplansky I. Elementary divisor and modules. Trans. Amer. Math. Soc., 66,
464–491, 1949.

[2] Shchedryk V.P. Bezout rings of stable range 1.5. Ukrainian Math J., 67, 960–
967, 2015. doi.org:10.1007/s11253-015-1126-9.

[3] Shchedryk V.P. Bezout rings of stable range 1.5 and the decomposition of a
complete linear group into the product of its subgroups Ukrainian Math J., 69,
138–147, 2017. doi.org/10.1007/s11253-017-1352-4.
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Rings with Dubrovin condition

Ivan Franko National University of Lviv, Lviv, Ukraine

We will consider elementary divisor rings satisfying the Dubrovin
condition, i.e., the condition that for every nonzero element a ∈ R,
there exists an element a∗ ∈ R such that RaR = a∗R = Ra∗. A
ring R is called a ring of almost stable range 1 if from the condition
RaR +RbR +RcR = R, with c ̸= 0, it follows that there exists λ ∈ R
such that R(λa+ b)R+RcR = R.

Let R be a Bezout domain with Dubrovin condition. Let a ∈ R, a ̸=
0 and suppose RaR = a∗R = Ra∗ ̸= R. The element a is called one-
sided adequate if for every element b ∈ R the following conditions hold:
1) a = rs for some r, s ∈ R and RrR = r∗R = Rr∗, RsR = s∗R = Rs∗,
RbR = b∗R = Rb∗; 2) r∗R + b∗R = R; 3) for every nontrivial divisor
s′∗ of s∗ we have s′∗R+ b∗R ̸= R where Rs′R = s′∗R = Rs′∗. A ring R
is called simultaneously adequate if every nonzero element a such that
RaR ̸= R is one-sided adequate.

Theorem 1. A simultaneous adequate Bezout domain with Dubrovin
condition is a ring of almost stable range 1.

Theorem 2. Let R be a Hermite ring of almost stable range 1. Then
for any matrix ( a 0

b c ) over R, where RaR+RbR+RcR = R, there exist
invertible matrices P and Q such that PAQ = ( z 0

∗ ∗ ), where RzR = R.

Theorem 3. Let R be a Hermite ring with Dubrovin condition of al-
most stable range 1. Then R is an elementary divisor ring if and only
if every matrix of the form ( a 0

b c ), where RaR = R, admits a canonical
diagonal reduction.

[1] H. Bass, K-theory and stable algebra, Publ. Inst. Hautes Etude Sci., 22 (1964).
[2] W. McGovern, Bezout rings with almost stable range 1, J. Pure Appl. Algebra

212 (2007) 340–348.
[3] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66

(1949) 464–491.
[4] B. V. Zabavsky, Diagonal reduction of matrices over finite stable range rings,

Mat. Stud. 41 (2014) 101–108.
[5] B. V. Zabavsky, Conditions for stable range of an elementary divisor rings,

Comm. Algebra 45 (2017) 4062–4066.
[6] B. V. Zabavsky, Diagonal reduction of matrices over rings (Mathematical Stud-

ies, Monograph Series, v. XVI, VNTL Publishers, Lviv, 2012).
[7] N. I. Dubrovin, On rings with elementary divisors, Soviet Math. 30(11) (1986)

16–24.

E-mail: � oleh.romaniv@lnu.edu.ua.

91



Oleh Romaniv1, Andriy Sagan2

Clear conditions of R(X) and R⟨X⟩

Ivan Franko National University of Lviv, Lviv, Ukraine

Throughout this paper we suppose R is an associative ring with
nonzero unit and U(R) its group of units.

According to Ehrlich [2], an element a ∈ R is unit-regular if a = aua
for some unit u ∈ U(R). An element a of a ring R is clear if a = r+ u,
where r is a unit-regular element and u ∈ U(R). A ring R is clear if
every element is clear [4].

The content ideal of a polynomial f(x) = a0 + a1X + . . .+ anX
n ∈

R[X] is the ideal of R generated by a0, a1, . . . , an. We denote the
content ideal of by c(f). Let U = {f ∈ R[X] : c(f) = R}.

The Nagata ring [3] over R[X], denoted R(X), is the localization
of R[X] with respect to U , that is, R(X) = U−1R[X]. Thus every
element of R(X) has the form f/g where f, g ∈ R[X] and c(g) = R. We
also consider another interesting localization R[X] over a multiplicative
closed subset S = {f ∈ R[X]|f is monic polynomial}. We denoted such
a factor ring by R⟨X⟩ = S−1R[X].

Theorem 1. A ring R is clear if and only if R(X) is clear.
We say that an element r is a ring R is zero dimensional [1] if either

of the following equivalent conditions holds.
• We can write R = A× B where r is nilpotent in A and a unit

in B.
• There is n such that rn ∈ Rrn+1.

Theorem 2. The following statements are equivalent for a ring R.
(1) R is zero dimensional;
(2) R⟨X⟩ is zero dimensional;
(3) R⟨X⟩ is clear ring;
(2) R⟨X⟩ = R(X).

1. Anderson D. D., Anderson D. F., Markanda R. The rings R(X) and
R⟨X⟩. J. Algebra, 1985, 95, No. 1, 96–115.

2. Ehrlich G. Units and one-sided units in regular rings. Trans. Amer.
Math. Soc., 1976, 216, 81–90.

3. McGovern W. Wm., Richman F. When R(X) and R⟨X⟩ are clean: a
constructive treatment. Commun. Alg., 2015, 43, 3389–3394.

4. Zabavsky B. V., Domsha O. V., Romaniv O. M. Clear rings and clear
elements. Mat. Stud., 2021, 55, No. 1, 3–9.
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Refinement of the Troika hash function

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

This work presents a further evolution of the architecture of the
Troika hash function [1], emphasizing its adaptability and efficiency for
arbitrary prime fields Fn. The main focus of this version is the redesign
and generalization of its architecture, which allows increased flexibility
and opens up previously closed research opportunities, such as, but not
limited to, merging the architecture of Troika with that of Kupyna [2].

The primary advancement is the thorough parameterization of the
hash function for arbitrary prime fields Fn. As a result, the nonlinear
transformation (Subtrytes) and all state manipulation routines now
function seamlessly regardless of the chosen field.

The column parity linear layer has been significantly optimized. The
previous neighbor-dependent parity computation has been replaced by
a vectorized method that more efficiently computes column-wise sums.
This reduces computational complexity to O(n2) per round, which is
particularly beneficial as the state size increases for larger fields.

The empirical evaluation for n = 5 demonstrates that despite the
increase in state size, implementation remains practical, with 24 rounds
executed in less than a second on standard hardware. Preliminary secu-
rity analysis suggests that the original Troika properties are preserved,
but this statement requires further testing, while the increased alge-
braic complexity for larger n may enhance resistance to certain classes
of attacks.

In conclusion, several promising directions remain for future work
on this generalized Troika hash function. Completing a comprehen-
sive cryptanalysis will be essential to fully understand the security and
efficiency implications of the new design. Additionally, exploring inter-
operability between Troika and Kupyna presents an intriguing avenue
- specifically, investigating whether structural elements or nonlinear
layers can be adapted or integrated into the Kupyna framework.

[1] Stefan Kolbl, Elmar Tischhauser, Patrick Derbez, Andrey Bog-
danov, Troika: a ternary cryptographic hash function, 2019,
https://link.springer.com/article/10.1007/s10623-019-00673-2

[2] A. Boyko, R. Olijnykov, I. Horbenko, Cryptographic informational
security. Hash function. DSTU 7564:2014, https://usts.kiev.ua/wp-
content/uploads/2020/07/dstu-7564-2014.pdf
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Almost all automata over a binary alphabet
generate infinite groups

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

Let X be a finite non-empty set. Denote by X∗ the set of all words
over the alphabet X, including the empty word Λ. The length of a
word w ∈ X∗ is denoted by |w|.

A finite invertible automaton A over the alphabet X is a tuple
A = (X,Q,φ, λ), where Q is a finite set of states, φ : Q×X → Q is a
transition map, λ : Q ×X → X is an output map, and for each state
q ∈ Q, the map πq : X → X given by πq(x) = λ(q, x) is a permutation.
The automaton A is called degenerate if there exists a permutation ρ
such that πq = ρ for all states q ∈ Q.

The transition and output maps of the automaton A can be nat-
urally extended to the set Q × X∗. The extension of the output
map defines a map fq : X∗ → X∗ for every state q ∈ Q, given by
fq(w) = λ(q, w). The group generated by the set {fq : q ∈ Q} is de-
noted by G(A) and is called the group generated by the automaton A.

The nucleus of the automaton A is a subset of the set Q defined by

N (A) =
⋂
n≥0

{
φ(q, w) : q ∈ Q,w ∈ X∗, |w| ≥ n

}
.

Theorem 1 ([1]). Let A = (Q,X,φ, λ) be an invertible automaton
over a binary alphabet X such that N (A) = A. Suppose that there exist
states q1, q2 ∈ Q and letters x1, x2 ∈ X such that φ(q1, x1) = φ(q2, x2)
and πq1 ̸= πq2 . Then G(A) is infinite.

Theorem 2. Let An be the set of invertible automata with n states,
n ≥ 2, and a non-degenerate nucleus over the binary alphabet {0, 1},
and let Fn be its subset of automata A such that N (A) does not satisfy
the conditions of Theorem 1. Then

lim
n→∞

|An|
2nn2n

= 1 and lim
n→∞

|Fn|
|An|

= 0.

[1] Russyev A. Infiniteness of groups of automata over a binary alphabet. Inter-
national Mathematical conference: Abstracts of talks. — Mykolayiv: 2012. —
June 13–19. — P. 75.
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SO(3)-quasimonomial families of Appell polynomials

Khmelnytskyi National University, Khmelnytskyi, Ukraine

Definition. A family of polynomials {Bm,n,k(x, y, z)} is called
quasimonomial with respect to H if the group operators in two dif-
ferent bases {xmynzk} and {Bm,n,k(x, y, z)} have the same matrices.
The polynomials {Bm,n,k(x, y, z)} are called quasimonomials.

Let us consider the two polynomial families {V (s)
m,n,k(x, y, z)} and

{U (s)
m,n,k(x, y, z)} defined by the exponential generating functions:

1

(1− 2(xu+ yv + zw) + u2 + v2 + w2)
2+s
2

=

∞∑
m,n=0

V
(s)
m,n,k(x, y, z)

um

m!

vn

n!

wk

k!
,

1

((1− (ux+ vy + wz))2−(u2 + v2 + w2)(x2+y2+z2−1))
s
2

=

=

∞∑
m,n=0

U
(s)
m,n,k(x, y, z)

um

m!

vn

n!

wk

k!
.

These polynomials are called Appell polynomials of type V and
U. These polynomials first appeared in the works of Hermite, Didon,
Appell, and Campe de Ferrier, see [1], [2]. These families of polynomials
are quasimonomials.

The following theorem presents a simple criterion for the quasi-
monomiality of a polynomial family in terms of its exponential gener-
ating function.

Theorem. The polynomial family {Bm,n,k(x, y, z)} defined by the
exponential generating function

G = G(x, y, z, u, v, w) =

∞∑
m,n,k=0

Bm,n,k(x, y, z)
um

m!

vn

n!

wk

k!

is quasipolynomial with respect to SO(3) if and only if G is a function
of the three variables ux+ vy + wz, x2 + y2 + z2 and u2 + v2 + w2.

[1] Appell P., Kampé de Fériet J. Fonctions Hypergéométriques et Hypersphériques,
Polynomes d’Hermite. — Gauthier-Villars, 1926.

[2] Kampé de Fériet J. Sur les fonctions hypersphériques. Théses de l’entre-deux-
guerres. — Paris, 1915.
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Simultaneous conjugacy search problem in contracting
self-similar groups

University of South Florida, Tampa, FL, USA

Many modern group-based cryptographic protocols are based on the
variants of conjugacy search problem. We study the simultaneous con-
jugacy search problem (SCSP) in the class of self-similar contracting
groups [2]. This class of groups contains extraordinary examples like
Grigorchuk group [1], which is known to be non-linear as a group of
intermediate growth, thus has a potential to withstand certain crypt-
analytic attacks. The groups in this class admit a natural normal form
based on the notion of a nucleus portrait and admit a fast polynomial
time algorithm solving the word problem. While for some groups in the
class the conjugacy search problem has been studied, there are many
groups for which no such algorithms are known. We discuss benefits
and drawbacks of using these groups in cryptography and provide com-
putational analysis of variants of the length-based attack on SCSP for
some groups in the class, including Grigorchuk group. Additionally,
we discuss another effective heuristic attack on SCSP for contracting
groups acting on a binary tree. The talk is based on two projects
joint with Delaram Kahrobaei, Arsalan Malik, and Luciana Scuderi
and Kerry Seekamp.

[1] R. I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal.
i Prilozhen., 14(1):53–54, 1980.

[2] Volodymyr Nekrashevych. Self-similar groups, volume 117 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI,
2005.

E-mail: � savchuk@usf.edu.
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On the semigroup of endomorphisms of the semigroup BF2

ω

with the two-element family F 2 of inductive
nonempty subsets of ω

Ivan Franko National University of Lviv, Lviv, Ukraine

We shall follow the terminology of [5]. By ω we denote the set of all
non-negative integers. For any a ∈ ω we denote [a) = {x ∈ ω : x ⩾ a}.
The semigroup BF

ω is introduced in [1] for any ω-closed subfamily F

of elements of P(ω). Monoid endomorphisms of the monoid BF2

ω for
two-elements ω-closed family F 2 of inductive nonempty elements of
P(ω) studied in [2–4]. Without loss of generality we may assume that
F 2 = {[0), [1)} (see [1]).

We define the endomorphism ϖ : BF2

ω → BF2

ω by the formula

(i, j, [p)))ϖ =

{
(i, j, [1)), if p = 0;
(i+ 1, j + 1, [0)), if p = 1.

Theorem. For any endomorphism ε of BF2

ω there exists the unique

monoid endomorphism ε1 : BF2

ω → BF2

ω and the unique non-negative
integer n such that ε = ε1ϖ

n.

We describe all endomorphisms of the semigroup BF2

ω

[1] O. Gutik and M. Mykhalenych, On some generalization of the bicyclic monoid,
Visnyk L’viv. Univ. Ser. Mech.-Mat. 90 (2020), 5–19 (in Ukrainian).

[2] O. Gutik and I. Pozdniakova, On the semigroup of injective monoid endo-
morphisms of the monoid BF

ω with the two-elements family F of inductive
nonempty subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 94 (2022), 32-55

[3] O. Gutik and I. Pozdniakova, On the semigroup of non-injective monoid endo-
morphisms of the semigroup BF

ω with the two-elements family F of inductive
nonempty subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 95 (2023), 14–27.

[4] O. Gutik and I. Pozdniakova, On the semigroup of all monoid endomorphisms
of the semigroup BF

ω with the two-elements family F of inductive nonempty
subsets of ω, Visnyk L’viv. Univ. Ser. Mech.-Mat. 96 (2024), 5–24.

[5] M. Lawson, Inverse semigroups. The theory of partial symmetries, World Sci-
entific, Singapore, 1998.
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On tensor products of matrix representations of
a cyclic p-group of order p over the ring Zp[[x]]

Uzhhorod National University, Uzhhorod, Ukraine

Let G = ⟨a⟩ be a cyclic p-group of order p, and let Zp[[x]] be the ring
of formal power series in one variable with p-adic integer coefficients. In
[1], all pairwise non-equivalent indecomposable matrix representations
of the group G over the ring Zp[[x]] are described. They are exhausted
by the following representations:

∆0 : a→ 1, ∆1 : a→ ε̃, Γ0 : a→
(
ε̃ ⟨1⟩
0 1

)
,

Γi : a→
(
ε̃ ⟨xi⟩
0 1

)
,Γ′

j : a→
(

1 ⟨xj⟩T
0 ε̃

)
,

where ε̃ is the companion matrix of the cyclotomic polynomial Φp(x),
⟨xi⟩ denotes a column vector with xi as its first entry and zeros else-
where, and ⟨xj⟩T denotes the transpose of the column vector ⟨xj⟩, and
i, j ∈ N. Based on the ideas of V. P. Rud’ko and P. M. Gudivok (see
[2]), we derived the decomposition of tensor products of the aforemen-
tioned indecomposable matrix Zp[[x]]-representations of the group G
into indecomposable components. In particular, it is shown that

∆1 ⊗ Γi ∼= Γ′
i ⊕ (p− 2)Γ0, ∆1 ⊗ Γ′

i
∼= Γi ⊕ (p− 2)Γ0

for every natural i.

[1] Gudivok P. M., Oros V. M., Roiter A. V., On representations of finite p-groups
over a ring of formal power series with p-adic integer coefficients, Ukrain. Mat.
Zh., 44, 1992, pp. 753–765.

[2] Gudivok P. M., Rud’ko V. P., Tensor products of representations of finite groups,
Uzhgorod. Univ., 1985, 118 p.
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Oriented by characteristic roots polynomial matrices
of simple structure

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine

We consider matrices with elements from the ring of polynomials
over the field of complex numbers (polynomial matrices). We investi-
gate the semiscalar equivalence of polynomial matrices of simple struc-
ture. By definition [1], in polynomial matrices of simple structure,
all elementary divisors are linear. Two matrices are called semiscalar
equivalent if one of them is transformed into the other by multiplication
on the left and right by a non-singular numerical and invertible poly-
nomial matrix, respectively [1]. The problem of classifying matrices up
to semiscalar equivalence is posed. The triangular form with invari-
ant factors on the main diagonal established in [2] does not solve the
problem due to the ambiguity of its definition. In the author’s work
[3], the reducibility using semiscalar equivalent transformations of a
polynomial matrix of simple structure to the so-called triangular form
oriented by characteristic roots is proved. The matrix of the specified
form is defined more precisely than the mentioned triangular matrix
established in [2]. This is confirmed by the block-triangular form of
the left transformation matrix when going from one matrix oriented
by characteristic roots to another such matrix (oriented by the same
characteristic roots). The invariance of the placement of zero subrows
below the main diagonal of a matrix oriented by characteristic roots is
proved. Other invariants of such a matrix with respect to semiscalar
equivalence are established. The obtained result has applications to
the problem of classifying polynomial matrices with respect to semis-
calar equivalence, and through it to the problem of classifying sets of
numerical matrices with accuracy up to similarity. This result is also
applicable to solving polynomial matrix equations.

[1] Kazimirskii P. S. Factorization of Matrix Polynomials, Naukova Dumka, Kyiv,
Ukraine, 1981.

[2] Kazimirskii P. S. and Petrychkovych V. M On the equivalence of polynomi-
als matrices, In Theoretical and Applied Problems in Algebra and Differential
Equations, Naukova Dumka, Kyiv, Ukraine, 1977, 61–66.

[3] Shavarovskii B.Z. On the triangular form of a polynomial matrix of simple
structure and its invariants with respect to semi-scalar equivalence Mat. Met.
Fiz. Mekh.-Polya, 2023, 66, no. 1–2, 16-22.
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Canonical form of low-dimensional matrices with respect to
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The Hermite and Smith normal forms play a fundamental role in
matrix theory and have numerous applications in both pure and applied
mathematics. For instance, they are used in constructive proofs of the
structure theorem for finitely generated Abelian groups, in computing
invariant polynomials and elementary divisors of polynomial matrices.
The majority of numerical studies concerning these normal forms focus
on optimizing the algorithms for their computation. However, several
theoretical issues related to the structural properties of these forms
remain unresolved. One such issue is the description of all right (or left)
non-associated matrices with a given Smith normal form. The Hermite
normal form, which serves as a tool for verifying one-sided equivalence
of matrices, is generally a rather coarse method for addressing such a
”delicate” problem, as it only allows for distinguishing non-associated
matrices with a fixed determinant. The following example illustrates
this statement. We describe all 2×2 matrices over Z with determinant
8 that are not right-associated with each other. Using the right Hermite
normal form, it is easy to verify that such matrices are:[

1 0
a8 8

]
,

[
8 0
0 1

]
,

[
2 0
a4 4

]
,

[
4 0
a2 2

]
,

where ai ∈ {0, 1, . . . , i − 1}, i = 8, 4, 2. This set consists of right
non-associated matrices with Smith forms diag(1,8), diag(2,4). In par-
ticular, the matrices with the Smith normal form diag(1,8) are:[

1 0
a8 8

]
,

[
8 0
0 1

]
,

[
2 0
1 4

]
,

[
2 0
3 4

]
,

[
4 0
1 2

]
.

These matrices are distributed across all four listed classes, and their
identification requires an analysis of all elements within these classes.

We construct a new canonical form for third order matrices with
respect to one-sided transformations. Unlike the classical triangular
Hermite normal form, our canonical form is expressed as the product
of two matrices: PΦ, where P is invertible and Φ is in Smith normal
form.

E-mail: � shchedrykv@ukr.net.
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Genome as a metric space: statistical properties
of genetic sequences

Ivan Franko National University of Lviv, Faculty of Mechanics and Mathematics,
Lviv, Ukraine

This research applies mathematical methods to genome analysis by
representing genetic sequences as metric spaces. We formalize genomes
using statistical distance between k-mers (all possible substrings of
length k in a sequence) and Levenshtein distance (the minimum num-
ber of single-character edits required to change one string into another)
to reveal hidden patterns in genetic material and develop efficient anal-
ysis algorithms. The k-mer distance is calculated using the formula:

dmer(x, y) =
∑l
i=1

1
2k
d(P

(k)
x , P

(k)
y ), where P

(k)
x (i) =

f(k)
x (i)∑

j f
(k)
x (j)

repre-

sents the normalized frequency of the i-th k-mer in sequence x.
Our methodology compares distance metrics, calculates fractal and

entropy dimensions, and analyzes organisms comparatively.
Our key findings reveal that statistical distance (complexity O(l2))

offers computational advantages over Levenshtein distance (complex-
ity O(mn)) for large genomic datasets. Additionally, metric spaces
constructed on genomes have specific quantitative characteristics dis-
tinguishing them from random sequences.

Organism Mean Diam. Fractal D. Entropy D.
E. coli 0.077 0.38 (2.84,-3.42) (3.73,-8.69)
B. subtilis 0.082 0.39 (2.87,-3.47) (3.76,-8.63)
S. solfat. 0.083 0.4 (2.98,-4.34) (3.44,-7.85)
H. salin. 0.089 0.33 (2.98,-4.19) (3.64,-8.21)
S. cerev. 0.077 0.45 (2.89,-3.45) (3.31,-7.54)
Drosdofila 0.07 0.46 (2.68,-2.56) (3.07,-7.09)
Random seq. 0.046 0.25 (3,-4.75) (2.71,-6.74)

Table 1: Comparative metrics across different organisms.

Our approach provides an effective mathematical framework for
genome analysis, enabling quantitative characterization of genetic se-
quences and taxonomic classification. The model’s computational ef-
ficiency and dimensional parameters serve as powerful markers of ge-
nomic structural complexity.

Keywords: genome, metric space, statistical distance, Levenshtein
distance, fractal dimension, entropy dimension, k-mers.
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Fano and Boolean liners
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In the talk we shall discuss some properties of Fano and Boolean
affine and projective planes.

A liner is a set of points X endowed with a family of subsets L
called lines, such that any distinct points x, y ∈ X belong to a unique
line x y ∈ L, and there exist three points that do not belong to a single
line.

A liner X is k-long if every line in X contains at least k points.
A liner (X,L) is
� a projective plane if it contains no disjoint lines;
� an affine plane if for any line L and point x ∈ X \L there exists a

unique line that contain the point x and is disjoint with the line
L.

It is known that every 4-long affine plane Π is a subliner of a unique
projective plane, called the projective completion of Π.

A liner X is called
� Boolean if every parallelogram in X has parallel diagonals;
� Fano if for every quadrangle abcd in X, the set (a b∩ c d)∪ (a c∩
b d) ∪ (a d ∩ b c) is contained in a line and is not a singleton.

It is easy to see that Boolean liners are Fano.

Theorem 1. The projective completion of any 4-long affine Fano plane
is a projective Fano plane.

The question of algebraization of Fano and Boolean linears gives
rise to two hypotheses:
� A projective plane is Fano iff it is coordinatized by a skew-field

of characteristic 2.
� An affine plane is Boolean iff it is coordinatized by a quasifield of

characteristic 2.
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On certain interactions between noncommutative algebra,
algebraic geometry, and pre-Lie rings

School of Mathematics, University of Edinburgh, Edinburgh, UK

In recent years, rich and deep connections have emerged between
noncommutative algebra and algebraic geometry.

Notably, Will Donovan and Michael Wemyss introduced contrac-
tion algebras – noncommutative algebras arising in connection with
invariants of flops. More recently, Gavin Brown and Michael Wemyss
provided a purely algebraic description of these algebras by presenting
explicit generators and defining relations.

In this talk, we discuss and partially address several questions posed
by Michael Wemyss concerning contraction algebras. Although these
questions are motivated by links to Gopakumar–Vafa (GV) invariants,
they are formulated in a purely algebraic context. We further offer
a perspective on extending the classical Baker–Campbell–Hausdorff
(BCH) formula beyond Lazard’s correspondence, incorporating pre-Lie
algebraic structures, in the context of finite pre-Lie rings. Finally, we
pose an open question regarding potential generalisations to the setting
of Lie rings.

E-mail: � a.smoktunowicz@ed.ac.uk.
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Semisymmetric Anticommutative Loops up to order 15
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2 Department of Information Security of Vinnytsia National Technical University,
Ukraine.

Although loops are a generalization of groups, only some general-
izations of group study methods are effective in loop theory. However,
in classes of loops in which some original properties of groups are pre-
served, such a transfer of methods is possible. For example, classes of
loops in which the isotopy relation and the isomorphy relation coincide.
Any loop isotope of a group is isomorphic to the group. The class of G-
loops is characterized by this property. In the variety of IP-loops, there
is a weaker property: if two commutative IP-loops are isotopic, then
they are isomorphic, but isotopism is not always an isomorphism [1].
Here, we continue the study of SA-loops in which any isotopism is an
isomorphism [2], [3]; any autotopism of an SA loop is its automorphism.

◦ 0 1 2 3 4

0 0 1 2 3 4

1 1 0 3 4 2

2 2 4 0 1 3

3 3 2 4 0 1

4 4 3 1 2 0

SA loop (Z8; ◦, 0)
Semisymmetricity: x ◦ (y ◦ x) = y;

Anticommutativity:
x ◦ y = y ◦ x ⇒ (x = 0 ∨ y = 0 ∨ x = y).

Theorem. SA loop of order 3m does not exist.
Using computer calculations, the spectrum of existence of SA loops

up to order 15 was established: SA loops of orders 1, 2, 3, 4, 6, 7, 9, 12,
15 do not exist; SA loops of orders 5, 8, 10, 11, 13, 14 exist. Moreover
up to isomorphism, there exists exactly one SA loop of each of orders
5 and 8, and there are exactly 22 SA loops of order 10.

[1] Sokhatsky Fedir M. On pseudoisomorphy and distributivity of quasigroups Bul.
Acad. Ştiinţe Repub. Moldova, Mat., 2016, No. 2(81), 125–142.

[2] Fedir Sokhatsky, Quasigroups and loops up to order 5. Abstracts of ConfQRS-
2025, July 2-4, 2025.

[3] Fedir Sokhatsky, Bohdan Buniak. Formulas for determining some quasigroups
of the order 8. Abstracts of ConfQRS-2025, July 2-4, 2025.

E-mail: � 1fmsokha@ukr.net, � 2bbuniak@ukr.net.
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Fedir Sokhatsky1, Halyna Krainichuk2, Volodymyr Luzhetsky3

Canonical and matrix figuration of quasigroups of order 4

1 Ya. S. Pidstryhach Institute of Applied Problems of Mechanics and
Mathematics, NAS of Ukraine, Lviv, Ukraine
2,3 Vinnytsia National Technical University, Vinnytsia, Ukraine

A quasigroup is called a 0-loop if it has a neutral element denoted by
0. There are four 0-loops of order four, one of which is a Klein group,
others are isomorphic cyclic groups. The obtained results for order
four: 1) every quasigroup has a unique canonical decomposition over
exactly one of these 0-groups; 2) every quasigroup has a unique matrix
canonical decomposition over either the cyclic group or Klein group; 3)
the respective formulas and examples for applying are given [1].

Theorem 1. Every quasigroup operation f on Z2
2 := {00; 01; 10; 11}

is determined exactly by one of the formulas f(x, y) = xA ⊕ yB ⊕ a,
f(x, y) = (xA + yB + a)C where (⊕), (+) are addition of the rings
Z2 × Z2 and Z4 respectively, i.e.

+ 00 01 10 11
00 00 01 10 11
01 01 10 11 00
10 10 11 00 01
11 11 00 01 11

⊕ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

where a ∈ Z2
2 , C ∈

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)}
,

A,B ∈
{(

1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
Theorem 2. The quasigroup (Z2

2 ; ◦) satisfies (x ◦ y) ◦ (x ◦ x) = y
over (Z2

2 ;⊕, 0) if and only if it has one of the following decomposition

x ◦ y = xA ⊕ yA2 ⊕ a, x ◦ y = xA2 ⊕ yA ⊕ a, where A =

(
0 1
1 1

)
and a ∈ {00, 01, 10, 11}.

[1] F. M. Sokhatsky, H. V. Krainichuk, V. A. Luzhetsky. Canonical and matrix
figuration of quasigroups of the fourth order Applied problems of mechanics
and mathematics, (2024), Issue 22. P. 95–105.

E-mail: � 1fmsokha@ukr.net, � 2krainichuk@ukr.net, � 3lva.kzi2002@gmail.com.
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Yaryna Stelmakh

The automorphism group of the natural and
integral Kirch spaces

Ivan Franko National University of Lviv, Lviv, Ukraine

The integral Kirch space is the set Z• of nonzero integers endowed
with the Kirch topology, which is generated by arithmetic progressions
a+ bZ where a, b ∈ Z•, where a, b are coprime numbers with b square-
free. The natural Kirch space is the set N of positive integers endowed
with the subspace topology inherited from the integer Kirch space.

Theorem 1. The homeomorphism group of the natural Kirch space is
trivial.

Theorem 2. The homeomorphism group of the integral Kirch space
contains exactly 2 elements: the identity homeomorphism and the en-
volution j : Z• → Z•, j : z 7→ −z.

The proofs are not trivial and exploit some deep results of Num-
ber Theory, in particular, the famous Dirichlet theorem (on primes in
arithmetic progressions), the Zsigmondy theorem on primitive prime
divisors, Mihăilescu theorem (on neighbour prime powers).

[1] T. Banakh, Ya. Stelmakh, S. Turek, The Kirch space is topologically rigid,
Topology Appl. 304 (2021), 107782.

[2] Ya. Stelmakh, Homeomorphisms of the space of nonzero integers with the Kirch
topology, Visnyk Lviv Univ. Ser. Mech. Math. 89 (2020), 33–53.

E-mail: � yarynziya@ukr.net.
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Olena Toichkina

Green’s relations on the weak endomorphism semigroup
of a partial equivalence relation

Luhansk Taras Shevchenko National University, Poltava, Ukraine

Let X be a nonempty set and ρ ⊆ X ×X. A transformation f of X
is called an endomorphism of ρ if (x, y) ∈ ρ implies (xf, yf) ∈ ρ for all
x, y ∈ X. A transformation f of X is called a weak endomorphism of ρ
if (x, y) ∈ ρ implies that xf = yf or (xf, yf) ∈ ρ for all x, y ∈ X (see,
e.g., [1]). The set of all weak endomorphisms of p ⊆ X×X with respect
to the operation of the composition of transformations is a semigroup
and it is denoted by WEnd(X, ρ).

A binary relation on a set X is called a partial equivalence relation
on X if it is symmetric and transitive. By PEq(X), we denote the set
of all partial equivalences on X. Some properties of the weak endomor-
phism semigroup WEnd(X, ρ), ρ ∈ PEq(X), were described in [2]. We
continue to study the structure of the semigroup mentioned above and
consider Green’s relations on it. Note that the description of Green’s
relations on the endomorphism semigroup of an arbitrary equivalence
was obtained in [3].

[1] Knauer, U., Pipattanajinda, N.A.: A formula for the number of weak endomor-
phisms on paths. Algebra Discrete Math. 25(2), 270–279 (2018)

[2] Zhuchok, Yu., Toichkina, O.: The semigroup of weak endomorphisms of a partial
equivalence relation. Ukr. Math. J. 76(12), 1727–1737 (2024)

[3] Pei, H.: Regularity and Green’s relations for semigroups of transformations that
preserve an equivalence. Comm. Algebra 33(1), 109–118 (2005)

E-mail: � toichkina.e@gmail.com.

107



Anatolii Tushev

On induced modules over group rings of soluble groups
of finite rank

Justus-Liebig University of Giessen, Giessen, Germany

Let G be an abelian group and t(G) be the torsion subgroup of G.
Let p ∈ π(t(G)) and Gp be the Sylow p-subgroup of t(G). Then we
can define the total rank rt(G) of G by the following formula: rt(G) =
r(G/t(G)) +

∑
p∈π(t(G)) r(Gp). A soluble group has finite abelian total

rank, or is a soluble FATR-group, if it has a finite series in which each
factor is abelian of finite total rank.

Theorem 1. Let G be a nilpotent FART -group and let D be a normal
subgroup of G such that the quotient group G/D is polycyclic. Let k
be a finitely generated field such that char k /∈ Sp(G) and let M be a
faithful kG-module. Suppose that the subgroup D contains an isolated
in D abelian G-invariant subgroup A such that P = annkA(M) is a
maximal G-invariant faithful ideal of kA. If the module M is kD/PkD-
torsion-free then for any nonzero element 0 ̸= a ∈M there is a finitely
generated subgroup H ≤ G such that akG = akH⊗kHkG.

Let G be a group, let k be a field and let M be a kG -module.
The module M is said to be primitive if it is not induced from any
kH-submodule for any subgroup H < G. The module M is said to be
semiprimitive if it is not induced from any kH-submodule for any sub-
group H < G such that |G : H| <∞. A representation φ of G over k is
said to be primitive (semiprimitive) if the module of the representation
φ is primitive (semiprimitive). The above theorem allows us to obtain
the following result.

Theorem 2. Let k be a finitely generated field and let G be a nilpotent
FATR-group of nilpotency class 2 such that the torsion subgroup T of
G is contained in the centre Z of G and char k /∈ Sp(G). Suppose that
the group G admits a faithful semiprimitive irreducible representation
φ over the field k. Then the group G is finitely generated.

The case of minimax groups of nilpotency class 2 and primitive
representations was considered in [1].

[1] A.V. Tushev, On primitive representations of minimax nilpotent groups, Math.
Notes (1-2) 72 (2002) 117-128.

E-mail: � anavlatus@gmail.com.
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Vasyl Ustimenko

On geometries over diagrams, symbolic computations and
their applications

Royal Holloway University of London, Egham, United Kingdom

Let K be commutative ring with unity. Jordan-Gauss graph J(K) is
the special case of linguistic incidence structure of type (s, r,m) given
by the following way. We identify points with tuples of kind (x) =
(x1, x2, . . . , xs+m) ∈ P and lines with tuples [y] = [y1, y2, . . . , yr+m] ∈
L. Brackets and parenthesis are convenient to distinguished type of the
vertex of the graph. Elements (x) and [y] are incident (x)I[y] if and
only if the following relations hold.

a1xs+1 − b1yr+1 = f1(x1, x2, . . . , xs, y1, y2, . . . , yr),
a2xs+2 − b2yr+2 = f2(x1, x2, . . . , xs+1, y1, y2, . . . , yr+1),
. . . ,
amxs+m − bmyr+m = fm(x1, x2, . . . , xs+m−1, y1, y2, . . . , yr+m−1)
where ai and bj , j = 1, 2, . . . ,m are not zero divisors, quadratic

polynomials fj define the bilinear maps of Ks+j−1 and Kr+j−1 onto
K.

We assume that fj are given in their standard form, i. e. the list
of monomial terms ordered lexicographically and say that two Jordan
graphs J1(K) and J2(K ′) of the same type (r, s,m) are symbolically
equivalent if they are given by the systems as written above over com-
mutative rings K and K ′ where quadratic polynomials fj and f ′j re-
spectively have the lists of monomial terms with nonzero coefficients
such they differ only by coefficients of monomial terms.

Proposition 1. Let (Γ(G(K)), I, t) be the geometry of Chevalley group
G with Coxeter-Dynkin diagram Xn over the field F and Borel subgroup
B. Then the restriction of the incidence relation I on two orbits of
(B,Γ(G)) is a Jordan-Gauss graph or empty set.

The change of each Jordan-Gauss graph over the field F appeared
in the proposition for the symbolically equivalent Jordan-Gauss graph
over commutative ring K can be used for the construction of the inci-
dence system over K. These systems were used for the constructions
od special elements, groups and semigroups of affine Cremona group
End(K[x1, x2, . . . , xn]). Main results in this direction will be presented
during the talk.

E-mail: � vasyl.ustymenko@rhul.ac.uk.
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Pavel Varbanets†1, Sergey Varbanets2, Yakov Vorobyov3

Kloosterman-weighted arithmetic sums over
the Gaussian integers

1,2 I.I. Mechnikov Odesa National University,
Odesa, Ukraine
3 Izmail State University of Humanities,
Izmail, Ukraine

Let G denote the ring of Gaussian integers. For γ ∈ G, by Gγ we de-
note the ring of residue classes modulo γ, and by G∗

γ the multiplicative
group of this ring. For α, β, γ ∈ G, the Kloosterman sum K(α, β; γ) is
defined by the equality

K(α, β; γ) =
∑
x∈G∗

γ

exp

(
2πiRe

(
αx+ βx−1

γ

))

where x−1 denotes the multiplicative inverse of x modulo γ.
In this sequence of investigations, we study the arithmetic function τ(ω)
weighted by Kloosterman sum defined above. We consider the distri-
bution of the values of τ(ω) in arithmetic progressions with increasing
differences over the ring R(d) of integral values in imaginary quadratic
field Q(

√
−d), d > 0. We derive an asymptotic formula for the mean

value of the divisor function weighted by the Kloosterman sum and its
analogues.

E-mail: � 2svarbanets@onu.edu.ua, � 3yashavoro@gmail.com.

110



Tetiana Voloshyna

Closed inverse subsemigroups of the finitary
inverse semigroup

Lesya Ukrainka Volyn National University, Lutsk, Ukraine

Since every transitive permutation representation of an inverse semi-
group is given by some closed inverse subsemigroup [1], an important
question is to describe all its closed inverse subsemigroups.

Let IS(X) is a symmetric inverse semigroup on the set X. For
partial permutation τ ∈ IS(X) we denote its domain by dom τ . Let ω
is the natural partial order on the inverse semigroup [1, 2]:

αω β ⇔ αβ−1 = αα−1.

A subset T ⊆ S of the inverse semigroup S is called closed with
respect to the natural partial order ω, if it satisfies the equality

{s ∈ S | ∃t ∈ T : t ω s} = T.

A description of all closed inverse subsemigroups of the finite sym-
metric inverse semigroup and the structure of its right ω -cosets by the
closed inverse semigroup are given in [3].

Let N denote the set of natural numbers. The set of all such partial
permutations τ ∈ IS(N) for which the condition |dom τ | < ∞ is sat-
isfied, forms an inverse semigroup, which we will call a finitary inverse
semigroup, and denote by FI(N).

Theorem. For every finite subset M ⊆ N and every subgroup G
of the symmetric group S(M) the subsemigroup H = G ⊕ FI(N\M)
is a closed inverse subsemigroup of FI(N). On the other hand, every
closed inverse subsemigroup of FI(N) has this form.

[1] Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups. V.1. Math.
Surveys, No. 7. Rhode Islands: Amer. Math. Society, 1964. 224 p.

[2] Clifford A.H., Preston G.B. The Algebraic Theory of Semigroups. V.2. Math.
Surveys, No. 7. Rhode Islands: Amer. Math. Society, 1967. 352 p.

[3] T. Voloshyna. Effective transitive representations of the finite symmetric inverse
semigroup. Bulletin of Kyiv University. Mathematics and Mechanics. 1998. Is-
sue.2. P. 16–21. (In Ukrainian)

E-mail: � tetianavoloshyna@gmail.com.
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Oksana Yakimova

A bi-Hamiltonian nature of the Gaudin algebras

Friedrich-Schiller-Universität Jena, Germany

Let h be a direct sum of n copies of a simple Lie algebra g. In 1994,
Feigin, Frenkel, and Reshetikhin constructed a large commutative sub-
algbera of the enveloping algebra U(h). This subalgebra, which is an
image of the Feigin—Frenkel centre, contains quadratic Gaudin Hamil-
tonians and therefore is known as a Gaudin subalgebra. By now it has
been studied from various points of view and numerous generalisations
have been obtained. We look at the ‘classical’ version of a Gaudin al-
gebra, i.e., at its image in the symmetric algebra S(h). This image, say
C, is Poisson-commutative and can be obtained from a suitable pair of
compatible Poisson brackets on S(h) via the Lenard—Magri scheme.
An advantage of the Lenard—Magri approach is a well-developed ge-
ometric machinery. For example, it allows us to show that C is al-
gebraically closed in S(h). We will discuss also a generalisation to a
non-reductive setting.

E-mail: � oksana.yakimova@uni-jena.de.
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Davyd Zashkolnyi

Computing self-replicating degrees of plane groups

Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.

An action of a group on the space of words over a finite alphabet
is called self-similar if, roughly speaking, it acts on smaller subsets in
the same way as on the entire set. Self-similar groups arise in different
areas of mathematics, such as dynamical systems, fractal geometry,
finite automata, and have interesting properties related to the growth,
amenability, word problem etc.

A group G admits a (transitive) self-similar action if and only if
there exists a homomorphism ϕ from its subgroup of finite index to G,
such that there is no nontrivial ϕ-invariant normal subgroup of G. The
size of an alphabet of the associative self-similar action equals to the
index of this subgroup and is called a self-similar degree. An action is
called self-replicating if the homomorphism ϕ is surjective.

We study self-replicating degrees of crystallographic groups, since
every crystallographic group admits a self-replicating action. Surjective
virtual endomorphisms of crystallographic groups are induced by con-
jugation on an affine transformation (A, t). The determinant of the ma-
trix A equals to the degree of the respective self-replicating action. The
determination of possible degrees leads to certain diophantine equations
together with a nonlinear conditions on the characteristic polynomial
of A−1.

We design an algorithm for computing possible self-replicating de-
grees of the plane groups. Minimal possible degrees are presented in
the tables below.

Group num (ITA) 1 2 3 4 5 6 7 8 9
Minimal Degree 2 2 4 6 4 2 6 3 3

Group num (ITA) 10 11 12 13 14 15 16 17
Minimal Degree 2 2 9 3 4 4 3 3

Note to the tables: Group num (ITA) is a sequential number of a
group as given in the International Tables for Crystallography, Vol. A.

E-mail: � davendiy@gmail.com.
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Halyna Zelisko

On strongly prime monoids with zero

Ivan Franko National University of Lviv, Lviv, Ukraine

Recently, the properties of semigroups, monoids and acts have been
studied quite actively, many of which are analogous to the properties
of rings and modules. The concept of a strongly prime module was
introduced in [1] and [2], and strongly prime rings were studied in [3].

Let S be a monoid with zero. Let Act− S be a category of unitary
and centered right acts over monoid S. In the category Act − S a
torsion preradical r is defined if each act M ∈ Act − S is assigned
its subact r(M) such that for any S−homomorphism f : M → N
f(r(M)) ⊆ r(N). It is clear that r is subfunctor of the identity functor
in the category Act − S. The torsion preradical r is called a torsion
radical if in addition r(M/r(M)) = 0 for all M ∈ Act− S. A right act
M is called r−torsion if r(M) = M and r−torsionfree if r(M) = 0.

A nonzero right act M is called strongly prime if M is a prime act
and for each nonzero right subact N ⊆M and for each element y ∈M
there exist elements x1, x2, . . . , xn ∈ N such that

Ann(x1, x2, . . . , xn) ⊆ Ann(y).

A monoid S is called right strongly prime if the act SS is strongly
prime.

Theorem. For monoid with zero S the following conditions are
equivalent:

(1) S s a right strongly prime monoid;
(2) r(S) = 0 for each proper preradical in the category Act− S;
(3) the injective envelope E(S) of right act SS does not contain

nontrivial completely invariant subacts;
(4) if a ∈ S, a ̸= 0, then there exist s1, s2, . . . , sn ∈ S such that

from asib = 0 for all i follows that b = 0.

[1] Beachy J. Some aspects of noncommutative localization. Lecture Notes in Math,
545(1976), P. 2-31.

[2] Handelman D., Lawrence J. Strongly prime rings // Trans. Amer. Math. Soc.
211(1975), P. 209-223.

[3] Kaucikas A., Wisbauer R. On strongly prime rings and ideals // Comm. Algebra,
28(2000), P. 5461-5473.
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Efim Zelmanov

On Jordan and Lie homomorphisms

Shenzhen International Center for Mathematics, Southern University of Science
and Technology, Shenzhen, China

Let A and B be associative algebras. A linear map

φ : A→ B

is called a Jordan homomorphism if

φ(a2) = φ(a)2, φ(aba) = φ(a)φ(b)φ(a) for all a, b ∈ A.

A linear map φ is called a Lie homomorphism if

φ
(
[a, b]

)
=
[
φ(a), φ(b)

]
for all a, b ∈ A.

We will discuss both the classical and the recent results concerning such
mappings.

E-mail: � efim.zelmanov@gmail.com.
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Anatolii Zhuchok

On the determinability of free strict n-tuple semigroups
by their endomorphism semigroups

University of Potsdam, Potsdam, Germany; Luhansk Taras Shevchenko National
University, Poltava, Ukraine

Following [1], a nonempty set G equipped with n binary operations

denoted by 1 , 2 , . . . , n is called a strict n-tuple semigroup if it

satisfies the axioms
(
x r y

)
s z = x i

(
y j z

)
for all x, y, z ∈ G

and r, s, i, j ∈ {1, 2, . . . , n}. Let X be an arbitrary nonempty set and
F [X] the free semigroup on X. Let further N denote the set of all
positive integers and n ∈ N\{1}. We denote the union of n− 1 disjoint
copies of X × X by (X × X)n−1. For every pair (x1, x2) ∈ X × X,
denote by (x1, x2)i with 2 ≤ i ≤ n the i-th copy of (x1, x2). For all
h = (x1, x2)i ∈ (X ×X)n−1, where x1, x2 ∈ X and 2 ≤ i ≤ n, assume

that [h] = x1x2 ∈ F [X]. Define n binary operations 1 , 2 , . . . , n on
F [X] ∪ (X ×X)n−1 by

a1 . . . am ∗ b1 . . . bs =

{
(a1, b1)i, if ∗ = i , m = s = 1 ̸= i,

a1 . . . amb1 . . . bs otherwise,

w ∗ h = w[h], h ∗ w = [h]w, h ∗ f = [h][f ]

for all a1 . . . am, b1 . . . bs, w ∈ F [X], h, f ∈ (X × X)n−1 and ∗ ∈{
1 , 2 , . . . , n

}
. The algebra (F [X]∪ (X×X)n−1, 1 , 2 , . . . , n ) is

denoted by X♯(n).

Theorem 1. ([1], Theorem 3) For every n > 1, X♯(n) is the free strict
n-tuple semigroup.

An algebra A of some class Σ is determined by its endomorphism
semigroup in the class Σ if for any algebra B ∈ Σ the condition
End(A) ∼= End(B) implies A ∼= B.

Theorem 2. Let X♯(n) and Y ♯(n) be free strict n-tuple semigroups
with n > 1, and suppose that End(X♯(n)) ∼= End(Y ♯(n)). Then X♯(n)
and Y ♯(n) are isomorphic.

The author has been supported by a Philipp Schwartz Fellowship
of the Alexander von Humboldt Foundation.

[1] Zhuchok, A.V.: Free strict n-tuple semigroups. Semigroup Forum 109, 753–758
(2024). https://doi.org/10.1007/s00233-024-10471-5
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Anatolii Zhuchok1, Yuliia Zhuchok2

On the automorphism group of the endomorphism semigroup
of a free strict n-tuple semigroup of rank 1

1 University of Potsdam, Potsdam, Germany and
Luhansk Taras Shevchenko National University, Poltava, Ukraine
2 Luhansk Taras Shevchenko National University, Poltava, Ukraine

A nonempty set G equipped with n binary operations denoted by
1 , 2 , . . . , n is called a strict n-tuple semigroup [1] if it satisfies the

axioms
(
x r y

)
s z = x i

(
y j z

)
for all x, y, z ∈ G and r, s, i, j ∈

{1, 2, . . . , n}.
Let N denote the set of all positive integers. We add n − 1

(n > 1) arbitrary elements x /∈ N to N. Each added i-th element
will be conveniently denoted by 2i and imagined as a copy of the num-
ber 2. Define n binary operations 1 , 2 , . . . , n on N ∪ (∪ni=2{2i})
by

m ∗ s =

{
2i, if ∗ = i , m = s = 1 ̸= i,

m+ s otherwise,

m ∗ 2i = 2i ∗m = m+ 2, 2i ∗ 2j = 4

for all m, s ∈ N, i, j ∈ {2, . . . , n} and ∗ ∈
{

1 , 2 , . . . , n
}

. The al-

gebra (N ∪ (∪ni=2{2i}), 1 , 2 , . . . , n ) is denoted by N♯(n). By Corol-
lary 4 of [1], for every n > 1, N♯(n) is the free strict n-tuple semigroup
of rank 1.

We describe the endomorphism semigroup of N♯(n) and the auto-
morphism group of the endomorphism semigroup of N♯(n) (n > 1).

The first named author has been supported by a Philipp Schwartz
Fellowship of the Alexander von Humboldt Foundation.

[1] Zhuchok, A.V.: Free strict n-tuple semigroups. Semigroup Forum 109, 753–758
(2024). https://doi.org/10.1007/s00233-024-10471-5
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Yu.V. Zhuchok

On some classes of trioids defined by semigroups

Luhansk Taras Shevchenko National University, Poltava, Ukraine;
Johannes Kepler University Linz, Linz, Austria

A nonempty set T with binary associative operations ⊣, ⊢, and ⊥
is called a trioid if for all x, y, z ∈ T the following conditions hold:

(x⊣y)⊣z = x⊣(y⊢z), (x⊢y)⊣z = x⊢(y⊣z),
(x⊣y)⊢z = x⊢(y⊢z), (x⊣y)⊣z = x⊣(y⊥z),
(x⊥y)⊣z = x⊥(y⊣z), (x⊣y)⊥z = x⊥(y⊢z),
(x⊢y)⊥z = x⊢(y⊥z), (x⊥y)⊢z = x⊢(y⊢z).

The notion of a trioid was first appeared in [1] at the study of ternary
planar trees. Trioids are a basis of trialgebras as well a generalization
of semigroups and dimonoids (see, e.g., [2]). A trioid (dimonoid) we
call trivial if all trioid (dimonoid) operations coincide and non-trivial
otherwise. If S = (S, ∗) is a semigroup, we refer to S as a trivial
dimonoid (S, ∗, ∗) or a trivial trioid (S, ∗, ∗, ∗).

According to Theorem 4 of [3], for an arbitrary group H there exists
a non-trivial digroup such that the group part of this digroup coincides
with H. A similar statement holds for dimonoids: for an arbitrary semi-
group there exists a non-trivial dimonoid containing it as a subdimonoid
in which operations coincide (see Theorem 1 of [3]). In connection with
this, it is natural to consider the following question: is there for an
arbitrary semigroup a non-trivial trioid with three pairwise different
operations containing it as a subtriod in which operations coincide?
We consider the mentioned problem and some related questions.
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