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ON K-ISOTOPIC AND M-ISOTOPIC SEMIRINGS

Liana Abrahamyan

Moscow State University in Yerevan
E-mail: liana_abrahamyan@mail.ru

Definition 1. A semiring is a set R equipped with two binary operations + and -,
called addition and multiplication, such as:

1. (R,+) is a commutative monoid with identity element 0:

(a+ b) + c = a+ (b+ c)

0 + a = a+ 0 = a

a+n = b+ a

2. (R, ·) is a monoid with identity element 1:

(a · b) · c = a · (b · c)

1 · a = a · 1 = a

3. Both multiplying left and right distribute over addition:

a · (b+ c) = (a · b) + (a · c)

(a+ b) · c = (a · c) + (b · c)

4. Multiplication by 0 annihilates R:

0 · a = a · 0 = 0.

Definition 2. A semiring (R,+, ) is called commutative, if (R, ·) is commutative
groupoid.

Definition 3. An idempotent semiring is a semiring , with identity a+ a = a.

Examples.
The motivating example of a semiring is aset of natural numbers N (in-

cluding zero) under ordinary addition and multiplication. All these semir-
ings are commutative.
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1. The square n × n matrixes with non-negative entries form a (non-
commutative) semiring under ordinary addition and multiplication of matri-
ces. More generally, the same applies to the square matrices whithelements of
any other given semiring S, and the semiring is generally non-commutative
nevetheless S may be commutative.

2. If A is a commutative monoid, then the set End (A) of endomorphisms
f : A→ A form is a semiring, where addition is pointwise addition and mul-
tiplication is functional composition.

(f + g)(x) = f (x) + g(x),

(f · g)(x) = g(f (x).

Zero morphism and identity are respective neutral elements.
3. If Q(+, ·) is a semiring, then the set End (Q) of endomorphisms is a

semiringunder with of the following operationsare:

(f + g)(x) = f (x) + g(x),

(f · g)(x) = g(f (x).

4. The ideals of a ring is a semiring under addition and multiplication of
ideals.

5. Any bounded, distributive lattice is a commutative, idempotent semir-
ing under joining and meeting.

If R = (R,+,0) is a semiring, then we denote R+ = R(+).
Two groupoids on G are called isotopic if there are permutations of Gρσ

and τ , such as for any a,b ∈ G,

a ◦ b = (aρ,bσ )τ,

where, and ◦ denotes the operation in these two groupoids. The isotopy rela-
tion is an equivalence relation for the binary operations. An isomorphism of
two binary operations defined on the same set is a special case of an isotopy
(with ρ = σ = τ−1).

In about quasigroups the following results are known:

Theorem 1 (Albert,1943). Every groupoid that is isotopic to a quasigroup is a
quasigroup itself.

Theorem 2 (Albert,1943). Every quasigroup is isotopic to some loop.

Theorem 3 (Albert,1943). If a loop (in particular, a group) is isotopic to some
group, then they are isomorphic.
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Theorem 4 (Bruck). If a groupoid with identity element is isotopic to a semi-
group, then they are isomorphic, that is, they are both semigroups with identity.

In the book [1] the isotopy of rings with the same additive groups is
defined by Albert in the following manner: (Q.Ω) and (Q′ ,Ω′)

(Q,+, ·) and (Q,+,◦) rings are called K-isotopic if there exist bijective
mapping α,β,γ :Q→Q such as:

1) α(x,y) = β(x) ◦γ(y),

2) α,β,γ ∈ Aut[Q(+)].

Theorem 5 (Albert, Kurosh.). If a ring with identity elementisk-isotopic to an
associative ring, then they are isomorphic.

We introduce the following general concept of isotopy. (Q,+1,1 ) and
(Q′ ,+2,2 ) semirings are called K-isotopic if there exist bijective mapping
α,β,γ :Q→Q such as:

1) α(x·1, y) = β(x)·2,γ(y),

2) α,β,γ :Q(+1)→Q′(+2) isomorphic mappings.

Theorem 6. If a ring with identity element is K-isotopic to an associative ring,
then they are K-isomorphic.

Theorem 7. K-isotopic semirings are isomorphic. In thebook [2] the isotopy of
algebras is defined as follows: (Q,Ω) and (Q′ ,Ω′) and algebras with binary oper-
ations are called M-isotopic, if there exist α,β,γ : Q→ Q′ ,ψ : Ω→ Ω′ bijective
mappings, such as

αA(x,y) = (ψA)(βx,βy)

for all A ∈Ω and ψ is save operations arity.

Theorem 8. M-isotopic semirings are isomorphic.
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MINIMAL REGULAR DESSINS AND THEIR DEFORMATIONS

Nikolai Adrianov

Lomonosov Moscow State University, Russia
E-mail: nadrianov@gmail.com

A dessin d’enfant is a bicolored (connected) graph Γ embedded into a
compact oriented surface X in such a way that the complement X \Γ is home-
omorphic to a disjoint union of open discs. Let X be a non-singular complex
algebraic curve. A function β on X is called the Belyi function if β has no
critical values other than 0, 1 and ∞. Then the preimage β−1[0,1] is a dessin
d’enfant on X.

For a dessin with n edges the degrees of the faces, the black and white
vertices constitute a triple of partitions of n which is called passport. In terms
of the Belyi functions the passport is a set of ramification multiplicities over
0, 1 and∞. We denote the set of dessins with passport π by D(π).

There is an action of S3 on Belyi functions, which transforms β to 1− β,
1/β, β/(β − 1), 1/(1− β) or (β − 1)/β. For a dessin D the chameleon group is the
stabilizer of the corresponding Belyi function under this action.

We consider Belyi functions of a smallest possible degree of genus g. The
corresponding dessins have only one face, one black and one white vertex, so
their passport is (n |n |n) where n = 2g + 1. Despite such a simple characteri-
zation, the number of these objects grows factorially:∑

D∈D(n|n|n)

1
#Aut(D)

=
(2g)!

(g + 1)(2g + 1)
.

A relatively small subset of the regular minimal dessins with cyclic automor-
phism group Cn is described by the following theorem.

Theorem. (a) For any g and n = 2g + 1 the number of regular minimal dessins
with n edges is equal to n

∏
p|n

(p − 2)/p.

(b) For g = 0,1 there is only one minimal dessin, it is regular and it’s
chameleon group is S3.

(c) For any g ≥ 2 there are three regular minimal dessins with chameleon
group C2. Their Belyi pairs can be written as

X : y2 = 1− xn, β1 = (y + 1)/2, β2 = 2/(y + 1), β3 = (y − 1)/(y + 1).
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(d) For any g ≥ 2 the regular minimal dessins with chameleon group C3 exist
if and only if

n = 3α0pα1
1 . . .pαmm ,

where α0 = 0,1 and pi – distinct primes, pi ≡ 1 (mod 3). The number of such
dessins is 2m and their Belyi pairs can be written as

Xa,b : xaya+b + yaza+b + zaxa+b = 0,

βa,b = −
ya+b

zaxb
= 1 +

yazb

xa+b
.

where n = a2 + ab+ b2.

The statement (a) of the theorem is a particular case of a more general re-
sult on regular dessins with cyclic automorphism groups, see [1]. The curves
Xa,b also appeared in [4] and can be considered as a generalization of the
famous Klein’s quartic

x3y + y3z+ z3x = 0.

Also all regular minimal Belyi pairs of prime degree n = p can be written as
pairs on Lefchetz surfaces, see [3]

X : yp = xm(x − 1), β = x, 1 ≤m ≤ p − 2.

In this talk we will also present some non-regular minimal Belyi pairs
and discuss deformations of the minimal dessins into Fried families (Fried
function is a function with only 4 critical values).
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SECURE MULTI-PARTY COMPUTATION FOR
ANONYMIZED DATA

Yeghisabet Alaverdyan

EKENG CJSC, Armenia
E-mail: yeghisabet.alaverdyan@ekeng.am

With the increase in digital communication and the need for organiza-
tions to delegate certain computational tasks to third-party providers, data
security and privacy have become significant concerns. To preserve security
of personally identifiable information during transit, data anonymization,
such as: replacement, removal, masking and other techniques are used to
add random noise either by involving cryptography or collision-free hash-
ing. Anonymization minimizes the amount of publicly available and readable
data both for humans and for computers meanwhile keeping the information
functional for statistical data analysis and other business purposes.

Secure multi-party computation (MPC) helps when there is a need for
conducting joint analysis or usage of sensitive data residing in the same
or even in different stores without disclosing any participant’s private in-
puts [1, 2]. A computation method which is selected and agreed among par-
ticipants should ensure verifiability without reconstructing the secret for not
to become a target for attackers. In order to demonstrate such behaviour, re-
sponsibilities on the whole secret, and not the portions of the secret itself,
should be granted to parties involved in MPC. With MPC proper implemen-
tation, the attacker has to compromise all the shares in order to break into
the system.

The present research is devoted to promote MPC algorithms based on
non-commutative and non-associative data structures from higher algebra
aimed at further hardening the reverse engineering in the upcoming era of
powerful quantum attacks.
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PROBABILITY IDENTITIES IN n-TORSION GROUPS

V. Atabekyan, A. Bayramyan

Yerevan State University, Armenia
E-mail: avarujan@ysu.am

A 3-generated infinite group is constructed in which the probability of
some fixed identity tends to 1. At the same time, this identity does not hold
on the entire group. The question of the existence of such a group has been
recently raised by several authors. More precisely, the n-periodic product of
a free periodic group of rank 2 and an infinite cyclic group is considered. It
is proved that in this product the probability of the identity xn = 1 tends to
1, but it does not hold on the entire product.
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ON CONSTRUCTION OF MONOGENIC FUNCTIONS WITH
VALUES IN REDUCED QUATERNIONS

K. Avetisyan

Yerevan State University, Armenia
E-mail: avetkaren@ysu.am

Quaternionic analysis involves the analysis of quaternionic functions
that are defined in open subsets of Rn (n = 3,4) and that are solutions of gen-
eralized Cauchy-Riemann or Riesz systems. They are often called monogenic
functions. Let

H :=
{
x = x0 + x1i + x2j + x3k, xℓ ∈R, ℓ = 0,1,2,3

}
be the real quaternion algebra (or Hamiltonian skew field), where the imagi-
nary units i, j and k are subject to the multiplication rules:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

Evidently the real vector space R
4 may be embedded in H by identifying the

element x := (x0,x1,x2,x3) ∈R4 with x := x0 +x1i+x2j+x3k ∈H. Consider the
subsetA := span

R
{1, i, j} ⊂H, then the real vector space R3 may be embedded

inA via the identification of x := (x0,x1,x2) ∈R3 with the reduced quaternion
x := x0 + x1i + x2j ∈ A. It should be noted, however, that A is a real vectorial
subspace, but not a subalgebra of H.

Like in the complex case, Sc(x) = x0 and Vec(x) = x1i + x2j define the
scalar and vector parts of x. The conjugate of x is the reduced quaternion
x = x0 − x1i − x2j, and the norm |x| of x is defined by |x| =

√
xx =

√
xx =√

x2
0 + x2

1 + x2
2, and it coincides with its Euclidean norm as a vector in R

3. Let

B ⊂ R
3 denote the three-dimensional unit ball centered at the origin. We say

that
f : B −→A, f(x) = [f(x)]0 + [f(x)]1i + [f(x)]2j

is a reduced quaternion-valued function or, in other words, an A-valued
function, where [f]ℓ (ℓ = 0,1,2) are real-valued functions defined in B. For
a real-differentiable A-valued function f that has continuous first partial
derivatives, the (reduced) quaternionic operators

Df =
∂f
∂x0

+ i
∂f
∂x1

+ j
∂f
∂x2

and Df =
∂f
∂x0
− i

∂f
∂x1
− j

∂f
∂x2
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are called generalized Cauchy-Riemann (resp. conjugate generalized Cauchy-
Riemann) operators on R

3.
A continuously real-differentiable A-valued function f is said to be

monogenic if Df = 0, which is equivalent to the system

div f = 0

curl f = 0.
Let U be a harmonic function defined in an open subset Ω of R

3. A
vector-valued harmonic function V in Ω is called conjugate harmonic to U
if f := U +V is monogenic in Ω. The pair (U ;V ) is called a pair of conjugate
harmonic functions in Ω.

We suggest an algorithm to the explicit construction of a “unique” pair
of conjugate harmonic functions in R

3.

Theorem 1. Let U be a real-valued harmonic function defined in B. Define

V1(x) := −x0

∫ 1

0

∂U (ρx0,x1,x2)
∂x1

dρ+W (x1,x2),

where the function W (x1,x2) is chosen so that ∆(x1,x2)W = ∂2U (0,x1,x2)
∂x0∂x1

, and

V2(x) :=
∫ 1

0

−
∣∣∣∣∣∣∣ x0 x2
∂U (tx)
∂x0

∂U (tx)
∂x2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣ x1 x2
∂V1(tx)
∂x1

∂V1(tx)
∂x2

∣∣∣∣∣∣∣
dt.

Then the function f :=U+iV1+jV2 is monogenic in B. Moreover, the most general
monogenic function g having U as its scalar part is given by

g(x) = f(x) +ϕ(x1,x2),

where ϕ(x1,x2) is a hyperholomorphic constant, that is, Dϕ =Dϕ = 0.
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ISOPERIMETRIC PARAMETER AS A SHAPE PARAMETER FOR
BIOLOGICAL CELLS. NEW APPROACH

H. G. Badalyan and S. H. Jilavyan

Yerevan State University, Armenia
E-mail: hbadal@ysu.am

In biology , the deformation index is used as a parameter to describe the
change in shape of biological cells. It is defined as

DI =
A−B
A+B

where A is the length of the large axis of cell and
B the small one. However, in many cases after cell
deformation it is impossible to determine A and B.
In this case, we propose to use the isoperimetric parameter as the cell shape
parameter.

Shape parameter changes induced after ionizing radiation were studied
using computational analysis. For our study, we used software Lab View per-
mitting us to turn the source image obtained from polarized light microscope
to input data for software “Nova”. Obtained optical images were preliminar-
ily analyzed using Nova’s Section mode by filtering after magnification or
analyzed the distortions of pixels. Grain Analysis mode represents a source
image, a section of the source image, a table of geometrical parameters of bac-
terial cell (area, average size, perimeter, length, volume etc.) and a histogram
of distribution density of one of the parameters of grains. For our study, we
use only area, average size and perimeter parameters. Importing derived ge-
ometrical parameters into MS Excel, we determine shape parameter offered
by us. Shape parameter is equal to the ratio of the perimeter to the square on
4×area (Eq. 1)

α =
P 2

4S
. (1)

The purpose of this work was, by using the isoperimetric parameter as shape
parameter of cell, to make computational analysis of ionizing radiation-
induced shape parameter changes on bacterial cell. For our investigation we
have radiated Escherichia coli and Pseudomonas aeruginosa. Strains of Es-
cherichia coli were exposed to UV light for 10 and 15 minutes, Pseudomonas
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aeruginosa were exposed to gamma radiation for 15 and 30 minutes re-
spectively. The results of radiation showed that gamma radiation causes de-
crease of area and perimeter and increase of shape parameter. Results for
Escherichia coli were a little different after 10 minutes area and perimeter
were decreased compared with control, shape parameter was increased but
after 15 minutes area and perimeter were increased, shape parameter was
decreased. This new approach makes it possible to use calculus of variaton
methods in biology
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RELATIONS INVOLVING ZEROS AND SPECIAL VALUES
OF THE ZETA AND ALLIED FUNCTIONS

Armen Bagdasaryan

Department of Mathematics, American University of the Middle East, Kuwait
E-mail: armen.bagdasaryan@aum.edu.kw

Some recurrence relations for the Riemann zeta function ζ(s) at integer
arguments, as well as relations involving nontrivial zeros of ζ(s) have been
derived in [1]; for instance,

Proposition 1 ( [1]). For the Riemann zeta function ζ(s), it holds that

ζ(k) +
k−2∑
j=1

λjζ(k − j) +γλk−1 + kλk = 0, (k ≥ 2),

where λk are the coefficients in the Taylor series expansion of Γ̃ (z) = 1/Γ (1 − z)
around z = 0, and γ is the Euler-Mascheroni constant.

Proposition 2 ( [1]). For the nontrivial zeros ρ of the Riemann zeta function ζ(s),

k−2∑
j=0

λj

∑
ρ

1
ρk−j

+
[1
2
γ + 1− log(2

√
π)

]
λk−1 + kλk = 0, (k ≥ 2),

where λk are the coefficients in the Taylor series expansion of the Riemann ξ-
function (or completed zeta function) around s = 0, and γ is the Euler-Mascheroni
constant.

The above propositions have been obtained using several formulas that
were derived for the class of entire and meromorphic functions and that re-
late the sums of the nth powers of the reciprocals of zeros and poles of these
functions with the coefficients of their Taylor series expansions [1], e.g.

Theorem ( [1]). Let f (z) be an entire function of finite order ρ, for which p = ⌊ρ⌋,
where p is the genus of f . Further, suppose that {an}n≥1 is the sequence of zeros of
f (z). Then

k−p−1∑
j=0

λjσk−j + kλk =
k−1∑
j=k−p

λj(k − j)qk−j , k > p
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where λj are the coefficients in the Taylor series expansion of f (z) at z = 0, qk
are the coefficients of the polynomial in the Hadamard factorization of f , and σk
are the sums of the form σk =

∑∞
n=1 1/akn. Moreover, the above assertion holds true

when ρ is not an integer.

The aim of this talk is to present other recurrence formulas involving
Riemann zeta function and some other allied functions [2]. In particular, sim-
ilar results are established for the digamma function, Barnes G-function (or
double gamma function), and its logarithmic derivative [3], which will be
based on the results of the paper [1] and the Weierstrass infinite product rep-
resentations of entire functions [3, 4]. A recurrence formula for the values
of the Riemann zeta function at odd positive integers is also derived. I will
also discuss the relations for the multiple gamma functions [5] and Vignéras’
multiple gamma functions [6]. The determinantal formulas for the sums of
the nth powers of the reciprocals of zeros of entire or meromoprhic func-
tions as well as for the coefficients λk will also be presented. I will conclude
by discussing some further research in this direction and outlining possible
applications of the same ideas and the results obtained.

Keywords: Zeta functions, sums of powers of reciprocals of zeros, entire
functions, recurrence formulas

2020 Mathematics Subject Classification: 11M06, 30C15, 33B15, 30D99
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AND THEIR GENERATING FUNCTIONS, WITH APPLICATIONS

Armen Bagdasaryan
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We begin a systematic study of compositions of n, with each part not ex-
ceedingm, denoted by C(m,n), and the study of composition functions c(m,n)
[1]. We derive the recurrence formula, c(m,n) = c(m,n−1) + c(m,n−m),n > m,
and also the generating function for c(m,n), which coefficients are expressed
by the formula c(m,n +m) =

∑⌊n/m⌋
k=0

(n−(m−1)k
k

)
. This formula is also obtained

by combinatorial arguments. We aso study the functions given on a set of
compositions.

Theorem 1. Let f (n) : N→ R, where N is a set of nonnegative integers and R is
a ring, and let F(q) =

∑∞
n=0 f (n)qn its generating function. Then for the function

g(n) =
∑
π∈Cn

f (λ1)f (λ2) · · ·f (λk), g(0) = 1,

we have

(1) g(n) =
n−1∑
k=0

f (k)g(n− 1− k), (2) G(q) =
1

1− qF(q)
.

We provide many examples illustrating the above theorem, and several
sequences of [2] arise in this way. We also give the enumeration formulas for
compositions with various restrictions on parts, and find several generating
functions for Fibonacci sequences. By applying the formulas to linear recur-
rence relation of order k, we get the corresponding generating function, and
in particular find the relation between the Pell numbers Pn and compositions
of n. As corollaries we get recurrence relations for reciprocal generating func-
tions, from which we derive the recurrence formulas for Bernoulli and Euler
numbers. We also obtain a recurrence expression for generalized reciprocal
generating function. For the partition function p(m,n) we construct the gen-
erating function and find its relation with the Euler’s formula, and we also
propose a couple of conjectures. Interestingly, just a few of integer sequences
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described by the obtained class of generating functions of c(m,n) appear to
be associated with compositions in [2].

We also define an arbitrary order generalization of the Fibonacci and
Lucas numbers [3]. By defining the roots of the associated auxiliary equation
in terms of the roots of unity, summation over partitions generates results
for generalized Fibonacci numbers and Lucas numbers, whereas summation
over compositions leads to results for products of Fibonacci numbers related
to Lucas numbers as well as integers in general.

References

[1] S. Heubach, T. Mansour, Combinatorics of Compositions and Words. Boca
Raton, FL: Chapman and Hall/CRC, 2010.

[2] N. Sloane, The On-Line Encyclopedia of Integer Sequences,
https://oeis.org/

[3] T. Koshy, Fibonacci and Lucas Numbers with Applications. Hoboken, NJ:
Wiley, 2017.

23

http://www.research.att.com/~njas/sequences/index.html


International Conference October 13–19, 2024

THE IDEA OF COMPLEX CONJUGACY
(an analogue of the idea of Riemann surfaces in differential geometry

and real analysis)

G. Barsegian

Institute of mathematics of National Academy of Sciences of Armenia
E-mail: barsegiangrigor@yahoo.com

In short, the idea is to establish relationships between the surfaces M
in R3 and some complex functions w(z) assoshiated with M; accordingly the
idea is to apply complex functions w(z) in studying surfacesM. In particular,
real functions u(x,y) also constitute a surface; thus the idea also applies to
real functions.

In some ways, this idea is similar to the idea of Riemann surfaces.
Application of this idea leads to some results in differential geometry.

In particular, analogues of the main theorems of classical Nevanlinna the-
ory (in complex analysis) are obtained that are valid for generalized minimal
surfaces (in geometry).

We also pose some problems that, in my opinion, can lead to a new cross-
roads between complex analysis, differential geometry and real analysis.
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ABOUT A METABELIANITY OF CANONICAL QUOTIENT GROUP
FOR GROUP OF LINE HOMEOMORPHISMS PRESERVING

ORIENTATION

L. A. Beklaryan

Central Economic-Mathematical Institute of RAS
Moscow Institute of Physics and Technology

E-mail: lbeklaryan@outlook.com

At classification of groups of line homeomorphisms preserving orienta-
tion the most important characteristics are the metric invariants such as the
invariant (0-projectively invariant), the projectively invariant (1-projectively
invariant) and the ω-projectively invariant measures, where ω is cardinal
number. The central object at the description of metric invariants is the min-
imal set because the support of a metric invariant is connected with him. The
formulation of criteria of existence of metric invariants and their equivalent
reformulations by topological, algebraic, combinatory terms and other char-
acteristics allow to study a structure of groups with such invariants [4, 5]. In
particular, the metabelianity of the quotient group G/HG is established for
group G with projectively invariant measure, where elements of normal sub-
group HG are homeomorphisms from group G for which each point of the
minimal set is stationary.

Other task is the studying of structure of the concrete classes of groups
of line homeomorphisms preserving orientation and, in particular, of the
nilpotent groups. For the abstract finitely generated solvable groups the cri-
terion of almost nilpotency is well-known [1]. For the finitely generated
groups of interval diffeomorphisms preserving orientation and having high
smoothness G ⊆ Dif f 1+α

+ , [0,1]), α > 0 [2], for groups of line diffeomor-
phisms preserving orientation G ⊆ Dif f 1

+ (R) with mutually transversal el-
ements [6], as well as for groups of line homeomorphisms preserving ori-
entation G ⊆ Homeo+ (R) and satisfying to the maximality condition [7] the
criteria of almost nilpotency were also established. In all three works the
most difficult part is a proof of solvability of initial group. Further, the al-
most nilpotency of such group follows from the Rosenblatt’s theorem. There-
fore establishment of the solvability fact for groups of line homeomorphisms
preserving orientation and also solvability of canonical quotient group is an
important independent task.
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In work [3] the important indication of existence of the projectively in-
variant Borel measure which is finite on compacts was received for groups of
line homeomorphisms preserving orientation with freely acting element by
terms of a finite normal row for which quotients are locally subexponential.

The new criterion of existence of the projectively invariant Borel mea-
sure which is finite on compacts is presented in the report for groups G of
line homeomorphisms preserving orientation with a nonempty minimal set
(in particular, with freely acting element). The formulation is given by terms
of a quotient group G/HG with a finite normal row in which quotient do
not contain the free subsemigroups with two generators. Such criterion is
equivalent to a metabelianity of the canonical quotient group G/HG. It al-
lows to give reformulations of criteria of the invariant and the projectively
invariant Borel measures which are finite on compacts by terms of a chain
of the enclosure of the classes of quotient groups G/HG. It is shown that in
space of quotient groups G/HG for groups of line homeomorphisms preserv-
ing orientation G ⊆ Homeo+ (R) with a nonempty minimal set the class of
metabelian groups coincides with of groups class with a finite normal row
with quotients not containing the free subsemigroups with two generators
and the class of commutative groups coincides with of groups class not con-
taining the free subsemigroups with two generators. Combinatory complex-
ity was established for groups of line homeomorphisms preserving orienta-
tion G ⊆ Homeo+ (R) with a nonempty minimal set, with not trivial quotient
group G/HG ,< e > and without freely acting homeomorphism. Such group
is not group with a finite normal row with quotients not containing free sub-
semigroups with two generators, in particular, such group contain free sub-
semigroups with two generators.
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ON EQUIVALENCE RELATION OF CRYPTOGRAPHIC FUNCTIONS

Lilya Budaghyan

University of Bergen, Norway
E-mail: Lilya.Budaghyan@uib.no

We will consider modern applications of Boolean functions:

• reliability theory, multicriteria analysis, mathematical biology, image
processing, theoretical physics, statistics;

• voting games, artificial intelligence, management science, digital elec-
tronics, propositional logic;

• algebra, projective geometry, coding theory, combinatorics, sequence
design, cryptography;

• cryptographic attacks on block ciphers and corresponding properties
of S-boxes.
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FIRST-ORDER MODEL THEORY, SURJUNCTIVITY, AND
KAPLANSKY’S STABLE FINITENESS CONJECTURE

Tullio Ceccherini-Silberstein

Università degli Studi del Sannio, Italy
E-mail: tullio.cs@sbai.uniroma1.it

A ring R is directly finite if ab = 1 implies ba = 1 for all a,binR. A ring R is
stably finite if the ring M(R,d) of d-by-d matrices with entries in R is stably
finite for every integer d ≥ 1. A group G is surjunctive if for any finite al-
phabet set A, every injective cellular automaton (i.e., injective, continuous,
G-equivariant map) T : AG −→ AG is surjective. Using algebraic geometry
methods, Xuan Kien Phung proved that the group ring K[G] of a surjunctive
group G with coefficients in a field K is always stably finite. In other words,
every group satisfying “Gottschalk’s conjecture” also satisfies “Kaplansky’s
stable finiteness conjecture”. Based on a joint work with Michel Coornaert
and Phung, I’ll present a proof of this result based on first-order Model The-
ory.
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ON SOME QUANTIFIED PROPOSITIONAL SYSTEM
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In this paper some new quantified propositional proof system is intro-
duced and compared by proof steps with the other quantified and not quan-
tified propositional proof systems.

Introduction. Propositional proof complexity has its origin in the seminal
paper by Cook and Reckhow [1]. It provides a path for approaching the P
vs. NP problem: proving super-polynomial lower bounds to all propositional
proof systems is equivalent to showing that NP is different from coNP and
therefore P is different from NP. It is well known that the exponential lower
bounds for proof sizes of some sets of tautologies are obtained in many sys-
tems, but for some most natural calculi, in particular for Frege systems, the
question about polynomial bounded sizes is still open. While traditionally
the complexity of propositional tautologies proofs has been at the centre of
research, the past two decades have witnessed a surge in proof complexity
of quantified boolean formulas (QBFs), which give not only a new class of
tautologies, but in some of quantified systems quantifier-free tautologies can
be proved simplier. Some interesting survey of proof complexity for QBFs is
given in [2], where the complexities for three QBF families are compared in
different quantified propositional proof systems: variants of QBF resolution,
QBF Frege systems, quantified version of cutting planes, QBF sequent calculi
and some others.

On the base of propositional system GS (Generalized Splitting), de-
scribed in [3], a new quantified propositional proof system is introduced
here. The place of the system GS in the hierarchy of the propositional proof
systems [1] is still unknown and moreover: by the comparison of the two
main proof complexity characteristics (steps and size) for two classes of for-
mulas in the system GS and Frege systems it is shown that for one class of
considered formulas the bounds in the system GS are much better, than in
Frege systems and for the second class – quite the reverse [4]. For all above
mentioned it is follow, that the investigations of proof complexities in some
quantified variant of the system GS are also important.
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Preliminaries. We will use the current concepts of a propositional formula,
a proof system for propositional logic, proof complexity, and well known no-
tions of polynomially equivalence and exponential speed-up. The language
of considered systems contains the propositional variables, logical connec-
tives ¬, &, ∨, ⊃ and parentheses (,). Following the usual terminology we call
the variables and negated variables literals. In [3] the following notions were
introduced. We call a replacement-rule each of the following trivial identities
for a propositional formula ψ.

0&ψ = 0; ψ&0 = 0; 1&ψ = ψ; ψ&1 = ψ;
ψ&¬ψ = 0; ¬ψ&ψ = 0; ψ&ψ = ψ;
0∨ψ = ψ; ψ ∨ 0 = ψ; 1∨ψ = 1; ψ ∨ 1 = 1;
ψ ∨¬ψ = 1; ¬ψ ∨ψ = 1; ψ ∨ψ = ψ;

0 ⊃ ψ = 1; ψ ⊃ 0 = ¬ψ; 1 ⊃ ψ = ψ; ψ ⊃ 1 = 1;
ψ ⊃ ¬ψ = ¬ψ; ¬ψ ⊃ ψ = ψ; ψ ⊃ ψ = 1;

¬0 = 1 ¬1 = 0; ¬¬ψ = ψ.

Application of a replacement-rule to some word consists in the replacing of
some its subwords, having the form of the left-hand side of one of the above
identities, by the corresponding right- hand side

The proof system GS. Let ϕ be some formula and p be some of its variable.
Results of splitting method of formula ϕ by variable p (splinted variable) are
the formulas ϕ[pδ] for every δ from the set {0,1}, which are obtained from ϕ
by assigning δ to each occurrence of p and successively using replacement-
rules. The generalization of splitting method allow as associate with every
formula ϕ some tree with root, nodes of which are labeled by formulas and
edges, labeled by literals. The root is labeled by itself formulaϕ. If some node
is labeled by formula v and α is some its variable, then both edges, which
going out from this node, are labeled by one of literals αδ for every δ from
the set {0,1}, and every of 2 “sons” of this node is labeled by corresponding
formula v[αδ]. Each of the tree’s leafs is labeled with some constant from the
set {0,1}. The tree, which is constructed for formula ϕ by described method,
we will call splitting tree (s.t.) of ϕ. It is obvious, that changing the order of
splinted variables in given formula ϕ, we can obtain the different splitting
trees of ϕ.

The GS proof system can be defined as follows: for every formula ϕ must
be constructed some s.t. and if all tree’s leafs are labeled by the value 1, then
formula ϕ is tautology and therefore we can consider the pointed constant 1
as axiom, and for every formula v, which is label of some s.t. node, and p is
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its splinted variable, then the following figure v[p0], v[p1] ⊢ v can be consid-
ered as some inference rule, hence every above described s.t. can be consider
as some proof of ϕ in the system GS. The complexity of s.t. is the number
of different formulas, with which labeled its nodes. The proof complexity of
tautology ϕ in the system GS is value of minimal complexity of its splitting
trees.

Note that if we consider splitting method for formulas given in dis-
junctive normal form, then GS system is the well-known system Analytic
Tableaux.

Main results. Quantified Splitting system (QS). A QBF is a proposi-
tional formula augmented with Boolean quantifiers ∀, ∃ that range over the
Boolean values 0, 1. Every propositional formula is already a QBF. Let φ be
a QBF. The semantics of the quantifiers are that: ∀xφ(x) ≡ φ[x0]&φ[x1] and
∃xφ(x) ≡ φ[x0]∨φ[x1]. In computer science investigated standardised QBF,
all quantifiers appear outermost in a (quantifier) prefix, and are followed by a
propositional formula, called the matrix. The variables, following after quan-
tifier ∀ called universal variables and the variables, following after quantifier
∃ called existential variables. The system QS works as follows: for any QBF
formula ϕ we use the system GS to matrix of ϕ. S.t. for every GBF tautology
ϕ must be the following: if for any step the splinted variable α is universal
variable of ϕ, then both subtrees, stuffed from the α0 and α1 labeled edges
must have some branch, ended with value 1 labeled leafs; if for any step the
splinted variable α is existential variable of ϕ, then at least one of subtrees,
stuffed from the α0 or α1 labeled edges must have some branch, ended with
value 1 labeled leafs.

Theorem. 1) The systems GS and QS are polinomially equivalent by steps,
2) The system QS has exponentially speed-up by steps over the variants of QBF
resolution system.

Proof of 1) is based on the good choices of splinted variables sentences.
Proof of 2) is based on the investigation of proof steps of equality families of

SCn=∃x1, . . . ,xn∀u1, . . . ,un∃t1, . . . ,tn

(∧
1≤i≤n

(xi⇔ ui)→ t̄i

)
∧

(∨
1≤i≤n

ti

)
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i-QUASIGROUP AND LEFT BOL QUASIGROUP
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Moldova State University, Vladimir Andrunachievici Institute of
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Florya I.A. in [1] defined and researched left Bol quasigroup. In [2], to-
gether with Didurik N.N., we defined and researched i-quasigroups. We find
a condition when any i-quasigroup is a left Bol quasigroup.

Definition 1. Quasigroup (Q, ·) with identity:

x(y · xz) = R−1
ex (x · yx) · z, ∀x,y ∈Q, (1)

where Rexy = y · ex, xex = x, is called left Bol quasigroup [1].

Definition 2. Quasigroup (Q, ·) with i-identity

x(xy · z) = y(zx · x), ∀x,y,z ∈Q (2)

is called i-quasigroup.

Theorem. Any i-quasigroup (Q, ·) with left unit f , where f · x = x,∀x ∈ Q, is a
left Bol quasigroup, i.e., identity (1) is satisfied in (Q, ·).
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N. N. Didurik∗, A. A. Popov∗, P. A. Radilov, V. A. Shcherbacov

Moldova State University, Vladimir Andrunachievici Institute of
Mathematicsa and Informatics, Moldova, Tiraspol State University∗

E-mails: natnikkr83@mail.ru, hhhhhggg5dhn@gmail.com
illuzionist@gmail.com, vscerb@gmail.com

We use [1, 2].

Definition 1. A quasigroup (K, ·) is called semisymmetric, if the semisymmetric
law is satisfied in (K, ·), x · yx = y, ∀x,y ∈ K [1, 2].

Definition 2. Quasigroup (Q, ·) is a T -quasigroup if and only if there exists an
abelian group (Q,+), its automorphisms ϕ and ψ and a fixed element a ∈ Q such
that x · y = ϕx + ψy + a for all x,y ∈ Q. A T -quasigroup with the additional
condition ϕψ = ψϕ is medial [3].

Theorem. In T -quasigroup (Q, ·) of the form x ·y = ϕx+ψy semisymmetric iden-
tity (x · yx = y) is true if and only if ψ = ϕ−1, ψ3 = I , where x+ Ix = 0 ∀x,y ∈Q.

Example. 1. The cyclic group Z2 satisfies semisymmetric identity. Indeed,
we can use commutative and associative identities that are true in the group
Z2.

2. We will notice that AutZm � Z∗m [4, p.61], AutZ7 � Z
∗
7 � Z6. We sup-

pose that (Z7,◦), x ◦ y = ψ−1x +ψy, where (Z7,+) is the cyclic group of order
7, ψ6 = ε, ψ3 = I .

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

◦ 0 1 2 3 4 5 6
0 0 5 3 1 6 4 2
1 3 1 6 4 2 0 5
2 6 4 2 0 5 3 1
3 2 0 5 3 1 6 4
4 5 3 1 6 4 2 0
5 1 6 4 2 0 5 3
6 4 2 0 5 3 1 6

35



International Conference October 13–19, 2024

Here I = (0)(16)(25)(34), ψ = (0)(154623), ψ−1 = (0)(132645) ψ6 = ε, ψ3 =
I .

3. Direct product of finite number of the group Z2 and quasigroup (Z7,◦)
defined in item 2.

Notice, using Mace [5] we construct semisymmetric non-medial quasi-
groups. See below.

* 0 1 2 3 4 5 6
0 0 1 2 4 5 3 6
1 1 0 3 2 4 6 5
2 2 3 0 1 6 5 4
3 5 2 1 6 0 4 3
4 3 4 6 5 1 0 2
5 4 6 5 0 3 2 1
6 6 5 4 3 2 1 0

12 ∗ 34 = 3 ∗ 0 = 5, 13 ∗ 24 = 2 ∗ 6 = 4.

*: 0 1 2 3 4
0 2 1 0 3 4
1 1 0 3 4 2
2 0 4 2 1 3
3 3 2 4 0 1
4 4 3 1 2 0

02 ∗ 34 = 0 ∗ 1 = 1, 03 ∗ 24 = 3 ∗ 3 = 0.

*: 0 1 2 3 4 5
0 2 1 0 5 3 4
1 1 0 3 4 2 5
2 0 4 2 1 5 3
3 4 2 5 3 1 0
4 5 3 1 0 4 2
5 3 5 4 2 0 1

12 ∗ 30 = 3 ∗ 4 = 1, 13 ∗ 20 = 4 ∗ 0 = 5.
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DOPPELSEMIGROUPS AND THEIR UPFAMILY EXTENSIONS

Volodymyr Gavrylkiv

Vasyl Stefanyk Precarpathian National University, Ukraine
E-mail: vgavrylkiv@gmail.co

In the talk we shall discuss the algebraic structure of doppelsemigroups
and their upfamily extensions. By definition, a doppelsemigroup is an alge-
braic structure (D,⊣,⊢) consisting of a non-empty set D equipped with two
associative binary operations ⊣ and ⊢ satisfying the following axioms:

(D1) (x ⊣ y) ⊢ z = x ⊣ (y ⊢ z),

(D2) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z).

If (D,⊣,⊢) is a doppelsemigroup, then rearranging the parentheses in an ex-
pression that contains only operations ⊢, ⊣ and elements of D do not change
the result. A doppelsemigroup (D,⊣,⊢) is called commutative [6] if both semi-
groups (D,⊣) and (D,⊢) are commutative. A doppelsemigroup (D,⊣,⊢) is said
to be strong [7] if it satisfies the axiom

x ⊣ (y ⊢ z) = x ⊢ (y ⊣ z).

In [2], the task of describing all pairwise non-isomorphic (strong) dop-
pelsemigroups with at most three elements has been solved. We proved
that there exist 8 pairwise non-isomorphic two-element doppelsemigroups
among which 6 doppelsemigroups are commutative. All two-element dop-
pelsemigroups are strong. It was proved that there exist 75 pairwise non-
isomorphic three-element doppelsemigroups among which 41 doppelsemi-
groups are commutative. Non-commutative doppelsemigroups are divided
into 17 pairs of dual doppelsemigroups. Also up to isomorphism there are 65
strong doppelsemigroups of order 3, and all non-strong doppelsemigroups
are not commutative. In [3], we studied cyclic doppelsemigroups. A dop-
pelsemigroup (G,⊣,⊢) is called a group doppelsemigroup if (G,⊣) is a group. A
group doppelsemigroup (G,⊣,⊢) is said to be cyclic if (G,⊣) is a cyclic group.
It was proved that up to isomorphism there exist τ(n) finite cyclic (strong)
doppelsemigroups of order n, where τ is the number of divisors function.
There exist infinite many pairwise non-isomorphic infinite cyclic (strong)
doppelsemigroups.

38



International Conference October 13–19, 2024

A familyM of non-empty subsets of a set X is called an upfamily if for
each set A ∈ M any subset B ⊃ A of X belongs toM. By υ(X) we denote the
set of all upfamilies on a set X. Each family B of non-empty subsets of X
generates the upfamily ⟨B⟩ = {A ⊂ X : ∃B ∈ B (B ⊂ A)}. An upfamily F that
is closed under taking finite intersections is called a filter. A filter U is called
an ultrafilter if U = F for any filter F containing U . The family β(X) of all
ultrafilters on a set X is called the Stone-Čech compactification of X, see [5].
An ultrafilter ⟨{x}⟩, generated by a singleton {x}, x ∈ X, is called principal.
Each point x ∈ X is identified with the principal ultrafilter ⟨{x}⟩ generated by
the singleton {x}, and hence we can consider X ⊂ β(X) ⊂ υ(X). It was shown
in [1] that any associative binary operation ∗ : S × S → S can be extended to
an associative binary operation ∗ : υ(S)×υ(S)→ υ(S) by the formula

L ∗M =
〈⋃
a∈L

a ∗Ma : L ∈ L, {Ma}a∈L ⊂M
〉

for upfamilies L,M∈ υ(S). In this case the Stone-Čech compactification β(S)
is a subsemigroup of the semigroup υ(S).

In [4], it was shown that the upfamily extension (υ(D),⊣,⊢) of a (strong)
doppelsemigroup (D,⊣,⊢) is a (strong) doppelsemigroup as well. Also we in-
troduced the upfamily functor υ in the category DSG of doppelsemigroups
and their homomorphisms and showed that this functor preserves strong
doppelsemigroups, doppelsemigroups with left (right) zero, doppelsemi-
groups with left (right) identity, left (right) zeros doppelsemigroups. On the
other hand, the functor υ does not preserve commutative doppelsemigroups
and group doppelsemigroups. It was proved that the automorphism group
of the upfamily extension of a doppelsemigroup (D,⊣,⊢) of order |D | ≥ 2 con-
tains a subgroup, isomorphic to C2×Aut(D,⊣,⊢). Also we described the struc-
ture of upfamily extensions of all two-element doppelsemigroups and their
automorphism groups.
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CONTINUOUS GROUPS OF LEFT QUASIGROUP OPERATIONS

Pavel S. Gevorgyan

Moscow Pedagogical State University, Moscow, Russia
E-mail: pgev@yandex.ru

Representations of groups by invertible binary operations of a set play
an important role in algebra and other branches of mathematics. One of the
old problems of algebra, the problem of describing those groups that can be
multiplicative groups of fields, was solved in terms of binary representations
of groups by Yu. Movsisyan [1].

The study of binary representations of a topological group G or binary
G-spaces was started in [2]. In a broader sense, a binary representation of
a topological group G should be understood as a homomorphism of G into
the group of all invertible continuous binary operations or left quasigroup
operations of a topological space X. This concept in algebra was considered
and studied in [3].

Some important notions and results of the theory of binary G-spaces are
considered.
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A microscopic theory of quantum thermodynamics has been developed
for a multicomponent system of reacting particles, one of the components of
which is a subsystem of 4D isotropic quantum oscillators - a test sub-system.
The medium is considered as a test sub- system consisting of single-particle
systems immersed in a random environment, which, as a result of evolution
in the limit of thermodynamic equilibrium, with different probabilities pass
into topologically different final quantum states. Within the framework of
a stochastic differential equation (SDE) of the Langevin-Schrödinger (L-Sch)
type, which describes the motion of a test particle in a reacting medium,
the problem of self-organization of a single-particle system with its environ-
ment is investigated. By the help of a low-dimensional reference SDE, the
original L-Sch equation is reduced to an autonomous form, which is then
solved explicitly as an orthogonal basis of random processes in Hilbert space.
Assuming that the interaction of a single-particle system with the environ-
ment is described by a complex Gauss-Markovian random processes, taking
into account the reference SDE, a Fokker-Planck (F-P) type equation for the
distribution of environmental fields is derived. Using the F-P equation, the
measure of the functional space and, accordingly, the mathematical expec-
tation of the time-dependent wave function of a single-particle system are
constructed. In the limit of statistical equilibrium, the time-dependent en-
tropy and complexity of a single-particle system are studied in detail, taking
into account the influence of its environment. It is shown that all thermody-
namic potentials of a statistical ensemble can be constructed in the form of
functional integrals, which are then calculated exactly using the generalized
Feynman-Kac theorem and reduced to double-integral representations with
solutions of second-order partial differential equations.

It is proved that when imposing an additional constraint on the wave
function of a 4D isotropic oscillator, the representation describes the quan-
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tum thermodynamics of a multicomponent ensemble of particles, the test-
particle of which is a reacting hydrogen atom. The developed model of quan-
tum thermodynamics is also interesting in that there are no restrictions on
the power of interaction with the environment, which makes the approach
suitable for studying atomic-molecular processes far from the state of ther-
modynamic equilibrium of the environment, in critical states, when elemen-
tary processes occur under the strong influence of collective effects.
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ON THE GENERATION OF BELL STATES USING RANDOM
MAPPINGS OF THE FOCK BASIS
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Entanglement of the spatial degrees of freedom of photons is one of the
most important directions for the implementation of quantum communica-
tions. There are various rather complex and expensive experiments on the
generation of entangled photons, in which the environmental noise is the
main factor in the decoherence of these states. We propose to generate Bell
states by passing photons through an optical waveguide with random bound-
aries, realizing both elastic and inelastic scattering of photons in the waveg-
uide. Obviously, photon entanglement is a purely quantum phenomenon,
mathematically described by Fock states. Mathematically, the problem is as
follows: initially we have a one-particle 2D Fock state, carry out random
mappings over this state and, in the limit of statistical equilibrium, find the
mathematical expectation of the wave function of two 1D entangled Fock
states.

In particular, using the obvious similarity of the neutrino and the pho-
ton, we proved that the propagation of a photon in a 3D-inhomogeneous
medium can be described by complex probabilistic processes satisfying the
Lagevin-Weyl type equation:

∂tΨ± (r, t)± c(r)
(
S · ∇

)
Ψ±(r, t) = 0, ∂t ≡ ∂/∂t, (1)

where c(r) denotes the speed of light in 3D Euclidean space r ≡ r(x,g,z) ∈
R

3, in addition, Ψ+ and Ψ− denote the wave functions of photons of both
helicities, a left-hand +1 and right-hand -1, respectively. In Eq.s (1) the set of
matrix S = (Sx,Sy ,Sz) have the form:

Sx =


0 0 0
0 0 −i
0 i 0

 , Sy =


0 0 i

0 0 0
−i 0 0

 , Sz =


0 −i 0
i 0 0
0 0 0

 .
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From the system of first-order differential equations (1), we find the system
of second-order equations by differentiating with respect to time:

∂2
tΨ±(r, t)− c(r)

(
∇c(r)∇

)
Ψ±(r, t) + c2(r)∇ ·

(
∇Ψ±(r, t)) = 0. (2)

Assuming that the z axis coincides with the direction of photon propagation,
and considering that in this case Ψ±(r, t) = (Ψ x

± , Ψ
y
± , Ψ

z
± ≡ 0), from the equa-

tions’ system (2) we can find the following second order partial differential
equations (PDEs):

∂2Ψ x
±

∂t2
− c2

{
∂2Ψ x

±
∂x2 +

∂2Ψ x
±

∂y2 +
∂2Ψ x

±
∂z2

}
− ccx

∂Ψ x
±

∂x
= 0,

∂2Ψ
y
±

∂t2
− c2

{
∂2Ψ

y
±

∂x2 +
∂2Ψ

y
±

∂y2 +
∂2Ψ

y
±

∂z2

}
− ccy

∂Ψ
y
±

∂y
= 0, (3)

where the following notations are made cη = ∂ηc and η = x,y.
Adding the equations (3) and assuming that cx = cy = 0, we find:

∂2Ψ0

∂t2
− c2∆Ψ0 = 0, (4)

where Ψ0(x,y,z; t) = Ψ x
± (x,y,z; t) +Ψ

y
± (x,y,z; t).

Now substituting the wavefunction of the photon in the form:

Ψ0(x,y,z; t) = eiω0t+ikzzF (x,y), (5)

where ω0 and kz denote the frequency and momentum of the photon in
the (in) vacuum state) from the equation in (4) one can get the following
parabolic equation for evolution of a photon:

i
∂F
∂τ

+
1
2

{
∂2F
∂x2 +

∂2F
∂y2

}
+
(ω2

0

c2 − k
2
z

)
F = 0, τ =

z
kz
. (6)

where τ = z/kz plays the role of time.
Expanding into a series the speed of light c(x,y) near the z axis, from

equation (6) we find:

i
∂F
∂τ

+
1
2

{
∂2F
∂x2 +

∂2F
∂y2

}
− 1

2

{
A1(τ)x2 +A2(τ)y2 + 2A3(τ)xy

}
F = 0, (7)

where

A1(τ) =
ω2

0

c2
0

cxx(0,0, z), A2(τ) =
ω2

0

c2
0

cyy(0,0, z), A3(τ) =
ω2

0

c2
0

cxy(0,0, z).
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Note that when deriving the equation (7) we assumed that ω2
0c
−2
0 − k2

z = 0,
where c0(z) = c(z,0,0). In the case where the coefficients satisfy the inequali-
ties A1(τ) > 0, A2(τ) > 0 and A3(τ) > 0 equation (7) describes the problem of
a 2D quantum harmonic oscillator.

By using the coordinate transformations:

q1 = (x − y)/
√

2, q2 = (x+ y)/
√

2, (8)

we can diagonalize the equation (7) assuming cxx(0,0, z) = cyy(0,0, z) and re-
duce it to the form:

i
∂F
∂τ

=
1
2

2∑
l=1

[
− ∂

2

∂q2
l

+Ω2
l (τ)q2

l

]
F , (9)

where Ω2
l (τ) = Ω2(τ) − (−1)lΘ(τ), (l = 1,2) the square of frequency and the

following notations are made:

Ω2
l (τ) =

(ω0

c0

)2
cxx =

(ω0

c0

)2
cyy(τ), Θ(τ) =

(ω0

c0

)2
cxy(τ).

We consider the frequency Ω2
l (τ) as the sum of regular and stochastic func-

tions:
Ω2
l (τ) = Ω2

0l(τ) + fl(τ), (10)

where Ω0l(τ) is a regular function and fl(τ) is a complex random process
satisfying the following asymptotic conditions:

lim
τ→∓∞

Ω0l(τ) = Ω∓l > 0, lim
τ→−∞

fl(τ) = 0. (11)

Let us assume that fl(τ) = f (r)
l (τ)+if (i)

l (τ) is an independent Gaussian-Markov
process with zero mean and delta-shaped correlation function:

< f
(υ)
l (τ) >= 0, < f

(υ)
l (τ)f (υ)

l (τ ′) >= 2ϵ(υ)
l δ(τ − τ ′), υ = r, i, (12)

where ϵ(r)
l and ϵ(i)

l denote the powers of elastic and inelastic collisions.
Thus, we have reduced the original problem of the propagation of a sin-

gle photon along a waveguide with random boundaries to the problem of two
coupled 1D quantum oscillators immersed in a random environment [1]. As
shown in this paper, all parameters of the dynamical system under considera-
tion can be constructed exactly in the form of double integral representations
and reference equations (second-order partial differential equations with two
variables).
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In the paper, the mathematical expectation of the photon wave func-
tion is constructed in the limit of statistical equilibrium. The probabilities of
the formation of various Bell states as a result of the decay of a single two-
dimensional photon into two one-dimensional entangled photons have been
studied in detail. A mathematical algorithm has been developed for the nu-
merical solution of the problem, which is very important for the control and
optimization of the corresponding Bell state.
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ENDOMORPHISM KERNEL PROPERTY FOR FINITE GROUPS

Heghine Ghumashyan
(joint work with Jaroslav Guričan)

European University of Armenia

E-mail: hgumashyan@mail.ru

The concept of the endomorphism kernel property for an universal al-
gebra has been introduced by Blyth, Silva in [1] as follows.

An algebra A has the endomorphism kernel property (EKP) if every con-
gruence relation θ on A different from the universal congruence ιA = A×A is
the kernel of an endomorphism on A.

This concept was studied by many authors mainly for classes of univer-
sal algebras with (semi)lattice reduct. First attempt to describe one of "clas-
sical" algebraic structures – finite abelian groups – which posses (somewhat
stronger property) strong endormorhism kernel property was done in 2020
by J. Fang and Z.-J. Sun in [2].

EKP is in the context of groups equivalent to the fact, that a group G has
EKP if and only if for any normal subgroup H of G (H ◁G) the factorization
G/H is isomorhic to a subgroup of G.

Using the fact that a finite abelian group G is a direct product (sum) of
its Sylow subgroups (which is true also for every nilpotent group) we prove

Theorem 1. Let G be finite abelian group. Then G has EKP.

This is not true for infinite abelian groups, for example the group (Z,+)
does not have EKP, because (for example) the factorization Z/2Z has 2 ele-
ments, but Z does not have 2 element subgroup.

In the case of non-abelian groups we were able to prove

Lemma. Let p be a prime number, G be a non-abelian group, |G| = p3.
1. If p > 2, then G has EKP.
2. If p = 2 and G �D4, then G has EKP.
3. Let P be a non-abelian group, |P | = p3 for an odd prime number p or

P =D4. Let G = Zkp × P . Then G has EKP.

Using this result and the structure of finite nilpotent groups we get
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Theorem 2. LetG be a finite nilpotent group written in the formG = G1×G2×· · ·×
Gk , where Gi , i = 1, . . . , k are Sylow pi subgroups of G. Let each Sylow subgroup
Gi be (isomorphic to) one of the following groups:

1. an abelian group,

2. Zkipi × Pi , where ki ≥ 0, pi > 2 and Pi is a non-abelian group of order p3
i ,

3. Zki2 ×D4, where ki ≥ 0 and D4 is a dihedral 8−element group.

Then G has EKP.
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BINARY REPRESENTATION OF MULTIPLICATIVE
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The aim of this talk is to introduce main concepts of theory for semir-
ings and binary representations for defining the postulate of prime property
for semirings. The main topic is the binary representation for multiplicative
monoid of the semiring.

The following definitions will be given for more pressingly to introduce
the main algebraic structures and methods. For first, there are definitions
about semirings and their prime properties. These definitions can be found
in [1, 6].

Definition 1. The A(+, · ,0,1) algebra with two binary and two unary operations
is called semiring if:

• The A(+,0) additive algebra is a commutative monoid.

• The A( · ,1) multiplicative algebra is a monoid.

• The left and right distributive laws are true in A:

x(y + z) = xy + xz,

(x+ y)z = xz+ yz.

• And the additive unit is an absorbing element for multiplicative operation:

x0 = 0x = 0.

Definition 2. The semiring is called prime if the following identity is true on it:

x+ 1 = 1.

The definitions above show that the every associative ring is a definitely
semiring, but not every semiring is an associative ring.

Main mathematical theory for this paper is the binary representations.
The following definitions are giving the quick and short information, for
more about this theory (containing the theorems and their proofs) can be
found in [2–5].
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Definition 3. The Γ (Σ) algebra can be represented with F 2
G (⊕,◦) binary opera-

tions algebra of the some G set where:

• G∩ Γ = ∅

• F 2
G = {f | f : G ×G→ G}

• The (⊕) and (◦) operations is defined by the following identities:

(f ⊕ g)(x,y) = f (x,g(x,y))

(f ◦ g)(x,y) = f (g(x,y), y)

if there exists a homomorphism from Γ to F 2
G :

ϕ : Γ →F 2
G .

Definition 4. A binary representation is called strict if the homomorphism defin-
ing it is a monomorphism.

The operations on F 2
G (⊕,◦) binary operations’ algebra are associative and

for each of them there exists the unit:

E ⊕ f = f ⊕E = f ,

F ◦ f = f ◦F = f ,

where:

E(x,y) = y, F(x,y) = x.

All proofs for definition given above can be found in [3].
And the following theorem is describing the main result for paper which

should be proven.

Theorem. The A(+, · ,0,1) semiring is a prime iff it’s multiplicative monoid
A( · ,1) has strict binary representation given by the following mapping:

ϕ : A( · ,1)→F 2
A (⊕,E)

where

F 2
A = {fa | fa(x,y) = x+ ay, ∀a ∈ A}.
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This talk is based on the joint works with Yu. A. Alpin, A. M. Maksaev,
E. R. Shafeev.

Scrambling index is a fundamental invariant in graph theory and in the
theory of non-negative matrices and their applications. Shortly, a scrambling
index of a primitive directed graph G is the smallest positive integer k = k(G)
such that for any pair of vertices u,v of G there exists a vertex w of G such
that there are directed walks of length k from u to w and from v to w. If a
digraph G is not primitive, then it can appear that the integer k described
above does not exist. In this case we say that k(G) = 0, otherwise we define
k(G) as in the primitive case.

The scrambling index is important for several applications. In particu-
lar, if A is an n × n non-negative primitive stochastic matrix with a non-unit
eigenvalue λ, and k is the scrambling index of G(A), then |λ| ≤ (τ1(Ak))1/k < 1,
where τ1 is a certain matrix invariant, usually called Dobrushin coefficient.

Also scrambling index provides lower bounds for the length of reset
words for synchronizing automata, since it gives a lower bound for the ex-
ponent of the graph representing this automata.

More applications are in the theory of memoryless communication sys-
tems and related areas. Scrambling index for primitive graphs was an object
of intensive investigations starting from the works by Seneta, Paz, Akelbek,
Kirkland, and others.

We prove that for non-primitive digraphs on n vertices the following

bound for scrambling index is true k(G) ≤ 1+
⌈

(n−2)2+1
2

⌉
. We characterize such

graphs with the maximal scrambling index and characterize non-primitive
graphs possessing positive scrambling index.

Several generalizations of scrambling index and their bounds will be dis-
cussed in the talk. As a corollary we obtain a generalization of the theorem
by Protasov and Voinov about the combinatorial structure of semigroups of
nonnegative matrices, for not necessarily irreducible semigroups of matrices.
For this purpose, an extensions of the concepts of imprimitivity index and
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canonical partition are introduced which are based on the chain properties
of non-negative matrices.

In addition we investigate linear transformations preserving scrambling
index of graphs. The theory of transformations preserving different matrix
properties and invariants dates back to the works of Frobenius, Schur, and
Dieudonne and is an intensively developing part of linear algebra and its
applications nowdays. In particular, it is natural to investigate these trans-
formations for combinatorial or graph theory invariants. We show that linear
transformations preserving scrambling index of graphs are always bijective,
which is not the case for cyclicity index, for example. The structure of linear
maps preserving only several values of the scrambling index are character-
ized. We also discuss linear maps preserving other matrix indices mentioned
above.
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Hamlet Hakobyan
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Many practical problems in operations research, computational math-
ematics, automatic planning, and control theory are designed to address
object-related problems. Among such tasks, a special place is occupied by
the study of the central regions of these objects. We study the relationships
between centers and medians graphs, which are trees.

Let G = (V ,E) be a connected undirected graph, where V is the set of
vertices and E is the set of edges. Let us give definitions of concepts that
interest us, found in the research of many specialists.

The distance from vertex u of a graph G to the vertex most distant from
it is called the eccentricity of vertex u. The central vertex is the vertex of
the graph for which the eccentricity takes the smallest value. The set of all
central vertices is called the center of a graph G. We denote the number of
central vertices of a graph G by n(G). The diameter is the chain with maxi-
mum length. The sum of the distances of all vertices of the graph G from ver-
tex u is called the transmission number of vertex u. The vertex of the graph
with the smallest transmission number is called medial. The set of all medial
vertices is called the median of a graph G. We denote the number of medial
vertices of a graph G by m(G). We can obtain the transmission numbers of
graph vertices, for example, using Dijkstra or Lee algorithms.

It is known that the center of each tree consists of one vertex or two ad-
jacent vertices. We have proven a similar result for the median of a tree: the
median of each tree consists of one vertex or two adjacent vertices. From these
results it follows that for every tree T the numbers n(T ) and m(T ) are equal
to 1 or 2. We show that for these numbers all four logically possible relation-
ships are possible. Moreover, one or two medial vertices may or may not be
located on the diameter of the tree, and the distance between the central and
medial vertices can be arbitrary.

Let l(e) be a positive function of lengths defined on the set of edges
of the graph G. The following concepts are defined accordingly: l-distance,
l-eccentricity, l-diameter, l- transmission number, l-center, l-median. It is
proven that similar results hold for l-centers and l-medians of such trees
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with weighted edges. Note that the results obtained can be generalized to
other classes of both undirected and directed graphs with weighted vertices
and edges.
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CONFORMAL DIMENSION OF THE BROWNIAN GRAPH

Hrant Hakobyan
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Conformal dimension of a metric space X, denoted by dimCX, is the
infimum of the Hausdorff dimensions among all its quasisymmetric deffor-
mations. If conformal dimension of X is equal to its Hausdorff dimension,
X is said to be minimal for conformal dimension. In this talk we will give the
first examples of minimal random fractals. Specifically, we will show that the
graph of one dimensional Brownian motion is almost surely minimal for con-
formal dimension, which is equal to 3/2. We also give other examples of sets
that are minimal for conformal dimension. These include Bedford-McMullen
self-affine carpets with uniform fibers as well as graphs of continuous func-
tions of Hausdorff dimension d, for every d ∈ [1,2]. The main technique in
the proof is the construction of “rich families of minimal sets of conformal
dimension one”. The latter concept is quantified using Fuglede’s modulus of
measures.
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TRIDIAGONAL SKEW-HERMITIAN MATRICES WITH ZERO
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Let us denote by A∗ the conjugate transpose of a matrix A with com-
plex elements. The matrix A is said to be a skew-Hermitian if A+ = −A. Skew-
Hermitian and, in particular, skew-symmetric matrices have many applica-
tions in various fields, such as computational mathematics, statistical analy-
sis, signal processing and others [1].

As follows from the definition, the diagonal elements of a skew-
Hermitian matrix are either purely imaginary numbers or zeros. In this work
we discuss the case when all diagonal elements are zero. To find the Moore-
Penrose inverse for tridiagonal matrices, we will use an approach developed
in [2, 3] for skew-symmetric matrices. We are talking about generalized in-
version, since tridiagonal skew-Hermitian matrices of odd order with zero
diagonal elements are singular (it is easy to verify this). Recall that for am×n
matrix A the Moore-Penrose inverse A+ is the unique n×m matrix that satis-
fies the following four conditions [4]:

AA+A = A, A+AA+ = A+, (A+A)∗ = A+A, (AA+)∗ = AA+.

If A is a square nonsingular matrix, then A+ = A−1. Note that the Moore-
Penrose inverse of a skew-Hermitian matrix is also skew-Hermitian.

So we are considering a tridiagonal matrix

A =



0 a1

−a1 0 a2
. . .

. . .
. . .

−an−2 0 an−1

−an−1 0


, (1)

where n ≥ 3. Note that throughout this report z stands for the complex con-
jugate of the complex number z. We assume that ai , 0 for all i = 1,2, . . . ,n−1.
This requirement is not restrictive, since if some of the overdiagonal elements
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of A are equal to zero, the problem of computing the Moore-Penrose inverse
is decomposed into several similar problems for matrices of lower order.

As regards the matrices of even order, i.e. n = 2m, then, according to
above assumption about the overdiagonal elements, the matrix A is nonsin-
gular and finding its inverse is not a difficult problem. Therefore, we will
focus on the case when the matrix A from (1) is of odd order, i.e. n = 2m+ 1.
Regardles of the values of overdiagonal elements, this matrix is singular. The
computation of the Moore-Penrose inverse A+ is based on a special represen-
tation of the matrix A.

Let us introduce bidiagonal matrix

B =


−a1 a2

−a3 a4
. . .

. . .

−a2m−1 a2m

 (2)

of size m×m+ 1. Next, we define the following matrices:

F = [fij ]m×2m+1 , fij =
{

1, if j = 2i
0, if j , 2i,

i = 1,2, . . . ,m

and

G = [gij ]m+1×2m+1 , gij =
{

1, if j = 2i − 1,
0, if j , 2i − 1,

i = 1,2, . . . ,m+ 1.

Then the matrix A can be written as follows:

A = FTBG − (FTBG)∗.

In this work we show that for the matrix A+ the following representation is
valid:

A+ = GTB+F − (GTB+F)∗.

So, the problem of finding the More-Penrose inverse for matrix A is reduced
to a similar problem for matrix B given in (2). This goal is achieved in the
proposed study.

Let us emphasize two main results of the work. First, we have obtained
closed form expressions for the elements of the Moore-Penrose inverse of
odd order tridiagonal skew-Hermitian matrices. Secondly, on the basis of the
obtained formulas and relations, a numerical algorithm which is optimal in
terms of computational costs was constructed.
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Investigation of communication over a wiretap channel is one of the
problems of information - theoretic security [1]. The goal in designing com-
munication systems in the presence of a wiretapper is to ensure that the mes-
sage remains confidential between the transmitter and the intended receiver
while minimizing the information available to the eavesdropper [2]. The ad-
vantage of information theoretic approach in security settings is the possi-
bility of transmitting confidential messages without using an encryption key,
resulting in lower complexity and savings in resources. The first informa-
tion - theoretic task is to find the capacity of the model. The next task is
the investigation of reliability function or E-capacity (rate-reliability func-
tion) suggested by E. Haroutunian [3]. In the model of wiretap channel the
equivocation rate is added and the first aim is to investigate the capacity-
equivocation region as well as the secrecy capacity, which was obtained in
[4]. The analogy of E-capacity is the E-capacity-equivocation region, which
is the closure of the set of all achievable rate-reliability-equivocation pairs.
E-capacity-equivocation region and E-secrecy-capacity of wiretap channel
are investigated by author in [5], where the outer and inner bounds are con-
structed. These results are, correspondingly, the generalizations of capacity-
equivocation region and secrecy-capacity introduced and studied in [4], since
the latter can be obtained from the corresponding constructed bounds as a
particular case when E tends to 0.

The E-capacity is investigated for various multiterminal and varying
channel models in [6] including compound channel, when the channel de-
pends on parameter, which is invariable during transmission of one code-
word, but can be changed arbitrarily for transmission of the next codeword.
This model can be considered in four cases, when the current state of the
channel is known or unknown at the encoder and at the decoder. The ca-
pacity of this channel was found by Wolfowitz [7], who has shown that the
knowledge of the state at the decoder does not improve the asymptotic char-
acteristics of the channel. So it is enough to study the channel in two cases.
The upper and lower bounds of E-capacity in both cases are introduced in
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[8].
Currently we investigate the compound wiretap channel model, which

is the extension of the wiretap channel, when the channels to the legitimate
receiver and to the wiretapper depends on the number of possible states.
The capacity - equivocation region of the compound wiretap channel is un-
known till now. The outer bounds of the E-capacity-equivocation region in
both cases are constructed by author [9, 10]. Next step is the construction of
inner bounds.
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Let σ1 =
(

0 i

−i 0

)
, σ2 =

(
1 0
0 −1

)
, σ3 =

(
0 1
1 0

)
are well-known Pauli matri-

ces, and

E =
(
1 0
0 1

)
.

It is known that the solution y = ϕ(x,λ,α) of the Cauchy problem
{σ1

1
i
d
dx

+ σ2p(x) + σ3q(x)}y = λy, λ ∈C

y(0) =

 sinα

−cosα

 (1)

can be represented in the form

ϕ0(x,λ,α) =
(

sin(λx+α)
−cos(λx+α)

)
,

and

ϕ(x,λ,α) = ϕ0(x,λ,α) +
∫ x

0
K(x, t)ϕ0(t,λ,α)dt = (E +K)ϕ0.

Operator E + K is called the transformation operator. Under different
conditions on scalar functions p and q, this operator and its kernel K(x, t)
was investigated in different papers (see [1–6]).

Theorem. Let p,q ∈ L1
loc(0,∞). Then the kernel K(x, t) and the kernel H(x, t) of

inverse operator ϕ0(x,λ) = ϕ(x,λ) +
x∫

0
H(x, t)ϕ0(t,λ)dt can be represented in the

form
K(x, t) = aσ1 + bσ2 + cσ3 + d ·E,

H(x, t) = ãσ1 + b̃σ2 + c̃σ3 + d̃ ·E,

where the functions (of two variables (x, t)) a,b,c,d and ã, b̃, c̃, d̃ are represented
by functions p and q.
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It has been known since the 2007 paper by Its and Takhtajan that the or-
thogonal polynomials with respect to an exponentially varying weight in the
plane are characterized in terms of a 2×2 matrix dbar-problem. In the recent
breakthrough by Hedenmalm and Wennman the asymptotics of these planar
orthogonal polynomials was found (Acta Math, 2021). However, the connec-
tion with the 2× 2 dbar-problem was left open for further investigation.

It turns out that there is a nice algorithm to find the asymptotics of the
planar orthogonal polynomials in terms of the dbar-problem, which also has
the benefit of supplying better error terms. This algorithm will be presented
here. The work was published in CPAM 2024.
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The report presents some statements on biorthogonal systems, bases and
interpolation in some of M. M. Djrbashian Hilbert space spaces A2

ω(C) of en-
tire functions with square integrable modulus over the entire complex plane.
One of the systems consists of Mittag-Leffler functions.
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In this paper, we examine set-valued mappings with weakly convex
graphs and provide sufficient conditions for their Lipschitz properties.

The concept of weakly convex sets was introduced by Vial [3], and sub-
sequent studies on their properties were conducted by Ivanov and Balashov
[1, 2].

Definition 1 (see [2]). Let x0,x1 ∈ Rn, ||x0 − x1|| ≤ 2R. The set

DR(x0,x1) =
⋂

a∈Rn:{x0,x1}∈BR(a)

BR(a)

is called a strongly convex segment of radius R and the set

Do
R(x0,x1) =DR(x0,x1) \ {x0,x1}

is called a strongly convex segment of radius R without extreme points.

Definition 2 (see [3]). A subset A of Rn is called weakly convex with constant
R > 0, if for x0,x1 ∈ A such that 0 < ||x0 − x1|| < 2R the set A ∩ Do

R(x0,x1) is
nonempty.

Let a : Rn → 2R
m

be a set-valued mapping. The graph of a defined as
follows

graph(a) = {(x,y) ∈ Rn ×Rm : y ∈ a(x)}.
A set-valued mapping a : Rn → 2R

m
is called Lipschitz continuous if there

exists a real constant L ≥ 0 such that for all x1 and x2 ∈ Rn

H(a(x1), a(x2)) ≤ L||x1 − x2||,

where H(a(x1), a(x2)) is the Hausdorff distance between a(x1) and a(x2).
Let

dom(a) = {x ∈ Rn : a(x) , ∅}.

Theorem. Let a : Rn → 2R
m

be a set-valued mapping with weakly convex (with
constant R) and closed graph. Suppose graph(a) ⊂ BR(x0, y0).

Then it is Lipschitz on a compact set Ω ⊆ intdom(a).
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Quasiunit of an n–ary groupoid A : Sn → S is an n–tuple (a1, . . . , an)
of elements from S such that for any i (1 ≤ i ≤ n) translation Ai(x) =
A(a1, . . . , ai−1,x,ai+1, . . . , an) is a bijection.

This enables us (relative to some fairly mild assumptions) to generalize
results of A. Krapež: On solving a system of balanced functional equations
on quasigroups I–III, Publ. Inst. Math.(Beograd) (N.S.) 23(37) (1978), 25(39)
(1979), 26(40) (1979) and solve any generalized balanced functional equation
on n–ary groupoids with quasiunits. Solutions of such equations are simi-
lar to solutions of equations where we assume that unknown operations are
quasigroups.

Compared to the case with just binary operations, we have a new case
of reducible equations where there is at least one operation expressible as a
term with operations of smaller arities. One of the simplest such cases is the
equation A(x,y,z) = E(x,F(y,z)) which forces reduction of A :

A(x,y,z) = A12(x,A−1
2 A23(y,z)).

After all possible reductions we get an irreducible equation.
In irreducible equations we consider classes of principally isostrophic

(∼) operations. For binary operations this reduces to diisotopies between
them.
∼–classes can be:

• Small (with only 2 operations)

• Big (with > 2 operations)
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• Abelian (big and with operations isotopic to their duals).

In case of n–ary operations (n > 2), only the first case is possible, i.e. all
∼–classes of principal isostrophy between n–ary operations are small.
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MINDFLAYER: EFFICIENT ASYNCHRONOUS PARALLEL SGD IN
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We study the problem of minimizing the expectation of smooth non-
convex functions with the help of several parallel workers whose role is to
compute stochastic gradients. In particular, we focus on the challenging sit-
uation where the worker compute times are arbitrarily heterogeneous and
random. In the simpler regime characterized by arbitrarily heterogeneous
but deterministic compute times, Tyurin and Richtárik [1] recently proposed
the first optimal asynchronous SGD method, called Rennala SGD, in terms of
a novel complexity notion called time complexity. The starting point of our
work is the observation that Rennala SGD can have bad and even arbitrar-
ily bad performance in the presence of random compute times. To advance
our understanding of stochastic optimization in this challenging regime, we
propose a new asynchronous SGD method, for which we coin the name Mind-
Flayer SGD, and perform theoretical time complexity analysis thereof. Our
theory and empirical results demonstrate the superiority of MindFlayer SGD
over existing baselines, including Rennala SGD.
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Let (Q; ·) be a groupoid and a ∈ Q. Denote by La (Ra) the map of Q to Q
such that La(x) = ax (Ra(x) = xa) for all x ∈ Q. They are called left and right
translations of the (Q; ·). In detail we denote L(·),a (R(·),a) for La (Ra).

A groupoid (Q; ·) is said to be a division (cancellation) groupoid if La and
Ra are surjective (injective) for every a ∈Q. If the groupoid (Q; ·) is a division
(cancellation) groupoid then the operation (·) is called division (cancellation)
operation, too. A quasigroup is a cancellation and division groupoid. A loop
is a quasigroup (Q; ·) with the unit e such that ex = xe = x for any x ∈Q.

A binary algebra (Q;Σ) is called division (cancellation) algebra if (Q;A)
is a division (cancellation) groupoid for any operation A ∈ Σ. Division and
cancellation algebra is called invertible algebra.

A groupoid (Q; ·) is called left pre-cancellative if

ca = cb→ Ra = Rb,

where a,b,c ∈ Q. Right pre-cancellative groupoids are defined dually. A
groupoid is called pre-cancellative if it is both left and right pre-cancellative.
If groupoid Q(A) is pre-cancellative then the operation A is also called pre-
cancellative. A binary algebra (Q;Σ) is called pre-cancellative if the groupoid
(Q;A) is pre-cancellative for any operation A ∈ Σ.

Every quasigroup is a pre-cancellative and division algebra.
Any division and pre-cancellative groupoid is called a pre-qusigroup.

A binary algebra (Q;Σ) is called pre-invertible algebra if Q(A) is a pre-
quasigroup for any operation A ∈ Σ.

In this talk we present the classification of hyperidentities of associativ-
ity in algebras with a pre-quasigroup operation.
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The concept of covariogram is extended from bounded convex bodies
in R

d to the entire space R
d by obtaining integral representations for the

distribution and probability density functions of the Euclidean distance be-
tween two d-dimensional Gaussian points that have correlated coordinates
governed by a covariance matrix. When d = 2, a closed-form expression for
the density function is obtained (see [1]). Precise bounds for the moments of
the considered distance are found in terms of the extreme eigenvalues of the
covariance matrix. We have defined the normal covariogram of Rd and estab-
lished an analogous relationship to [2–4], including integral representations
for the distribution and density functions of the Euclidean distance between
two d-dimensional Gaussian points, characterized by correlated coordinates
through a covariance matrix. Precise bounds for the moments of the consid-
ered distance in terms of the extreme eigenvalues of the covariance matrix
are found (see [2]). When d = 2, an expression for the density function in
terms of a modified Bessel function is obtained.

References

[1] D. M. Martirosyan and V. K. Ohanyan, On the Euclidean distanse between
two Gaussian Points and the normal Covariogram of Rd , Journal of Contem-
porary Mathematical Analysis, 59 (1), 54–63, 2024.

[2] H. S. Harutyunyan and V. K. Ohanyan, Chord length distribution function
for regular polygons, Advances in Applied Probability (SGSA), 41 (2), 358–
366, 2009.

1The research is partially supported by the Mathematical Studies Center at Yerevan State
University.

75



International Conference October 13–19, 2024

[3] A. Gasparyan and V. K. Ohanyan, Orientation-dependent distribution of
the length of a random segment and covariogram, Journal of Contemporary
Mathematical Analysis, 50 (2), 90–97, 2015.

[4] N. G. Aharonyan, V. K. Ohanyan, Calculation of geometric probabilities us-
ing Covariogram of convex bodies, Journal of Contemporary Mathematical
Analysis, 53 (2), 112–120, 2018.

76



International Conference October 13–19, 2024

ON DRINFELD MODULAR CURVES FOR SL(2)

Mihran Papikian
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We study Drinfeld modular curves arising from the Hecke congruence
subgroups of SL2(Fq[T ]). Using a combinatorial method of Gekeler and Non-
nengardt, we obtain a genus formula for these curves. In cases when the genus
is one, we compute the Weierstrass equation of the corresponding curve. This
is joint work with Jesse Franklin and Sheng-Yang Kevin Ho.
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ON THE ISSUE OF STUDYING AND ELIMINATING DEADLOCK
SITUATIONS USING PETRI NETS

Goharik R. Petrosyan
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E-mail: petrosyan_gohar@list.ru

The article explores some modeling issues for eliminating deadlock sit-
uations using Petri nets. An illustration of a model of the famous lunching
philosophers problem using Petri nets is given. The Petri net model con-
structed by the author has the property of the idea of priority, which ensures
synchronous regulation of the actions of lunching philosophers, which allows
avoiding possible deadlocks in the system.

1. Introduction. Petri nets are modeling mechanisms that allow you to de-
scribe both the possible states of the system and its possible actions. The Petri
net consists of four elements: P - a set of positions, T - a set of transitions,
I - an input function, O- an output function. Positions describe the state,
and transitions describe the actions taking place in the network. The network
structure is a quartet of elements C = (P ,T .I,O), where P and T are finite sets
of positions and transitions, and the input function I maps the transition to
the set of input positions, I(tj ) and the output function O maps the transi-
tion t to the set of output positions, O(tj ), i.e. the transition can have both
input and output positions, moreover, with repetitions. Let us give a formal
definition of the classical Petri net.

Defenition. A Petri net is a pair M(C,µ), where C = (P ,T .I,O) is the struc-
ture of the net and µ is the state of the net. In the structure, C,P and T are
finite sets of positions and transitions, I : T → p∞, O : T → P∞ are input
and output functions, respectively, where P∞ are all possible (with repeating
elements) sets P ,µ : P → N0 is a state function, where N0 = {0,1, . . . } is the set
of all positive integers. Permissible transitions of the Petri net are determined
in a known way, and the transition of the network from state µ to state µ is
the set of reachable states [1-5].
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2. The Dining Philosophers Problem. On the table is a bowl of rice, five
plates and five chopsticks. If a philosopher is hungry, he enters the dining
room, takes a free seat at the table, takes two (mandatory!) chopsticks and
puts them on a plate (Fig. 1). Having satisfied his hunger, the philosopher
returns the chopsticks to the table and leaves the dining room. In the event
that all five philosophers come to the dining room at the same time, take their
places at the table, take a stick each, the system will be blocked, because. none
of the philosophers will be able to start eating (Fig. It is required to organize
the system in such a way that five philosophers cannot be at the table at the
same time. If this happens, the system will be blocked.

Figure 1: Five Dining Philosophers Problem.

3. Synchronous regulation of the actions of dining philosophers using a
Petri net Let’s build a model for solving this problem using a Petri net. Fig-
ure 2 shows the Petri net, which shows the main actions of one philosopher,
but it should be borne in mind that other philosophers act in the same way,
and when visiting the dining room, they can simultaneously try to take one
and the same stick. Therefore, a mutex is needed, which will organize ac-
cess to the process of selecting sticks in order of priority. Also, each stick is
assigned a mutex, which organizes access to this stick in turn [1].

Figure 2: Solving the problem of dining philosophers using the methodology
of K. Petri.
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From the resulting model (Fig. 3) it can be seen that all actions can occur
sequentially, but following the above condition.

The position Pn and transition Tn ensure that all actions are performed
synchronously while 5 tokens are collected in the position Pn, i.e. until 5 ac-
tions are performed it cannot be performed Tn, and the actions each receive
one initial marking Ti (1 ≤ i ≤ 5).

Figure 3: Synchronous regulation of the actions of dining philosophers using
a Petri net.
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ON CYCLIC INTERVAL COLORINGS OF GRAPHS

Petros A. Petrosyan

Department of Informatics and
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E-mail: petros_petrosyan@ysu.am

A proper edge-coloring of a graph G is a mapping α : E(G) → N such
that α(e) , α(e′) for every pair of adjacent edges e,e′ ∈ E(G). A proper edge-
coloring of a graph G with colors 1,2, . . . , t is called a cyclic interval t-coloring
if for each vertex v of G the edges incident to v are colored by consecutive
colors, under the condition that color 1 is considered as consecutive to color
t. A graph G is called cyclically interval colorable if it has a cyclic interval
t-coloring for some positive integer t. Let Nc be the set of all cyclically in-
terval colorable graphs. For a graph G ∈ Nc, we denote by wc(G) and Wc(G)
the minimum and maximum number of colors in a cyclic interval coloring
of a graph G, respectively. A graph G is convex-round if its vertices can be
circularly enumerated such that the open neighbourhood of every vertex is
an interval in the enumeration. In this talk, we show that if G is a convex-
round graph of order n, then G ∈ Nc and wc(G) ≤ n. In particular, this result
implies that all complete multipartite graphs, circular cliques and circular
doubly convex balanced bipartite graphs are cyclically interval colorable. We
also show that if G is an outerplanar graph with ∆(G) ≥ 3 and G ∈ Nc, then
Wc(G) ≤ |V (G)|+∆(G)−3, where ∆(G) is the maximum degree of G. Moreover,
all these bounds are sharp.
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TOWARDS ADEQUATE MODELS OF ORIGINATION AND
DEVELOPMENT OF COGNIZING

Edward M. Pogossian
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1. Humans cognize allover including themselves.
Interpreting developmental psychology by Piage (Flavell1962), cogniz-
ing is learning and organizing mental systems (mss) to promote human
utilities.

1.1 Piaget successfully tracked development of cognizing from new-
borns to the highest human one, but its origin still challenging the
researchers.

1.2 In our studying we construct models of cognizers, argue their ade-
quacy and provide premises of their origination in nature (Pogos-
sian 2020-24). Let’s outline this findings.

2. The models of generalized cognizers are defined as realities with ener-
gizers and certain utilities that throughout their lifetime regularly and
unlimitedly learn and organize certain constructions, mentals, to pro-
mote their utilities.

2.1. The definition of mentals (generally exempted from cellular and
computer dependency) is incremental and is based on those of do-
ers, sensors, classifiers, relationships, attributes, imprints, identi-
fiers, nominals, doins, systems over nominals and others.

3. In justification of adequacy of cognizers tending to be carried out by
analogy with justification of algorithms as adequate models of com-
putability by Church, we argue that our models

– are completely explainable

– preserve the majority of known statements and algorithms of cog-
nizing including

= inductive learning algorithms, particularly in the Neuron Nets
(NN) mode,

82



International Conference October 13–19, 2024

= Personalized Planning/Integrative Testing algorithms elabo-
rating strategies in target situations dependent on the learned
classifiers, thus, elaborating “if then” relationships - the base
for formation algorithms, say, by A. Markov or E. Post,

= algorithms of acquisition of strategy meanings by experts and
those from the texts (Pogossian 2020, Grigoryan 2021) con-
ceptually close to (Langley, Shrobe, Katz, 2020),

– provide expert like explanations/interpretations of mentals

– can be based on any classifiers, say on NN, thus, consisting func-
tional and connectivity models of cognizing

– successfully approximate expert solutions of security, competition
and dialogue HU∗ caseproblems (Pogossian 2020)

– are supportive to revelation of origination of cognizing.

4. Questioning origination of cognizing (Pogossian 2020-24) should,
first of all, turn to the origination of cognizing of living realities, i.e.,
cellular, and, as a minimum, of the simplest cellular, uncials. By one
of the prevalent hypotheses, abiogenesis, uncials, were originated by
chance from chemical compounds already existed in nature. Unfortu-
nately, despite of ongoing intensive research efforts, abiogenesis holds
more difficulties and hopes than advances Paul Dirac (2007), (Dembski
2007), (Irreducible complexity).

4.1. While studies on abiogenesis continue, new ideas and hypotheses
on the origin of uncials emerge attempting to exempt from the
difficulties of abiogenesis.

By the hypothesis on origin-able cognizing in nature (oacin), arisen
in constructive modeling of cognizing, cellulars were designed by
a type of cognizers of the Universe which

– were earlier originated in nature as elementary recurrent clas-
sifiers, then

– evolving had attained the power of cognizing comparable, at
least, to the highest human one, followed by

– designing cellular, analogous to human design of robots
nowadays.

4.2. Viability of oacin hypothesis is strengthened by assertions that

– constructions, mentals, adequately model mss
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– mss and means of their construction can be composed of ele-
mentary “atoms”, recurrent 1-/2-place classifier

– a type of constructive cognizers, octaves, exempted, generally,
from computer dependencies and capable of enhancing the
power of cognizing throw learning mentals, but so far limited
in that, can adequately model cognitive development of new-
borns by Piaget

– octaves, and assumingly their roots, can be reduced to some
alphabet of uniform units, i.e., inevitable constituents of cog-
nizers

– studying the origination of octaves/roots can be based on
studying the origination of their constituents

– functional definition of constituents of octaves/roots softens
the requirements to their implementations.

5. Upcoming research in the origination and development of cognizers
reduces, particularly, to origination of the dynamicity of doers, energiz-
ers and their ability to develop to octaves and other unavoidable con-
stituents including doers of the types of 1/2 place symbolic and non-
symbolic recurrent classifiers comprising strategy/algorithms case and
rule based nets, compartments and reproducers of cognizers.

5.1. Note that while some of the above questionings are analogous with
ones of abiogenesis, an advantage of oacin is in its functional ques-
tionings, what can essentially extend the variety of solutions.

5.2. Note also that these studies along with enriching applications of
current cognizing models, if successful, will support to shed light
on the fundamental question of the origin of cellular, and thus, of
humans.
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BARYCENTRIC ALGEBRAS AND BARYCENTRIC COORDINATES

Anna B. Romanowska
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Real affine spaces are (abstract) algebras with non-associative binary op-
erations indexed by real numbers. Convex subsets are subalgebras under the
operations indexed by real numbers taken from the open unit interval. The
algebras defining convex sets generate the variety of barycentric algebras. Con-
vex polytopes considered as barycentric algebras are generated by their ver-
tices. In particular, simplices are free barycentric algebras over their vertex
sets. Each element of a simplex is presented as a convex combination of its
vertices, with barycentric coordinates defined in a unique way. Each general
convex polytope is a homomorphic image of a simplex. Hence each of its el-
ements can also be presented by convex combinations, but not necessarily in
any unique way. Thus, the following problem is important in many applica-
tions of polytopes:

Given the set of vertices of a convex polytope, determine algo-
rithms for the barycentric coordinates of each point of the poly-
tope.

There exist several methods of solving the problem for specific convex poly-
topes, leading to different systems of barycentric coordinates.

We introduce the general concept of a coordinate system on a polytope,
and show that the coordinate systems on a polytope themselves form a con-
vex set. We present new coordinate systems that are based on decomposi-
tions of a convex polytope into unions of simplices. For the case of polygons
(2-dimensional polytopes), these systems exhibit interesting combinatorial
properties that relate to the parsing trees of non-associative products and
coproducts.

This is joint work with Jonathan D.H. Smith and Anna Zamojska-
Dzienio.
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We consider the following symmetric matrix of constant coefficients (see,
for example, [1]-[3]) of order 5

A = {aij}, aij = aji , i, j = 1,2,3,4,5.

It is assumed that the matrix elements are equal to a or b. The purpose of
this article is to use the method of eigenvalues to consider and generalize
cases in which the characteristic equation of matrix A will have a fourfold,
threefold or twofold root(s). Obviously, this will make it possible to simulate
such simmetric matrices whose characteristic equation det(A−λE), where E-
is unit matrix 5th order, will have a root(s) of a given multiplicity.

Theorem 1. If one of the conditions

aik = aij = akj = amn

is met in the matrix A, while the remaining elements are equal b , a, then the
characteristic equation has a threefold root

λ1 = λ2 = λ3 = −a, λ4,5 =
3a±
√
a2 + 24b2

2
.

Here and everywhere in what follows it is assumed that the indices
i, j,k,m,n are different.

Theorem 2. If one of the conditions

aij = aik = aim = ain

is met in the matrix A and the remaining elements are equal b , a , then the
characteristic equation has a threefold root:

λ1 = λ2 = λ3 = −b λ4,5 =
3b ±

√
16a2 + 9b2

2
.
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Theorem 3. If one of the conditions

aij = ajk = akm = amn = ani

is satisfied in the matrix A and the remaining elements are equal b , a, then the
characteristic equation has two double roots:

λ1 = λ2 = −a+ b
2

+
1
2

√
5(b − a), λ3 = λ4 =

a+ b
2
− 1

2

√
5(b − a).

Theorem 4. If one of the conditions

aij = ajk = akm = ami ,

is satisfied in the matrix A and the remaining elements are equal b , a, then the
characteristic equation has exactly one double root:

λ1 = λ2 = −b.

Theorem 5. If one of the conditions

aik = akm = ami = a

is satisfied in the matrix A and th the remaining elements in the matrix are equal
b , a , then the characteristic equation has one double root

λ1 = λ2 = −a
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SUMMATION FORMULAE FOR SERIES OVER THE ZEROS OF THE
ASSOCIATED
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The solutions of the wave equation in background of a constant negative
curvature space are expressed in terms of the associated Legendre functions.
In problems with spherical boundary the eigenmodes of the radial quantum
number inside the sphere are expressed in terms of the zeros of the associ-
ated Legendre function of the first kind with respect to the degree. By using
the generalized Abel-Plana formula we present a summation formula for se-
ries over those zeros. The formula is applied for the evaluation of the Wight-
man function for a scalar field obeying the Robin boundary condition on the
sphere. That allows to explicitly separate the Wightman function in the ge-
ometry without the sphere and to present the sphere induced contribution
in terms of strongly convergent integral. In this way the renormalization of
the expectation values of physical observables is reduced to the one in the
boundary-free geometry.
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UNORTHODOX ALGEBRAS AND UNORTHODOX LOGICS
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• Let me start with the question: What is F→ T =? (or, 0→ 1 =?)

• Of course, the usual answer is: F→ T = T . Or, 0→ 1 = 1.

• Question: Can it be different from 1?

• Let us look at a very simple algebra:

→ 0 1
2: 0 1 0

1 0 1

• Observe: 0→ 1 = 0. So, we will call it an “anti-classical” algebra. YET,

• It has an interesting logic.

• The logic corresponding to the variety V (2) is a connexive logic: Aris-
totle’s Theses: ⊢ ¬(¬α→ α), and ⊢ ¬(α→¬α); Boethius Theses: ⊢ (α→
β)→¬(α→¬β) and (α→¬β)→¬(α→ β).

• V (2̄) and V (2)(= BA) are term-equivalent!

• Hence, the classical logic is also a “connexive logic”.

• Now, in view of these observations, the following question arises:

• Question: Are there “interesting” logics in which 0 → 1 is different
from both 0 and 1?

• The rest of my talk will address this question.

• So, let us look at the following FIVE algebras in the language:
L = ⟨∨,∧,→, ′ ,0,1⟩.
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C∗ AND CLIFFORD ALGEBRAS IN THE SOLID STATE PHYSICS
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After the discovery of quantum Hall effect and its topological explana-
tion the mathematical methods based on the theory of C∗-algebras and their
K-theory enter firmly into the arsenal of solid state physics.

A key role in the theory of solid states is played by their symmetry
groups. It was Kitaev who has pointed out the relation between the sym-
metries of solid bodies and Clifford algebras.

In our talk we pay main attention to the class of solid bodies called the
topological insulators. They are characterized by having a broad energy gap
stable under small deformations. The algebras of observables of such solid
bodies belong to the class of graded C∗-algebras for which there is a variant of
K-theory proposed by Van Daele. It makes possible to define the topological
invariants of insulators in K-theory terms.
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We present an overview of our recent results related to the lattice char-
acterization of groups. We use the weak congruence lattice of a group G

Wcon(G), which is a lattice extension of the subgroup lattice Sub(G): it con-
sists of all normal subgroups of all subgroups of G, represented by the cor-
responding congruences on subgroups. For all these relations the domain is
the whole group G. In this lattice, the normality relation among subgroups
has an equivalent lattice description. Further, the weak congruence lattice
of every subgroup is the principal ideal generated by the square of the sub-
group and the weak congruence lattice of the quotient subgroup G/H is the
principal filter generated by H2. Using these and other similar features of
the lattice Wcon(G), we were able to characterize numerous known classes of
groups by lattice properties. Namely, we give necessary and sufficient condi-
tions which should be fulfilled by the weak congruence lattice, under which
a group is Dedekind, Hamiltonian, abelian, solvable, metabelian, perfect, su-
persolvable, nilpotent and others. In addition, we describe algebraic proper-
ties of several new classes of groups characterized by properties of their weak
congruence lattices.

This is a joint research with A. Tepavčević, J. Jovanović and M. Grulović.
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ON DIFFERENTIAL ALGEBRAS WITH COMPOSITION
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The composition of functions often plays an important role in many do-
mains of classical analysis.1 However, its algebraic modeling lags behind the
other analytic constructions like differentiation or considering the (normed)
algebras of functions on the compacts. The present talk suggests some con-
cepts that hopefully provide a basis for the corresponding algebraization; it
develops the material of [2] with the emphasis of application.

For the time being even the appropriate notations are not yet developed.
E.g., the discrete dynamics studies the behavior of the trajectories

x 7→ f (x) 7→ f
(
f (x)

)
7→ f

(
f
(
f (x)

))
7→ . . . ,

where x ∈ X is an element of the phase space X, which is a set with some struc-
tures and f : X → X is an endomorphism respecting these structures. The
notational issue concerns the mapping f ◦ · · · ◦ f︸    ︷︷    ︸

n

for which I strongly suggest

f n◦. In the current literature (see, e.g. [1]) the notation f n is mostly used in-
stead. It is disastrous: in the (highly non-trivial) case of 1-parametric family
of functions f : R −→ R : x 7→ x2 + c with c ∈ R the expression f 2 can mean
either f · f = x4 + 2cx2 + c2 or f ◦ f = (x2 + c)2 + c = x4 + 2cx2 + c2 + c. In our
approach we distinguish strictly the algebraic and the compositional powers
and, more generally, operations.

We axiomatize the three binary and one unary operations carried by uni-
variate polynomial rings.

Definition. Let k be a field. A k-algebra A is called a differential k-algebra
with composition if it is endowed with a k-differentiation a 7→ a′ and with such
an additional binary operation ◦ (called composition) that for all a,b,c ∈A

1We don’t consider the category theory where the composition of morphisms belongs to
the most basic structures.
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1. (a ◦ b)′ = (a′ ◦ b)b′;

2. (a+ b) ◦ c = a ◦ c+ b ◦ c;

3. (ab) ◦ c = (a ◦ c)(b ◦ c).

It is also natural to assume the existence of the bilateral compositional
unit, i.e. such an element z ∈A that z ◦ a = a ◦ z = a for every a ∈ A.

Besides the polynomial algebras k[z] the algebra of entire functions O[C]
satisfies the above axioms.

Some applications to the polynomial dynamics will be demonstrated. In
particular, for the polynomial f = z2 + c ∈ k(c)[z] the polynomial

f 2n◦ − z
f 2n−1◦ − z

of degree 22n − 22n−1
, defining the 2n-cycles of the mapping z → z2 + c, will

be considered. One of the particular result, concerning the 4-cycles, is the
following one:

Theorem. The equation in z((
(z2 + c)2 + c

)2
+ c

)2
+ c − z

(z2 + c)2 + c − z
≡ z12 + 6cz10 + · · ·+ 2c2 + 1 = 0

is solvable over k(c) in radicals.

However, the polynomial formalism turns out to be insufficient for the

other classical problems. E.g., the Schwarzian derivative f 7→ f ′′′

f ′ −
3
2

(
f ′′

f ′

)2
be-

haves nicely with respect to composition, but this behavior can not be for-
mulated straightforwardly in the above terms. The needed categorical, sheaf-
theoretic and universal-algebraic approaches to the extensions of the concept
of differential algebras with composition will be discussed.
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We study the homogenization of a nonlinear problem given by the Pois-
son equation, in a domain with arbitrarily shaped perforations (or particles)
and with a dynamic unilateral boundary condition (of Signorini type), with
a large coefficient, on the boundary of these perforations (or particles). The
problem arises, for instance, in the study of chemical reactions of zero order.
The consideration of a possible asymmetry in the perforations (or particles) is
fundamental in order to consider some applications in nanotechnology were
symmetry conditions are too restrictive. As a matter of facts, it is important
also the consideration of perforations (or particles) constituted by small dif-
ferent parts and then with several connected components.We are specially
concerned with the so called critical case in which the relation between the
coefficient in the boundary condition, the period of the basic structure, and
the size of the holes (or particles) leads to the appearance of an unexpected
new term in the effective homogenized equation. Due to the dynamic nature
of the boundary condition this “strange term” becomes now a non-local in
time and non-linear operator. We prove the convergence theorem and find
several properties of the “strange operator” showing that there is a kind of
regularization through the homogenization process.
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A major step forward in the development of Hopf algebra theory is its
extension to the genuine non(co)associative case, beyond mere relaxation of
the strictness of the monoidal category in which a Hopf algebra lives. The
prototype is the extension of group theory to quasigroups. From the alge-
braic point of view, the combinatorial nature of quasigroup cancellation (in
the finite case, a Latin square multiplication table) is not well behaved. For
good behavior, quasigroups Skolemize to equational quasigroups, where the
existence and uniqueness requirements of cancellativity are encoded in uni-
versally quantified identities satisfied by right and left division operations
that augment the multiplication in the algebraic structure.

Initial attempts to incorporate genuine nonassociativity in Hopf alge-
bras were made by the Hopf quasigroups of Majid et al. [3, 4], and by the
Hopf algebras with triality of Benkhart et al. [1, 2, 5]. These structures lack
the self-duality that is an essential feature of Hopf algebras. Around a decade
ago, quantum quasigroups emerged as the truly self-dual non(co)associative
extension of Hopf algebras [6]. So far, they have been defined merely as
bimagmas (Q,∇,∆), equipped with mutually homomorphic multiplication
∇ : Q ⊗Q → Q and comultiplication ∆ : Q → Q ⊗Q, satisfying invertibility
of the left composite morphism

G : Q⊗Q
∆⊗1Q // Q⊗Q⊗Q

1Q⊗∇ // Q⊗Q

and right composite morphism

⅁ : Q⊗Q
1Q⊗∆ // Q⊗Q⊗Q

∇⊗1Q // Q⊗Q

in the underlying monoidal category. Now, equational quantum quasigroups
introduce auxiliary quantum quasigroups that offer explicit inverses for the
composites. They come in three flavors: quantum S-, T-, and U-quasigroups
Figure 1. All Hopf algebras are quantum S-quasigroups. If a Hopf algebra
forms a quantum T-quasigroup, then it has certain grouplike properties that
are not yet fully understood.
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Q⊗Q τ //

blackjack

Q⊗Q

⅁1
��

Q⊗Q

G2

OO

Q⊗Qτ
oo

quantum

U-quasigroup

(Q,∇i ,∆i)0,i∈Z/3

quantum T-quasigroup (Q,∇i ,∆i)i∈Z/3

quantum S-quasigroup (Q,∇i ,∆i)i∈Z/3

Q⊗Q τ //

deuce

Q⊗Q

⅁2
��

Q⊗Q τ //

tenner

Q⊗Q

⅁0
��

Q⊗Q

G0

OO

Q⊗Qτ
oo Q⊗Q

G1

OO

Q⊗Qτ
oo

Figure 1: The equational quantum quasigroup definitions require commut-
ing of the indicated named diagrams on a pair (Q,∇i ,∆i)0,i∈Z/3 or triple
(Q,∇i ,∆i)i∈Z/3 of bimagmas in a symmetric monoidal category (V,⊗,1) with
swap τ .
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We consider the class of quadratic functional equations over a quasigroup
environment (briefly, qen), i.e. over any set Φ = Φ0 ∪Φ1 ∪Φ2 of functions de-
fined on the same carrier set, where Φ0 is a set of nullary operations, Φ1 a
group of bijections, Φ2 is a set of binary quasigroup operations and the set
Φ is closed under compositions of binary and unary or nullary operations as
well as unary and nullary operations from Φ . A term is called repetition-free,
if each individual variable appears at most once.

An equation is called: balanced, if both sides of the equation are
repetition-free and they have the same set of individual variables; quadratic,
if each individual variable appears twice or never; cancellable, if it has a sub-
term containing all appearances of an individual variable and none appear-
ances of another; parastrophically cancellable, if it is parastrophically equiva-
lent to a cancellable functional equation; reducible over a qen, if it is equivalent
to a system of functional equations over the qen every of which has less num-
ber of different individual variables than the given one. Other definitions and
results one can find in [1–3].

Theorem 1. Each cancellable quadratic functional equations over a quasigroup
environment is reducible over this environment.

Theorem 2. Each functional equation of mediality is parastrophically noncance-
lable, but reducible.

Theorem 3. Consider a quadratic functional equations in n individual variables
over a quasigroup environment Φ . When n > 4, then the equation is parastrophi-
cally cancellable; when n ⩽ 4, then it is parastrophically cancellable or parastroph-
ically equivalent to: unipotency if n = 1; commutativity if n = 2; associativity if
n = 3; mediality if n = 4. The functional equations of unipotency, commutativity,
associativity and mediality are parastrophically noncancellable.
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Corollary 1. Any quadratic functional equations in the variety of all unipotent
loops defines the variety of all unipotent loops, or the variety of all commutative
unipotent loops, or the variety of all groups of the exponent two.

Corollary 2. Any quadratic functional equation on a qen is equivalent to a system
of identities of commutativity, mediality and associativity on this qen.

A quadratic identity is called gemini, if it is true in any Steiner loop.

Corollary 3. Any quadratic quasigroup identity is gemini or equivalent to asso-
ciativity in the variety of Steiner loops.
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The first steps in this topic were made by Fedir Sokhatsky and his stu-
dent Diana Kirku. In this work, we improve and explore more deeply the
prolongations of Latin cubes. In particular, the cubes are given in the coordi-
nate system Oxyz. We mark each cell (x,y,z,u), where (x,y,z) are coordinates
of the cell, u is the element located in this cell. It will be also called the fourth
coordinate of the cell. So, the Latin cube is denoted by

C := {(x,y,z,u) | 0 ⩽ x,y,z,u < m}. (1)

The row plane, column plane, and string plane of the cube defined by an
element a is denoted by the equations x = a, y = a, z = a respectively. And the
row L1,a,b, column L2,a,b and string L3,a,b is denoted by a pair of the planes,
i.e., by their intersection:

y = a,z = b; x = a,z = b; x = a,y = b.

If any cell of a set T ⊂ C uniquely defined by: 1) an arbitrary pair of its
coordinates, then T is called a two-dimensional transversal; 2) an arbitrary
coordinate, then T is called the one-dimensional transversal of this Latin cube.
The two-dimensional transversal of a Latin cube is a Latin square, and its
arbitrary transversal is the one-dimensional transversal of the cube.

An algorithm for prolongations of Latin cubes. The goal of this algorithm
is to construct a Latin cube by adding one new element to a given Latin cube.

Let (1) be a Latin cube of order m, in which there is a two-dimensional
transversal τ and a one-dimensional transversal θ ⊂ τ .

Step 1. We add three new planes with empty cells to C, namely x = m,
y =m, z =m.
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Step 2. We transfer all elements from the cells of the two-dimensional
transversal τ , except for the cells of the one-dimensional transversal θ, to
the added planes. Namely, let (a,b,c,d) ∈ τ \ θ. We move d into three cells
(m,b,c), (a,m,c) and (a,b,m). As a result, we get cells (m,b,c,d), (a,m,c,d) and
(a,b,m,d), respectively, in the planes x = m, y = m, z = m. The cell (a,b,c)
becomes empty.

Step 3. We copy the element d from each cell (a,b,c,d) of the one-
dimensional transversal θ to the row y = z =m, column x = z =m, and string
x = y = m. As a result, we get the cells (a,m,m,d), (m,b,m,d) and (m,m,c,d).
The cell (a,b,c,d) is not empty.

Step 4. We put a new element m in the empty cells.
Step 5. The prolongation is completed.

Example. Let’s prolongate the Latin cube of order 5 to the Latin cube of
the order 6 (Fig. 1, the full Latin cube of the order 5 is given by f (x,y,z) =
4x+ 2y + 2z (mod 5)).

In this figure two-dimensional transversal τ (the light blue circles) and
the one-dimensional transversal θ (the blue circles) are selected in it. The
new element is 5.

Step 1. Add new planes x = 5, y = 5, z = 5 to C.
Step 2. Let’s transfer the elements of the two-dimensional transversal,

except for the cells of the one-dimensional transversal ((a,b,c,d) ∈ τ \ θ), to
the added planes in the cells (5,b, c), (a,5, c) and (a,b,5). As a result, we will
get the cells (5,b, c,d), (a,5, c,d) and (a,b,5,d), respectively, in the planes x = 5,
y = 5, z = 5. The cell (a,b,c) becomes empty.

Step 3. We copy the fourth coordinates from the cells of the one-
dimensional transversal

(2,0,2,3), (0,1,0,4), (3,2,3,0), (1,3,1,1), (4,4,4,2)

into the cells with coordinates (a,5,5), (5, a,5) and (5,5, a), where a ∈Z5. As a
result, we get

row y=z=5: (0,5,5,4) (1,5,5,1) (2,5,5,3) (3,5,5,0) (4,5,5,2)
column x=z=5: (5,0,5,3) (5,1,5,4) (5,2,5,0) (5,3,5,1) (5,4,5,2)
string x=y=5: (5,5,0,4) (5,5,1,1) (5,5,2,3) (5,5,3,0) (5,5,4,2)

Step 4. We put the new element 5 into the empty cells (the yellow circles).
Step 5. The prolongation is completed: in the second figure, a cube of the

order 6 was formed.
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The problem of electromagnetic wave propagation in a one-dimensional
isotropic medium with an arbitrary or random distribution of the refrac-
tive index has practical applications in many fields. It can be solved using
many methods, such as transfer matrix and scattering matrix methods [1],
Green’s function method [3], invariant embedding method [4], phase func-
tion method [5], and others [6–11]. Probably the most popular method is
the Transfer Matrix Method with its variations. The mathematical basis of
the method is the linearity of the electromagnetic field equations, which al-
lows the linear matrix algebra apparatus to be applied within the framework
of this method [12]. Each of these methods has its advantages and disad-
vantages. The choice of one or another method is usually determined by the
problem formulation, namely, which aspect of the problem is of the greatest
interest, the computational complexity, and the possibility of obtaining ana-
lytical expressions. A new method for determining the reflection and trans-
mission amplitudes of an arbitrarily polarized plane wave, incident on the 1D
inhomogeneous layer with an arbitrary dependence of dielectric permittivity
ε(z) and magnetic permeability µ(z) was suggested in paper [13] and then
generalized in [14, 15]. This method is based on the transfer matrix method
and reduces this problem to the Cauchy problem for a system of two first-
order linear differential equations with given initial conditions. According to

this method, the amplitudes of transmission tp,s = E
p,s
t

E
p,s
i

and reflection rp,s = E
p,s
r

E
p,s
i

of p- and s- polarized waves are expressed in terms of real functions Fs,pk (z)
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and Qs,pk (z) by means of formulas [15]

ts,p =
2exp(−ikL)

Q
s,p
k (L) +Fs,pk (L)

, rs,p =
Q
s,p
−k (L)−Fs,p−k (L)

Q
s,p
k (L) +Fs,pk (L)

,

and these functions are solutions to the following differential equations:

dF
s,p
k

dz
= −iAs,pQs,pk ,

dQ
s,p
k

dz
= −iBs,pFs,pk , (1)

with boundary conditions Fs,pk
∣∣∣
z=0

= 1, Qs,pk
∣∣∣
z=0

= 1.

Here E
p
i,r,t and Esi,r,t are the p- and s- components of ampli-

tudes for the incident, reflected and transmitted waves, correspondingly,

k =
(
ω
c

)√
ε(z)µ(z) cosβ(z), As = ω

c

√
εs
µs

1
µ(z)cosα (µ(z)ε(z) − µsεs sin2α), Bs =

ω
c µ(z)

√
µs
εs

cosα, Ap = ω
c ε(z)

√
εs
µs

cosα, Bp = ω
c

√
µs
εs

(µ(z)ε(z) − µsεs sin2α), α is

the angle of incidence, β(z) is the angle of refraction, which is related to the
initial angle of incidence α via the Snell’s law

√
ε(z)µ(z) sinβ(z) =

√
εsµs sinα,

and ε(z) and µ(z) are the dielectric permittivity and magnetic permeabilities
of the inhomogeneous medium, and εs and µs are the dielectric and magnetic
permeabilities of the medium bordering on both sides of the inhomogeneous
medium layer, k0z = ω

c
√
εsµs cosα, ω = 2πν, ν is the frequency of the inci-

dent light, c is the speed of light in vacuum, L is the inhomogeneous layer
thickness.

The total field inside 1D inhomogeneous layer Es,p(z) are determined by
equation [15]

Es,p(z) =
k0

kL

[
F
s,p
−k (z) +Rs,p(L)Fs,pk (z)

]
E
s,p
i .

Here and above, the indices k and −k denote the functions computed before
and after the inversion, As,p→−As,p and Bs,p→−Bs,p in system (1).

Finally, coefficients of reflection and transmission and light intensity in-
side the layer are determined by the expressions: T s,p = [ts,p]2, Rs,p = [rs,p]2,
I
s,p
in (z) = |Es,p(z)|2.

As an illustrative example of applying our proposed method, let us con-
sider the problem of scattering of a plane wave incident at an angle α on a
photonic crystal (PC) layer with an aperiodic dependence of dielectric per-
mittivity ε(z) = ε0 + a(z)cos

(
2π
Λ
z
)
, namely with layer with a modulation am-

plitude gradient (apodized grating), here ε0 is the constant value, and a and
Λ are the depth and the period of modulation, correspondingly. It is assumed
that the layer is sandwiched between two media with permittivities εs. Fig. 1
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Figure 1: The spectra of the reflection R at different laws of apodization. The
parameters are: ε0 = 2.25, Λ = 400nm, PC layer thickness, d = 16µm, amin =
0.3, amax = 0.8, and a(z) = const = 0.5 for the case of absence of anodization
(dashed line).

shows the spectra of the reflection R at different laws of apodization and also
at absence of apodization, that is at a(z) = const. We consider two types of
apodized PCs, namely, the first type with a(z) = amax−amin

d z+amin (curve 1) and
the second type a(z) = amin−amax

d z + amax (curve 2). In the first case, along the
direction of light propagation, the modulation depth increases linearly from
the value of amax at the input surface to the value of amin at the output sur-
face, and in the second case, it decreases linearly from the value of amax at
the input surface to the value of amin at the output surface.
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The majority of researchers investigating one-dimensional photonic
crystals (1D PCs) and sensors based on them consider structures with a single
defect layer (DL) in the center of them due to the simplicity of their analy-
sis. However, it seems to us that structures with several DLs have a number
of potential advantages and their investigation is very promising. The pres-
ence of several defect modes (DMs) in the spectrum allows extending the
application possibilities of such PCs. One of the obvious applications of such
structures is their promising potential as optical filters, due to the possibility
of manipulation of two or more DMs independently by varying the num-
ber and thickness of DLs in the PC structure [1, 2]. Other researchers have
noted the following perspectives of application of 1D PCs with two DLs in
the structure. In [3,4], the advantages of 1D PCs with two DLs for fabrication
of ultrafast all-optical switching devices and for broadband energy localiza-
tion under the action of elastic waves were shown. Finally, researches [5, 6]
demonstrated the promising potential of one-dimensional dual-defect PCs
for the development of temperature sensors and sensors for biomedical ap-
plications. These works also highlight the importance of the investigation of
structures with two DLs.

One of the interesting features of PCs with two DLs is the merging of two
DMs on the reflection spectrum at certain structure parameters. Some cases
of DM merging have been considered in certain works [4, 7, 8], but there has
been no comprehensive investigation of this topic and only the case of mode
merging at a perfectly reflecting central mirror of the PC has been consid-
ered. The investigation of the conditions under which these modes merge, as
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well as the analysis of the various types of merging, is of great significance,
because merged modes may demonstrate unusual properties, for example,
their sensitivity as optical sensors may be higher than that in similar struc-
tures with a single DL. Therefore, for the first time, we have obtained ana-
lytical expressions for determination of the wavelength of DMs in 1D PCs
with two DLs from the condition of zero reflection. Analytical formulas on
the conditions for the merging of two DMs and on the DMs with zero value of
the reflection coefficient have been obtained. We also have considered differ-
ent types of DMs merging (intersection, touching and broadband merging)
and analytically derived the conditions for each of them.

We have obtained following analytical expression for the changes of
phase of the wave at a single passage through each of the DLs (ϕ1

and ϕ2) in 1D PCs with two DLs from the condition of zero reflection:(
e2iϕ1 − r̃∗I

rII
|rII |2

)(
e2iϕ2 − r̃∗II

rIII

)
+ r̃∗I
rII

r̃∗II
rIII

(
1− |rII |2

)
= 0, where r and t are the re-

flection and transmission coefficients of the each cavities in the structure,
r̃∗I = −rI t∗I /tI , r̃

∗
II = −rII t∗II /tII . From this equation on defect phases, we have

expressed the solution for the sum of phases ϕm = ϕ1 +ϕ2 through the phase
difference ∆ϕ = ϕ1 −ϕ2:

ϕm1,2
= −i · ln

[
1
2

(
r̃∗II
rIII

ei∆ϕ +
r̃∗I
rII
e−i∆ϕ |rII |2±√(

r̃∗II
rIII

ei∆ϕ +
r̃∗I
rII
e−i∆ϕ |rII |2

)2

−
4r̃∗I r̃

∗
II

rII rIII


+ 2πq1, (1)

where q1 ∈Z.
From this equation we have obtained a condition on the touching of the

phase curves at which DMs merge on the reflection spectrum:

∆ϕ =
1
2

(ρ̃II − ρII + ρIII − ρ̃I ) +
1
2
i · ln

2− |rII |2 ± 2
√

1− |rII |2
|rII |2 · |rIII | · |rI |

+πq2, (2)

where q2 ∈ Z, ρ = Arg(r) is the phase of reflection coefficients: r = |r |eiρ. We
can obtain the condition on the wide-band merging of DMs:

ξ >
2− |rII |2 − 2

√
1− |rII |2

|rII |2|rIII | |rI |
Re[∆ϕ] =

2π
λ

(nd1dd1 −nd2dd2)
. (3)

This system of equations must be satisfied over the whole wavelength
range in which broadband merging is to be obtained. The analytical equa-
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tions (2) and (3) obtained in this study permit the calculation of the param-
eters of the PC at which DMs merge at the given wavelength or within the
specified range of wavelengths.

Figure 1 shows examples of different types of DMs merging on the reflec-
tion spectrum. The parameters for the structures are found from the solution
of Eq. (2) and (3). This figure shows three types of DMs merging: touching
(a), intersection (b) and broadband merging (c).

Figure 1: Spectra of Re[ϕm] (red), Im[ϕm] (blue), ξ (green) and reflection spec-
trum |R|2 (black) for structure (AB|D1|AB|D2|BA) (a), (BA|D1|AB|D2|BA) (b)
and AB|D1B|AB|D2|BA (c). The parameters of the structures are N1 =N3 = 9,
N2 = 14, n1 = 1.8, n2 = 2.0, d1 = 210.5nm, d2 = 189.5nm, dd1 = 248.6nm,
dd2 = 0, nd1 = nd2 = 1.52 (a); N1 = 2, N2 = 6, N3 = 4, n1 = 1.5, n2 = 2.4,
d1 = 123nm, d2 = 77nm, dd1 = 0, dd2 = 277.6nm, nd1 = nd2 = 1.33 (b);
N1 = N3 = 6, N2 = 10, n1 = 1.34, n2 = 1.52, d1 = 265.5nm, d2 = 234.5nm,
dd1 = 536nm, dd2 = 536nm, nd1 = nd2 = 1.33 (c). The normal incidence of
light on the PC was considered.
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CURVILINEAR WEB W (4,3,1)
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Let a curvilinear 4-webW (4,3,1) be defined on a differentiable manifold
M3. Its structural equations have the form

dωi =ωi∧ω+3ai[1ω2∧ω3], dω = 3b[1ω2∧ω3], ∇aij = aij kω
k (i = 1,2,3),

where the fundamental tensors of the web satisfy the relations [1]:

aij = aji , aij k = aji k , bi = aij j .

The symmetric tensor aij defines an invariant cone ψ = aijξiξj of the second
order in the tangent space Tx(M3) of the manifold M3, where ξi are the tan-
gential coordinates of the two-dimensional subspace P 2

x of the space Tx(M3),
and the equation ψ = 0 defines a curve Q of the second order in tangential
coordinates ([P 2

x is the projectivization of the space Tx(M3)).
Let an equiangular metric be defined on the manifold M3 carrying the

web W (4,3,1) [2, pp. 52–54], with metric tensor

(gij ) =


3 − 1 − 1
−1 3 − 1
−1 − 1 3

 .
A non-degenerate differential quadratic form ϕ = 3

3∑
i=1

(ωi)
2 − 2

∑
i<j
ωiωj de-

fines a conformal structure on the manifold M3 [3].
On a manifold M3 carrying the web W (4,3,1), we consider two-

dimensional distributions ∆2
α (α = 0,1,2,3) which are orthogonal to the web

lines λα(x) with respect to the above-mentioned equiangular metric. If the
distributions ∆2

α are integrable, then they define on M3 a 4-web W (4,3,2)
of codimension 1, formed by four families of two-dimensional surfaces. This
web will be called orthogonal to the original web. It will be a nonholonomic
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associated web [4] of the curvilinear web W (4,3,1). The following statement
and theorems are true:

Statement. Two-dimensional distributions are completely integrable if and only if
the following relations are satisfied: a11 = a12+a31, a22 = a23+a12, a33 = a31+a23,
a12 + a23 + a31 = 0.

Theorem 1. The orthogonal web W (4,3,2) is octahedral if and only if the associ-
ated curved web W (4,3,1) is parallelizable.

Theorem 2. For the orthogonal webW (4,3,2) to be hexagonal, it is necessary and
sufficient that the affine connection γ induced by the associated curvilinear web
W (4,3,1) have absolute parallelism.

References

[1] V. K. Voskanyan, 4-webs of curves on a three-dimensional manifold, MISiS.
Dep. in VINITI 3.01.86, No. 100-B86, M., –28, 1986.

[2] V. K. Voskanyan, Curvilinear (n + 1)-webs on n-dimensional manifolds:
monograph, Moscow, Moscow University Press, –132, 2024.

[3] V. K. Voskanyan, On a conformal structure attached to a curvilinear (n+1)-
web, Problems of the theory of webs and quasigroups. Kalinin, 33–38,
1985.

[4] M. I. Kabanova, A. M. Shelekhov, Nonholonomic (n + 1)-webs, Izvestiya
Vuzov. Matem., (12), 27–36, 2014.

114



International Conference October 13–19, 2024
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The number of internal stability (independence) of a graph is one of its
main characteristics. Therefore, knowledge of its value is of certain interest.
In addition, it is used in solving other problems, for example, when consid-
ering the problem of correctly coloring the vertices of a graph. Let G be a
graph. A set of vertices V in G is called internally stable if no two vertices
in V are adjacent. The internal stability number of a graph G is the quantity
α(G) = max |V |, where the maximum is taken over all internal stable sets V ,
and |V |means the cardinality of the set V .

Let G(n) denote the set of all undirected graphs with n vertices num-
bered 1,2, . . . ,n, and let E be an arbitrary property of graphs. Let G(n,E) de-
note the subset of all graphs from G(n) that have the property E. Almost all
graphs are said to have property E if lim

n→∞
|G(n,E)|
|G(n)| = 1. In this note we find the

value of the internal stability number for almost all graphs of the set G(n).
The following theorem is true:

Theorem. For almost all graphs in G(n), the internal stability number α(G) is
either [2(log2n− log2 log2n)] or [2(log2n− log2 log2n)] + 1.
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