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Abstracts of Lectures and
Reports

Тези лекцiй i доповiдей

ON THE COMPLETENESS FOR THE SYSTEMS OF
DIFFERENTIAL EQUATIONS

A.V. Agibalova

Donetsk National University, Donetsk, University Street 24, Ukraine
E-mail address: agannette@rambler.ru

Consider in L2([0, 1];Cn) := L2[0, 1] ⊗ Cn the first-order systems of
ordinary differential equations

(1)
1
i
B

dy

dx
+ Q(x)y = λy, y = col(y1, ..., yn)

with the nondegenerate diagonal n× n matrix

B = diag(b−1
1 In1 , . . . , b

−1
r Inr ), n = n1 + . . . + nr,

where bj 6= bk for j 6= k, Q(·) the summable potential matrix, i. e.
Q(·) ∈ L1([0, 1];Cn), Q = (Qjk)r

j,k=1 is its block-matrix representation
with respect to the orthogonal decomposition Cn = Cn1 ⊕ . . .⊕ Cnr .

Systems (1) are of significant interest in some theoretical and practical
questions. For example, if n = 2m, r = 2, B = diag(Im,−Im) and
Q11 = Q22 = 0, then the system (1) is equivalent to the Dirac system
(see [3]). For r = n and bj = e2πij/n, an nth-order differential equation
is reduced to the system (1).



4 Algebra, Topology, and Analysis — VII (2010)

We consider the 2× 2 Dirac type system

(2) −iBy′ + Q(x)y = λy, y = col(y1, y2), x ∈ [0, 1],

where

(3) B =
(

1 0
0 a−1

)
, a ∈ C\R, and

Q =
(

0 Q12

Q21 0

)
, Q12(x), Q21(x) ∈ L1[0, 1].

To the system (2) we attach boundary conditions of the form

(4) U1(y) := y1(0) = 0,
U2(y) := a22y2(0) + a23y1(1) + a24y2(1) = 0.

The following theorem complement some results from [2].

. Let Q21(·) ∈ C[0, 1]. If a22a23a24 6= 0 and Q21(1) 6= 0, then the system
of root vectors of the problem (2)–(4) is complete in L2

(
[0, 1];C2

)
.

The talk is based on joint work with M. M. Malamud and L. L. Ori-
doroga.

[1] M. M. Malamud, On the completeness of the system of root vectors of Sturm-
Liouville operator subject to general boundary conditions, Func. Analysis and its
Appl. 42(3) (2008), 45–52

[2] M. M. Malamud, L. L. Oridoroga, Completeness theorems for systems of differ-
ential equations, Func. Analysis and its Appl. 34(4) (2000), 88–90

[3] V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Kyiv,
Naukova Dumka, 1977

AN ELEMENT OF STABLE RANGE 1 AND A RING OF
AN ALMOST STABLE RANGE 1

S. I. Bilavska
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Department of Algebra and Logic, Ivan Franko National University of Lviv, Uni-
versytetska street 1, 79000, Ukraine

E-mail address: zosia meliss@yahoo.co.uk

Let R is a commutative ring with 1 6= 0.

Definition 1. Note, that a row (a1, a2, . . . an) ∈ Rn is an unimodular,
if a1R + a2R + . . . + anR = R, that is, exist u1, u2, . . . un ∈ R such that
a1u1 + a2u2 + . . . + anun = 1.

Definition 2. The smallest positive natural n called a stable rank n of
a ring R if performed: for any unimodular row (a1, . . . an, an+1) length
n+1 exist an elements b1, b2, . . . bn ∈ R such that a row (a1+an+1b1, a2+
an+1b2, . . . an + an+1bn) is a unimodular. We denote it by st.r(R) = n.
[1− 2]

Let consider it more detail: if n = 1, then for a unimodular row (a, b)
exists t ∈ R such that a + bt is an invertible element [3]. If n = 2, then
for a unimodular row (a, b, c) exist x, y ∈ R such that (a + cx, b + cy) is
unimodular.[2]

Definition 3. Element a ∈ R called element of a stable range 1, if for
any b ∈ R exists t ∈ R, such that a+ bt is an invertible element of a ring
R.

1. Let R is a commutative ring. Then any idempotent e ∈ R is an
element of a stable range 1.

Definition 4. Commutative ring R is Bezout ring if every finitely gen-
erated ideal of ring R is a principal.

2. Let R is a commutative Bezout ring. Then a set of element of stable
range 1 is a multiplicative closed.

Definition 5. Element a of a ring R called element of almost stable
range 1, if st.r(R/aR) = 1.

Definition 6. Ring R is a ring of an almost stable range 1 if for any
ideal I, I * J(R), st.r(R/I) = 1, where J(R) is Jacobson radical .

1. Let R is a ring of almost stable range 1, then any unimodular row
over R supplemented with invertible matrice.
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3. Let a is an element of an almost stable range 1 of a commutative
ring R. If aR + bR + cR = R, then exist element y ∈ R such that
aR + (b + cy)R = R.

4. Let a is an arbitrary element of a ring R, such that for any b, c ∈ R,
aR + bR + cR = R and exists y ∈ R such that aR +(b+ cy)R = R. Then
a is an element of almost stable range 1.

2. Let R is a ring in which every non zero and non invertible element is
an element of an almost stable range 1 and if J(R) 6= 0, then st.r(R) = 1.

3. Let R is Bezout ring in which any element is an element of an almost
stable range 1. Then for any square matrice A, detA 6= 0, size n×n over
R exist matrices P ∈ GEn(R) and Q ∈ GLn(R) such that

PAQ =




ε1 0 . . . 0
0 ε2 . . . 0
...

...
. . .

...
0 0 . . . εn


 ,

where εi is elementary divisor of matrice A, 1 ≤ i ≤ n. [4]

Note, that GLn(R) - group of invertible matrice over ring R.
GEn(R) - subgroup of GLn(R) generated of elementary matrices.

[1] H. Bass K-theory and stable algebra, Inst. Hautes Etudes. Sci.Publ. Math., 22
(1964), 485–544.

[2] L.N. Vaserstein The stable rank of ring and dimensionality of topological spaces,
Functional Anal. Appl., 5 (1971), 102–110.

[3] L.N. Vaserstein Bass’s first stable range condition, J. Pure and Appl. Alg., 34
(1984), 319–330.

[4] B.V. Zabavsky Diagonalizability theorem for matrices over rings with finite
stable range, Alg.Discr.Math. - 2005. - N1 - 134–148.

EXTENT, NORMALITY AND OTHER PROPERTIES OF
SPACES OF SCATTEREDLY CONTINUOUS MAPS
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B.M. Bokalo and N.M. Kolos

Department of Mechanics and Mathematics, Ivan Franko National University,
Lviv, Universytetska street 1, Ukraine

E-mail address: Bogdanbokalo@mail.ru
E-mail address: Nadiya Kolos@ukr.net

A map f : X → Y between topological spaces is called scatteredly
continuous if for each non-empty subspace A ⊂ X the restriction f |A
has a point of continuity.

We study properties of scatteredly continuous maps between topolog-
ical spaces and properties of topological spaces of scatteredly continuous
maps. In particular, we will talk about normality and extent of spaces of
scatteredly continuous maps.

[1] R. Engelking, General Topology, PWN, Warzawa, 1977.
[2] B. Bokalo, N. Kolos, When does SCp(X) = RX hold?, Topology, Vol.48(2009),

178-181.
[3] Arkhangel’skii A.V., Topological spaces of functions, M.: MGU, 1989 (in Rus-

sian).
[4] Arkhangel’skii A.V., Bokalo B.M., The tangency of topologies and tangential

properties of topological spaces, Trudy Moskov. Mat. Obshch. 54 (1992), 160-
185, 278-279 (in Russian).

[5] T. Banakh, B. Bokalo, On scatteredly continuous maps between topological
spaces, Topology and Appl., Vol. 157 (2010), 108-122.

ALGEBRAS OF ENTIRE ANALYTIC FUNCTIONS ON `p

I.V. Chernega

Institute for Applied Problems of Mechanics and Mathematics, Lviv, Naukova Str.
3 b, Ukraine

E-mail address: icherneha@ukr.net
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We shall denote by Hb(`p) the algebra of entire analytic functions
of bounded type on `p and by Hbs(`p) its subalgebra of all symmetric
functions. Also we use the notations Mb(`p) and Mbs(`p) for spectra of
the algebras Hb(`p) and Hbs(`p) respectively, that is, the set of all non-
null continuous complex homomorphisms. In [1] the spectra of algebras of
symmetric holomorphic functions on `p are investigated. Maximal ideals
of algebras of analytic functions were studied in [2], [3].

We study the relationship between the spectra of Hbs(`p) and Hb(`p).
If ϕ ∈ Mb(`p) then the restriction ϕs of ϕ to Hbs(`p) is a complex homo-
morphism of Hbs(`p). According to [3] there exists a sequence of Banach
spaces (En)∞n=1 and a sequence of maps δ(n) : En → Mb(`p), where
E1 = `p, En coincides with the subspace of all functionals on P(n`p)
which vanish on finite sums of products of polynomials of degree less
than n and δ(1)(z)(f) = f(z), such that for every ϕ ∈ Mb(`p)

(1) ϕ(f) = ∗∞n=1δ
(n)(un)(f)

for some un ∈ En, n = 1, 2, . . . and the convolution operation ” ∗ ” for
elements ϕ, θ ∈ Mb(`p) is defined by

(2) (ϕ ∗ θ)(f) = ϕ(θ(f(·+ x))), where f ∈ Hb(X).

Hence for every ϕ ∈ Mb(`p), ϕs has the representation

ϕs =
(
∗∞n=1 δ(n)(un)

)s

.

Can we extend this formula for an arbitrary complex homomorphism of
Hbs(`p)? Clearly, it is so if we can extend each character in Mbs(`p) to a
character in Mb(`p).

. If there exists a continuous homomorphism Φ : Hb(`p) → Hbs(`p), then
every character θ ∈ Mbs(`p) can be extended to a character ϕ ∈ Mb(`p) by
the formula ϕ(f) = θ(Φ(f)). Moreover, if Φ is a projection then ϕs = θ.

We study the existence of a homomorphism from Hb(`p) onto Hbs(`p)
and conditions of its continuity.

[1] R. Alencar, R. Aron, P. Galindo, and A. Zagorodnyuk, Algebras of symmetric
holomorphic functions on `p, Bull. Lond. Math. Soc. 35 (2003), 55–64

[2] R.M. Aron, B.J. Cole, and T.W. Gamelin, Spectra of algebras of analytic func-
tions on a Banach space, J. Reine Angew. Math. 415 (1991), 51–93

[3] A. Zagorodnyuk, Spectra of algebras of entire functions on Banach spaces, Proc.
Amer. Math. Soc. 134 (2006), 2559–2569
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TOPOLOGICAL INVERSE MONOIDS OF ALMOST
MONOTONE INJECTIVE CO-FINITE PARTIAL

SELFMAPS OF POSITIVE INTEGERS

Ivan Chuchman and Oleg Gutik

Department of Mechanics and Mathematics, Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine

E-mail address: chuchman i@mail.ru

E-mail address: o gutik@franko.lviv.ua, ovgutik@yahoo.com

In this paper all spaces are assumed to be Hausdorff. Furthermore we
shall follow the terminology of [1, 4, 5].

An algebraic semigroup S is called inverse if for any element x ∈ S
there exists the unique x−1 ∈ S such that xx−1x = x and x−1xx−1 =
x−1. The element x−1 is called the inverse of x ∈ S. If S is an inverse
semigroup, then the function inv : S → S which assigns to every element
x of S its inverse element x−1 is called an inversion.

A semitopological (resp. topological) semigroup is a topological space
together with a separately (resp. jointly) continuous semigroup opera-
tion. A topological inverse semigroup is an inverse topological semigroup
with the continuous inversion.

Let N be the set of all positive integers. A partial map α : N ⇀ N is
called almost monotone if there exists a finite subset A of N such that the
restriction α |N\A : N\A ⇀ N is a monotone partial map. By I Â↗

∞ (N) we
shall denote the semigroup of monotone, almost non-decreasing, injective
partial transformations of N such that the sets N \ domϕ and N \ rankϕ
are finite for all ϕ ∈ I Â↗

∞ (N).
Chuchman and Gutik showed that every Hausdorff Baire topology

τ on I Â↗
∞ (N) such that

(
I Â↗
∞ (N), τ

)
is a semitopological semigroup is

discrete [2, ?].
We construct two non-discrete (and hence non-Baire) topologies τ1

and τ2 on the semigroup I Â↗
∞ (N) such that the following assertions hold:

(i)
(
I Â↗
∞ (N), τ1

)
is a topological inverse semigroup and every H -

class in I Â↗
∞ (N) is an open-and-closed subset of

(
I Â↗
∞ (N), τ1

)
;

(ii)
(
I Â↗
∞ (N), τ2

)
is a topological inverse semigroup and every H -

class in I Â↗
∞ (N) is a closed non-open subset of

(
I Â↗
∞ (N), τ1

)
.
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[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological
Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II,
Marcel Dekker, Inc., New York and Basel, 1986.

[2] I. Chuchman and O. Gutik, Topological monoids of almost monotone injective
cofinite partial selfmaps of positive integers, Conference on complex analysis
dedicated to the memory of A. A. Goldberg (1930–2008). Lviv, Ukraine, May
31-June 5, 2010. Abstracts. Lviv, 2010, P. 8–9.

[3] I. Chuchman and O. Gutik, Topological monoids of almost monotone, injective
cofinite partial selfmaps of positive integers, Preprint.

[4] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc.
Surveys 7, Providence, R.I., 1967.

[5] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

SUPEREXTENSIONS OF SEMILATTICES

Volodymyr Gavrylkiv

Department of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian
National University, Ivano-Frankivsk, Shevchenko Street 57, Ukraine

E-mail address: vgavrylkiv@yahoo.com

In the talk we describe the algebraic structure of the semigroups G(X),
λ(X), Nk(X), Fil(X) and β(X) over semilattice X (see [5], [6]). The
semigroup G(X) (λ(X)) over group X rarely is commutative: this holds
if and only if the group X has finite order |X| = 1 (|X| ≤ 4, see [1]).
This leads to the following natural question: are semigroups G(X) or
λ(X) commutative for some semigroup X of big cardinality |X|? We
prove that for any finite linear ordered semilattice X the semigroups
G(X), λ(X), Nk(X), Fil(X) and β(X) are commutative semigroups.

[1] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, Algebra in superextensions of groups,
I: zeros and commutativity, Algebra Discrete Math. 3 (2008), 1-29
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[2] T. Banakh, V. Gavrylkiv, Algebra in superextension of groups, II: cancelativity
and centers, Algebra Discrete Math. 4 (2008), 1-14

[3] T. Banakh, V. Gavrylkiv, Algebra in the superextensions of groups, III: minimal
left ideals, Mat. Stud. 31(2) (2009), 142-148

[4] T. Banakh, V. Gavrylkiv, Extending binary operations to functor-spaces,
Carpathian Mathematical Publication. 1(2) (2009), 113-126

[5] V. Gavrylkiv, The spaces of inclusion hyperspaces over noncompact spaces, Mat.
Stud. 28(1) (2007), 92-110

[6] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces,
Mat. Stud. 29(1) (2008), 18-34

ON SEMITOPOLOGICAL SYMMETRIC INVERSE
SEMIGROUPS OF A BOUNDED FINITE RANK

Oleg Gutik and Andriy Reiter

Department of Mechanics and Mathematics, Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine

E-mail address: o gutik@franko.lviv.ua, ovgutik@yahoo.com

E-mail address: reiter andriy@yahoo.com, reiter@i.ua

In this paper all spaces are assumed to be Hausdorff. Furthermore
we shall follow the terminology of [1, ?, ?, ?]. By ω we denote the first
infinite cardinal.

An algebraic semigroup S is called inverse if for any element x ∈ S
there exists the unique x−1 ∈ S such that xx−1x = x and x−1xx−1 =
x−1. The element x−1 is called the inverse of x ∈ S. If S is an inverse
semigroup, then the function inv : S → S which assigns to every element
x of S its inverse element x−1 is called an inversion.

A semitopological (resp. topological) semigroup is a topological space
together with a separately (resp. jointly) continuous semigroup opera-
tion. A topological inverse semigroup is an inverse topological semigroup
with the continuous inversion.
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Let I (X) denote the set of all partial one-to-one transformations of
X together with the following semigroup operation:

x(αβ) = (xα)β if, x ∈ dom(αβ) = {y ∈ dom α | yα ∈ dom β},

for α, β ∈ I (X).
The semigroup I (X) is called the symmetric inverse semigroup over

the set X (see [2]). The symmetric inverse semigroup was introduced by
Wagner [13].

We denote I n
λ = {α ∈ I (X) | rankα 6 n}, for n = 1, 2, 3, . . ..

Obviously, I n
λ (n = 1, 2, 3, . . .) is an inverse semigroup, I n

λ is an ideal of
I (X), for each n = 1, 2, 3, . . .. We observe that the the symmetric inverse
semigroup I 1

λ of finite transformations of the rank 1 is isomorphic to the
semigroup of matrix units Bλ.

Let S be a class of (semi)topological semigroups. A semigroup S ∈ S
is called H-closed in S , if S is a closed subsemigroup of any topo-
logical semigroup T ∈ S which contains S as a subsemigroup [5, ?].
A (semi)topological semigroup S ∈ S is called absolutely H-closed in
the class S if any continuous homomorphic image of S into T ∈ S
is H-closed in S [6, ?]. A semigroup S is called algebraically h-closed
in S if S with discrete topology d is absolutely H-closed in S and
(S, d) ∈ S [5].

Gutik and Pavlyk in [7] consider the partial case of the semigroup I n
λ :

an infinite topological semigroup of λ × λ-matrix units Bλ. There they
show that an infinite topological semigroup of λ×λ-matrix units Bλ does
not embed into a compact topological semigroup and Bλ is algebraically
h-closed in the class of topological inverse semigroups.

Gutik, Lawson and Repovš in [4] introduce the notion of semigroup
with a tight ideal series and investigate their closures in semitopological
semigroups, particularly inverse semigroups with continuous inversion.
As a corollary they show that the symmetric inverse semigroup of finite
transformations I n

λ of infinite cardinal λ is algebraically closed in the
class of (semi)topological inverse semigroups with continuous inversion.

In [9] Gutik and Reiter show that the topological inverse semigroup
I n

λ is algebraically h-closed in the class of topological inverse semigroups.
Also they prove that a topological semigroup S with countably compact
square S × S does not contain the semigroup I n

λ for infinite cardinal
λ and show that the Bohr compactification of an infinite topological
semigroup I n

λ is the trivial semigroup.
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In [8] Gutik, Pavlyk and Reiter show that a topological semigroup of
finite partial bijections I n

λ of infinite set with a compact subsemigroup
of idempotents is absolutely H-closed and any countably compact topo-
logical semigroup does not contain I n

λ as a subsemigroup. Also they give
sufficient conditions onto a topological semigroup I 1

λ to be non-H-closed.

1. The semigroup I n
λ is algebraically h-closed in the class of semitopo-

logical inverse semigroups with continuous inversion.

We describe all congruences on the semigroup I n
λ and construct a

Hausdorff compact topology τc on I n
λ such that (I n

λ , τc) is a semitopo-
logical inverse semigroup with continuous inversion.

2. Let λ > ω, n = 1, 2, 3, . . ., and τ be a Hausdorff topology on the
semigroup I n

λ . Then the following conditions are equivalent:
(i) (I n

λ , τ) is a compact semitopological semigroup;
(ii) (I n

λ , τ) is topologically isomorphic to (I n
λ , τc);

(iii) (I n
λ , τ) is a countably compact semitopological semigroup;

(iv) (I n
λ , τ) is a countably compact semitopological semigroup with

continuous inversion.

[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological
Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II,
Marcel Dekker, Inc., New York and Basel, 1986.

[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc.
Surveys 7, Providence, R.I., 1967.

[3] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
[4] O. Gutik, J. Lawson, and D. Repovš, Semigroup closures of finite rank symmetric

inverse semigroups, Semigroup Forum 78:2 (2009), 326–336.
[5] O. V. Gutik and K. P. Pavlyk, H-closed topological semigroups and Brandt λ-

extensions, Mat. Metody Phis.-Mech. Polya. 44:3 (2001), 20–28 (in Ukrainian).
[6] O. V. Gutik and K. P. Pavlyk, Topological Brandt λ-extensions of absolutely H-

closed topological inverse semigroups, Visnyk Lviv Univ. Ser. Mech.-Math. 61
(2003), 98–105.

[7] O. V. Gutik and K. P. Pavlyk, On topological semigroups of matrix units, Semi-
group Forum 71:3 (2005), 389–400.

[8] O. Gutik, K. Pavlyk and A. Reiter, Topological semigroups of matrix units and
countably compact Brandt λ0-extensions, Mat. Stud. 32:2 (2009), 115–131.

[9] O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite
rank 6 n, Mat. Metody Phis.-Mech. Polya. 53:3 (2009) 7–14.

[10] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lecture
Notes in Mathematics, Vol. 1079, Springer, Berlin, 1984.
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[11] J. W. Stepp, A note on maximal locally compact semigroups, Proc. Amer. Math.
Soc. 20:1 (1969), 251–253.

[12] J. W. Stepp, Algebraic maximal semilattices, Pacific J. Math. 58:1 (1975), 243–
248.

[13] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119—
1122 (in Russian).

ON NON-NEGATIVE INTEGER QUADRATIC FORMS

G.V. Kriukova

Department of Algebra and Mathematical logic, The Faculty of Mechanics and
Mathematics, National Taras Shevchenko University of Kyiv, Kyiv, Volodymyrska
64, Ukraine

E-mail address: galyna.kriukova@gmail.com

The use of quadratic forms as a tool for characterizing classes of finite
dimensional algebras and Lie algebras is well known and widely accepted.
We study properties of non-negative integer quadratic forms.

According to Roiter an integral quadratic form q : Zn → Z

q(x) =
∑

i∈{1,...,n}
qix

2
i +

∑

i<j

qijxixj , (qi, qij ∈ Z)

is called semi integer if qij ∈ qiZ for all i, j ∈ {1, . . . , n}, and it is called
integer if in addition qi 6= 0 for all i ∈ {1, . . . , n}. The integer form
q is called unit if qi = 1 for all i ∈ {1, . . . , n}. Two forms q and q′

and corresponding bigraphs B and B′ are equivalent if one comes from
another due to sequence of sing-invertions. Form is balanced if ∀v ∈ Zn

such that q(v) = 0 holds:

(v, y)q = q(v + y)− q(v)− q(y) = 0, ∀y ∈ Zn.

With any such form in n variables one associates its Coxeter graph or
bigraph Bq, which is labeled and partially directed.

1. A semi-integer quadratic form q is non-negative iff conditions hold:
(1) form q is balanced;
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(2) qi ≥ 0, i ∈ {1, . . . , n};
(3) q2

ij ≤ 4qiqj, i, j ∈ {1, . . . , n}, i < j;
(4) q does not contain as subform any of form equivalent to following

bigraphs:
³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·_*4 _jt ³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·_*4 _*4 ³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·_jt _*4
³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·+3 _*4 ³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·_*4 +3 ³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·ks _*4

³º¹́µ̧¶· ³º¹́µ̧¶· ³º¹́µ̧¶·+3 _jt ³º¹́µ̧¶·

³º¹́µ̧¶·

³º¹́µ̧¶·wÄ Â' ³º¹́µ̧¶· ³º¹́µ̧¶·

³º¹́µ̧¶· ³º¹́µ̧¶·

®¶®¶

³º¹́µ̧¶·

³º¹́µ̧¶·

³º¹́µ̧¶·

7? _g

³º¹́µ̧¶·

³º¹́µ̧¶·

³º¹́µ̧¶·wu¤ G¾) ³º¹́µ̧¶·

³º¹́µ̧¶·

³º¹́µ̧¶·
w5C G[i

This criterion generalizes result of [1] for unit forms. We compare non-
negativity criterions for integer quadratic forms, integer unit forms, real
quadratic forms ([2]).

[1] M. Barot, J. A. de la Pẽna. The Dynkin type of a non-negative unit form, Ex-
positiones Mathematicae. 17 (1999), 339–348.

[2] N.S. Golovaschuk, G.V. Kriukova. Non-negativity criterion for integer quadratic
forms, Bulletin of University of Kyiv. Series: Physics & Mathematics. 4 (2009)

ON WEAK FILTER CONVERGENCE OF UNBOUNDED
SEQUENCES
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It is known that the properties of sequences that are filter convergent
in the weak topology differ significantly from the properties of the or-
dinary weakly convergent sequences. In particular a weakly convergent
sequence must be bounded but, say, a weakly statistically convergent se-
quence can tend to infinity in norm [1]. This effect induces the following
natural question:

. If a sequence has a weak limit with respect to a given filter F , how quick
can the norms of the elements in the sequence tend to infinity?

Of course the answer depends on the filter. In [3] we prove that For
every weakly statistically convergent sequence xn with increasing norms
in a Hilbert space we prove that supn ‖xn‖/

√
n < ∞. This estimate is

sharp. We study analogous problem for some other types of weak filter
convergence.

[1] J.Connor, M.Ganichev and V.Kadets. A characterization of Banach spaces with
separable duals via weak statistical convergence. J. Math. Anal. Appl. 244 (2000),
no 1, 251 - 261.

[2] V. Kadets. Weak cluster points of a sequence and coverings by cylinders / Mat.
Fiz. Anal. Geom., 11 (2004), No 2, 161 - 168

[3] V.Kadets, A.Leonov, C.Orhan. Weak statistical convergence and weak fil-
ter convergence for unbounded sequences J. Math. Anal. Appl. to appear
doi:10.1016/j.jmaa.2010.05.031

ON ALGEBRAS OF ULTRADISTRIBUTIONS

V.Ya. Lozynska

Department of Functional Analysis, Pidstryhach Institute of Applied Problems of
Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, 3-b
Naukova Str., Ukraine

E-mail address: vlozynska@yahoo.com

The convolution algebras of ultradistributions of Beurling and of Roumieu
type are introduced and investigated.
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For a weight function ω (see[1]) and an open set Ω ∈ Rn we define

E{ω}(Ω) =
{

f ∈ C∞(Ω)| for all compact K ∈ Ω there is m ∈ N

sup
α∈NN

0

sup
x∈K

|f (α)(x)|exp
(
− 1

m
ϕ∗(m|α|)

)
< ∞

}

and

E(ω)(Ω) =
{

f ∈ C∞(Ω)| for all compact K ∈ Ω and all m ∈ N

pK,m(f) := sup
α∈NN

0

sup
x∈K

|f (α)(x)|exp
(
−mϕ∗

( |α|
m

))
< ∞

}
,

where ϕ∗ denotes the Young conjugate of the convex function ϕ. We will
write E∗ if statement holds for both E{ω} and E(ω).

The elements of E{ω}(Ω)′ (resp. E(ω)(Ω)′) are called ultradistributions
of Roumieu type (resp. of Beurling type).

For a weight function ω, an ultradistribution µ ∈ E∗(Rn)′, and f ∈
E∗(Rn) we define the convolution by

µ ? f : Rn → C, µ ? f(t) := 〈µs, f(t + s)〉 = 〈µs, T−sf(t)〉.
1. The space E∗(Rn)′ is an algebra with respect to the convolution, that

is defined by the relation

µ ∗ ν : E∗(Rn) → C, 〈µ ∗ ν, f〉 := 〈ν, µ ? f〉,
µ, ν ∈ E∗(Rn)′, f ∈ E∗(Rn). The convolution has the following properties

Dk(µ ? f) = µ ? (Dkf) = (−1)k(Dkµ) ? f,

Dk(µ ∗ ν) = (Dkµ) ∗ ν = µ ∗ (Dkν)
for all k ∈ Z+.

[1] Braun R.W., Meise R., Taylor B.A., Ultradifferentiable functions and Fourier
analysis // Results in Mathematics – Vol. 17, (1990) – P. 206–237.

RELATIVELY THIN SUBSETS OF GROUPS
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Let G be a group with the identity e, I be a left translation-invariant
ideal in the Boolean algebra PG of all subsets of G. A subset A ⊆ G is
said to be

• I-large if there exist F ∈ FG and I ∈ I such that G = FA ∪ I;
• I-small if L \A is I-large for every I-large subset L;
• I-thin if A ∩ gA ∈ I for every g ∈ G, g 6= e.

An ideal I is said to be τ -complete if every I-thin subset of G belong
to I.

1. Let G be an infinite group, I be a translation-invariant ideal in PG.
Then τ(I) ⊆ SI , where SI is the ideal of all I-small subsets of G.

1. Let G be an infinite group, I be a translation-invariant ideal in PG.
Then the ideal SI is τ -complete.

2. Let F be a family of subsets of a group G, A ⊆ G, n ∈ ω. Then

A ∈ τn+1(F) ⇔
⋂

i0,...,in∈{0,1}
gi0
0 . . . gin

n A ∈ F .

3. For a group G, the following statements hold

(1) G is a Boolean group if and only if τ∗(I∅) = τ(I∅) = [G]1;
(2) if G is Boolean then τ∗(FG) = τ(FG);
(3) if G is infinite and τ∗(FG) = τ(FG) then G is Boolean.

4. Let G be an infinite Abelian group with finite subset {g ∈ G : g2 = e},
TG be the family of all thin subsets of G, JG be the ideal of all sparse
subsets of G. Then τ(TG) \ JG 6= ∅.

2. Let G be an infinite Abelian group with finite number of elements of
order 2. Then the ideal JG of sparse subsets of G is not τ -complete.

5. Let G be a group with no elements of order 2. If T1, T2 ∈ TG then
T1 ∪ T2 ∈ τ(TG).
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6. Let G be an infinite group of cardinality α, F be a family of subsets
of G closed under taking subsets. Then

τ ∗ (F) =
⋃

β<α+

τβ(F),

where τβ+1(F) = τ(τβ(F)) and τβ(F) =
⋃

γ<β τγ(F) for a limit ordinal
β < α+.

ASYMPTOTIC DIMENSION OF SMALL SUBSETS IN
COARSE GROUPS

N. Lyaskovska

Department of Geometry and Topology at Ivan Franko National University of
Lviv, Ukraine

E-mail address: lyaskovska@yahoo.com

Recall that a subset A of a locally compact group G is
• large if there is compact subsets K with AK = G.
• small if for any large subset L of G the complement L\A is large.

By Th.1.8.11 [1], in the topological space Rn the ideal of nowhere
dense subsets coincides with the ideal of subsets A whose closure has
the topological dimension dim(A) < n. The following Theorem is an
analogue of this fact.

1. For any discrete finitely generated Abelian group G the subset A is
small iff asdim(A) < asdim(G).

For a subset A of a locally compact group G we write asdim(A) ≤ n
for an integer number n ≥ 0 if for every compact subset K ⊂ G there is
compact subset L ⊂ G and a cover U of A such that mesh(U) ≤ L and
|{U ∈ U : U ∩ gK 6= ∅}| ≤ n + 1 for every g ∈ G. We write mesh(U) ≤ L
if for any U ∈ U there is g ∈ G with U ⊂ gL. We say that asdim(A) = n
if asdim(A) ≤ n and asdim(A) 6≤ n−1. If no integer n with asdim(A) ≤ n
exists, then we put asdim(A) = ∞.
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The following examples shows that the Abelian requirement in the
previous theorem is essential.

1. Let F2 be the free group with two generators a, b. Note that subgroup
A = {an : n ∈ Z} is small but has asdim(A) = asdim(F2) = 1.

2. For any subset A of a locally compact Abelian group G holds if
asdim(A) < asdim(G)} then A is small.

[1] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Helder-
mann Verlag, Berlin, 1989.

VECTOR BUNDLES AND COBORDISMS

Sergiy Maksymenko

Institute of Mathematics of NAS of Ukraine, Kyiv, Tereshchenkivs’ka str., 3, 01601,
Ukraine

E-mail address: maks@imath.kiev.ua

Lectures 1-2. Classification of vector bundles. Examples of vector
bundles. Regular neighbourhoods of submanifolds. Main constructions
over vector bundles: subbundle, factor-bundle, induced bundle, Whitney
sum. Embeddings of vector bundles into trivial ones. Vector bundles over
[0, 1]. Invariance of induced bundles under homotopies. Grassman mani-
fold and the tautological vector bundle. Homotopy classification of vector
bundles.

Lectures 3-4. Cobordism theory. The notion of cobordism. Groups
of orientable and non-orientable cobordisms. Surgery. Transversality. Thom’s
construction. The main theorem of cobordism theory (by R. Thom).
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ON LAWSON IDEMPOTENT SEMIMODULES

O. Mykytsey

Department of Mathematics and Computer Science, Vasyl’ Stefanyk Precarpathian
National University, Ivano-Frankivsk, Shevchenka 57, Ukraine

E-mail address: oksana39@i.ua

Let L be a compact Hausdorff Lawson lattice, with ∨ and ∧ being
resp. join and meet, and let ∗ : L × L → L be an upper semicontinuous
operation, called multiplication, which is associative, distributive w.r.t.
∨ in the both variables, and the top element 1 ∈ L is a two-side unit for
∗. It implies that ∗ is isotone in the both variables, hence α ∗ β ≤ α ∧ β
for all α, β ∈ L. Then (L,∨, ∗) is an idempotent semiring [1].

For an idempotent semiring S = (S,∨, ∗, 0, 1) a right S−semimodule
is a set X with operations ∨ : X×X → X and ∗ : X×S → X such that
for all x, y, z ∈ X, α, β ∈ S :

1) x ∨ y = y ∨ x;
2) (x ∨ y) ∨ z = x ∨ (y ∨ z);
3) there is an (obviously unique) element 0̄ ∈ X such that x ∨ 0̄ = x

for all x;
4) (x ∨ y) ∗ α = (x ∗ α) ∨ (y ∗ α), x ∗ (α ∨ β) = (x ∗ α) ∨ (x ∗ β);
5) x ∗ (α ∗ β) = (x ∗ α) ∗ β;
6) x ∗ 1 = x;
7) x ∗ 0 = 0̄.
We call X a compact Hausdorff Lawson right (L,∨, ∗)- semimodule [2]

if X is an (L,∨, ∗)-semimodule and carries a compact Hausdorff topology
such that the upper semilattice (X,∨) is a Lawson lattice [3] and ∗ is
lower semicontinuous.

We denote by (L,∨, ∗)−LwSMod the category that consist of all com-
pact Hausdorff Lawson (L,∨, ∗)-semimodules and all their continuous
maps that preserve all suprema and infima and are ∗-uniform. We also
denote by (L,∨, ∗)−LwSMod↑ and (L,∨, ∗)−LwSMod↓ the categories
with the same objects, but with the classes of morfisms that consist of all
join-preserving (hence isotone) ∗-uniform maps such that the preimages
of all closed upper (resp. lower) sets are closed.
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For a compact Hausdorff Lawson lower semilattice X, the product
X × L is a compact Hausdorff Lawson lower semilattice as well. Let
expL

∆ X be the ordered by inclusion space of all closed subsets C ⊂ X×L̃
such that, for all α, β ∈ L, x, y ∈ X :

(1) α ≤ β, x ≤ y, (y, β) ∈ C implies (x, α) ∈ C;
(2) (x, α), (x, β) ∈ C implies (x, α ∨ β) ∈ C;
(3) C ⊃ (X × {0}) ∪ ({min X} × L).
It is proved that expL

∆ X is a compact Hausdorff Lawson (L,∨, ∗)-
semimodule.

Let L̃ be our compact Hausdorff Lawson lattice L but with reverse
order.

. Is expL̃
∆ X a compact Hausdorff Lawson (L,∨, ∗)-semimodule?

For expL̃
∆ X the following conventions are valid:

(1’) α ≥ β, x ≤ y, (y, β) ∈ C implies (x, α) ∈ C;
(2’) (x, α), (x, β) ∈ C implies (x, α ∧ β) ∈ C;
(3’) C ⊃ (X × {1}) ∪ ({min X} × L).
For each closed F ⊂ X × L̃, the set

θX(F ) = { (x, α) ∈ X × L̃ | x ≤ inf(pr1(A)), α ≥ inf(pr2(A))

for some A ⊂
CL

(F ∪ (X × {1}) ∪ ({min X} × L̃)), A 6= ∅}

is the least element of expL̃
∆ X wich contains F. In particular, θX(F ) = F

if and only if F ∈ expL̃
∆ X.

We obtain a continuous retraction θX : exp(X × L̃) → expL̃
∆ X, hence

expL̃
∆ X is a compactum.
For a closed subset F ⊂ expL̃

∆ X, its intersection
⋂F is is expL̃

∆ X,
therefore is a greatest lower bound of F . The equality⋂

F = { (inf(pr1(A)), sup(pr2(A))) | A ∈ F⊥}
implies that

⋂F is continuous w.r.t. F . The least upper bound of F is
equal to θX(

⋃F), hence is continuous w.r.t. F as well. If F ⊂ expL̃
∆ X

is not closed, then supF = θX(Cl (
⋃F)). For two elements F1,F2 ∈

expL̃
∆ X, the join is equal to { (x, α ∧ β) | (x, α) ∈ F1, (x, β) ∈ F2}.

The distributivity of join w.r.t. meet in expL̃
∆ X is easily checked. Thus

expL̃
∆ X is a compact Hausdorff Lawson lattice.
We consider an operation / : L × L → L, called division such that

γ/β = sup{ α | α ∗ β ≤ γ} for all (γ, β) ∈ L× L.



Abstracts of Lectures and Reports Тези лекцiй i доповiдей 23

If ∗ : L × L → L is a lower (upper) semicontinuous operation then
/ : L× L → L is an upper (resp. lower) semicontinuous operation.

We do not have associativity of /, but for all γ, β, δ ∈ L :

(γ/β)/δ = γ/(δ ∗ β).

For all F ⊂ L and α, γ ∈ L the following equalities are valid:
1) (inf F )/γ = inf(F/γ);
2) α/(inf F ) = sup(α/F );
3) (sup F )/γ = sup(F/γ);
4) α/(sup F ) = inf(α/F ).
Let a division of elements of expL̃

∆ X by elements of L be defined by
the formula

C/α = { (x, β/α) | (x, β) ∈ C} ∪ ({min X} × L̃), C ∈ expL̃
∆ X, α ∈ L.

It makes expL̃
∆ X a compact Hausdorff Lawson (L,∨, ∗)-semimodule.

[1] M. Akian, Densities of idempotent measures and large deviations, Trans. Amer.
Math. Soc. 351(11) (1999), 4515–4543

[2] O. Nykyforchyn, Adjoints and monads related to compact lattices and compact
Lawson idempotent semimodules, Preprint, 2010

[3] J.D. Lawson, Topological semilattices with small semilattices, J. Lond. Math.
Soc. 11 (1969) 719–724
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Department of Functional Analysis, Pidstryhach Institute of Applied Problems of
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Using results for Banach spaces of [3] and [1], we consider approxima-
tions of a continuous function on a countable normed (real and complex)
Fréchet space by analytic and ∗-analytic.

A ∗-polynomial on a linear space is a generalization of a polynomial
(see [1] for details).

1. Let X be a separable complex Fréchet space with a countable system
{pn}n≥1 of norms and Y be a Banach space. Suppose that the space
Xn = (X, pn) admits a separating ∗-polynomial for each n ≥ 1. Let
f : X → Y be a function such that there is a number k ≥ 1 such that
the sequence {f(xn)} ⊂ Y converges for each Cauchy sequence {xn} of
Xk. Then the function f is uniformly approximable on X by ∗-analytic
functions.

2. Let X be a separable complex Fréchet space with a countable system
{pn}n≥1 of norms and Y be a Banach space. Suppose that the space
Xn = (X, pn) admits a separating uniformly ∗-analytic function for each
n ≥ 1. Let f : X → Y be an uniformly continuous function such that
there is a number k ≥ 1 such that the function f in uniformly continuous
on Xk. Then the function f is uniformly approximable on X by ∗-analytic
functions.

Also we found a criterium of the existence of an extension of a con-
tinuous function from a dense subspace of a topological space onto the
space. In particular, we prove the following

1. Let X be a Fréchet-Urysohn space, Y a regular topological space, D
dense subset of X, and f : D → Y a continuous map. The map f extends
to a continuous map from X to Y if and only if for each convergent in
X sequence {xn} of D the sequence {f(xn)} converges.

[1] M. Mitrofanov, Approximation of continuous functions in complex Banach
spaces Math. notes. 86(4) (2009), 557–570 (in Russian)

[2] R. Engelking, General topology, M.: Mir, 1986 (in Russian)
[3] J. Kurzweil,On approximation in real Banach spaces, Studia Math. 14 (1954),

214–231
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FREE IDEMPOTENT SEMIMODULES OVER COMPACT
HAUSDORFF LAWSON SEMILATTICES

O.R. Nykyforchyn

Vasyl’ Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk,
76025, Ukraine

E-mail address: oleh.nyk@gmail.com

Let L be a compact Hausdorff Lawson lattice with α ⊕ β and α ⊗
β being resp. the join and the meet of α, β ∈ L, a bottom element 0
and a top element 1. Let also ∗ : L × L → L be an operation, called
multiplication, which is associative, infinitely distributive w.r.t. ⊕ in the
both variables (or, equivalently, distributive in the both variables and
lower semicontinuous), and the top element 1 ∈ L is a two-side unit for
∗. It implies that ∗ is isotone in the both variables, hence α ∗ β 6 α⊗ β
for all α, β ∈ L. In fact, ∗ = ⊗ it the greatest of such possible operations.
Another example is the unit segment I = [0; 1] with the operations max,
min, and the usual multiplication.

Hence (L,⊕, ∗) is an idempotent semiring [1]. If ∗ is also commutative,
then ∗ is a triangular norm (t-norm) [3] on L. Nevertheless, we do not
need the commutativity of ∗ in this paper.

For an idempotent semiring S = (S,⊕, ∗, 0, 1) a (left idempotent) S-
semimodule is a set X with operations⊕ : X×X → X and ∗ : S×X → X
which satisfy natural conditions [1] roughly analogous to ones for vector
spaces. Informally speaking, an idempotent semimodule is a vector space
over an idempotent semiring. The operation ∗ is isotone in the both
variables.

We call X a compact Hausdorff Lawson (L,⊕, ∗)-semimodule if X is
an (L,⊕, ∗)-semimodule and carries a compact Hausdorff topology such
that the upper semilattice (X,⊕) is a Lawson lattice and the operation
∗ : L × X → X is lower semicontinuous. We adopt a usual convention
and often write αx instead of α ∗ x for α ∈ L and x ∈ X, preserving the
notation ∗ for operations L× L → L.

We denote by LLaws the category of all compact Hausdorff Lawson
lower semilattices and their continuous meet-preserving mappings. Let
also LLaws↑ and LLaws↓ be the categories whose objects are compact
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Hausdorff Lawson lower semilattices, and arrows are monotone mappings
such that the preimages of all closed upper (resp. lower) sets are closed.

We denote by (L,⊕, ∗)-LwSMod↓ the category that consists of all
compact Hausdorff Lawson (L,⊕, ∗)-semimodules and of all join-preserving
(hence isotone) lower semicontinuous maps between them that are ∗-
uniform, i.e. preserve multiplication by elements of L. If the operation ∗ :
L×L → L is also upper semicontinuous (i.e. is continuous), we define two
more categories. The objects of (L,⊕, ∗)-LwSMod and (L,⊕, ∗)-LwSMod↑
are compact Hausdorff Lawson (L,⊕, ∗)-semimodules with continuous
multiplication by elements of L. The morphisms in (L,⊕, ∗)-LwSMod
are continuous ∗-uniform mappings which preserve all suprema and in-
fima, while the class of morphisms of (L,⊕, ∗)-LwSMod↓ consists of all
upper semicontinuous join-preserving ∗-uniform mappings between ob-
jects of this category.

Now we will construct left adjoint functors to the obvious forgetful
functors U∗ : (L,⊕, ∗)-LwSMod → LLaws, U∗

↑ : (L,⊕, ∗)-LwSMod↑ →
LLaws↑, U∗

↓ : (L,⊕, ∗)-LwSMod↓ → LLaws↓.
For a compact Hausdorff Lawson lower semilattice X, the product

X × L is a compact Hausdorff Lawson lower semilattice as well. Let
expL

4X be the ordered by inclusion space of all closed subsets C ⊂ X×L
such that, for all α, β ∈ L, x, y ∈ X:

(1) α 6 β, x 6 y, (y, β) ∈ C implies (x, α) ∈ C (i.e. C is a lower
subset of X × L);

(2) (x, α), (x, β) ∈ C implies (x, α⊕ β) ∈ C;
(3) C ⊃ X × {0}.
By the closedness of C, a stronger version of (2) is valid:
(2’) if A ⊂ L and x ∈ X are such that (x, α) ∈ C for all α ∈ A, then

(x, sup A) ∈ C.
For each F ⊂ X × L, the set

θX(F ) = {(x, α) ∈ X × L | x 6 inf(pr1(F
′))), α 6 sup(pr2(F

′))

for some F ′ ⊂ F ∪ (X × {0}), F ′ 6= ∅}

is a least subset of X × L that contains F and satisfies (1), (2’), (3). It
becomes more obvious if one observe that

θX(F ) = {(x, α) ∈ X × L | α = 0, or α 6 sup A

for some A ⊂ L such that for all β ∈ A there is (y, β) ∈ F, x 6 y}.
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In particular, θX(F ) = F if and only if F satisfies (1), (2’), (3).
Observe that the closure of a subset C ⊂ X×L, that satisfies (1), (2’), (3),
satisfies these properties as well, hence ΘX(F ) = Cl(θX(F )) = θX(ClF )
is a least element of expL

4X that contains F . It is equal to

ΘX(F ) = {(x, α) ∈ X × L | α = 0, or for all

α′ l α, x′ l x there are n ∈ N, (y1, α1), . . . , (yn, αn) ∈ F

such that x′ 6 y1, . . . , x
′ 6 yn, α1 ⊕ . . .⊕ αn > α′}.

If F is closed, then θX(F ) is closed as well, hence θX(F ) = ΘX(F ),
and in this case we can equivalently take only closed subsets F ′ of F ∪
(X × {0}) in the definition. We obtain a continuous retraction θX :
exp(X × L) → expL

4X, thus expL
4X is a compactum.

For a closed subset F ⊂ expL
4X, its intersection

⋂F is in expL
4X,

therefore is a greatest lower bound of F . The equality
⋂
F = {(inf(pr1(A)), inf(pr2(A))) | A ∈ F⊥}

implies that
⋂F is continuous w.r.t. F . The least upper bound of F is

equal to θX(
⋃F), hence is continuous w.r.t. F as well. If F ⊂ expL

4X is
not closed, then supF = ΘX(

⋃F). For two elements F1,F2 ∈ expL
4X,

the join is equal to {(α ⊕ β, x) | (α, x) ∈ F1, (β, x) ∈ F2}. The distribu-
tivity of join w.r.t. meet in expL

4X is easily checked. Thus expL
4X is

a compact Hausdorff Lawson lattice. Its bottom and top elements are
equal to X × {0} and X × L respectively.

Let the multiplication ∗ : L×expL
4X → expL

4X be defined as follows:
for a set C ∈ expL

4X and α ∈ L, the product αC is the least element of
expL

4X that contains the set {(x, α ∗ β) | (x, β) ∈ C}, i.e.

αC = ΘX({(x, α ∗ β) | (x, β) ∈ C})).

There is an embedding ηL
4X : X ↪→ expL

4X that sends each x ∈ X

to (X × {0}) ∪ ({x}↓ × L).

1. The semimodule expL
4X together with the mapping ηL

4X : X →
expL

4X is a free object over X (as an object of LLaws, LLaws↑, and
LLaws↓) in resp. (L,⊕, ∗)-LwSMod, (L,⊕, ∗)-LwSMod↑, and
(L,⊕, ∗)-LwSMod↓.



28 Algebra, Topology, and Analysis — VII (2010)

[1] Akian, M.: Densities of invariant measures and large deviations. Trans. Amer.
Math. Soc. 351(11), 4515–4543 (1999)

[2] Barr, M., Wells, Ch.: Toposes, Triples and Theories. Springer, N.Y., 1988
[3] Drossos, C.A.: Generalized t-norm structures. Fuzzy Sets and Systems. 104(1),

53-59 (1999)
[4] Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications.

Kluwer Acad. Publ., Dordrecht, 1998
[5] Lawson, J.D.: Topological semilattices with small semilattices. J. Lond. Math.

Soc. 11, 719–724 (1969)
[6] Mac Lane, S.: Categories for the Working Mathematician, 2nd ed. Springer, N.Y.,

1998

ERGODIC PROPERTIES OF THE Q∞–EXPANSION OF
REAL NUMBERS AND THEIR APPLICATIONS IN

NUMBER THEORY

R. Nikiforov and G. Torbin

Institute of Physics and Mathematics, National Pedagogical Dragomanov Univer-
sity, Kyiv, Pyrogova 9, Ukraine

E-mail address: rnikiforov@gmail.com

Institute of Physics and Mathematics, National Pedagogical Dragomanov Univer-
sity, Kyiv, Pyrogova 9, Ukraine

E-mail address: torbin7@gmail.com

Let Q∞ = (q0, q1, . . . , qk, . . .) be a stochastic vector such that qi > 0,

and −
∞∑

i=0

qi ln qi < +∞. For any x ∈ [0, 1) there exists a unique sequence

{αk(x)} of non-negative integers such that

(1) x = β1(x) +
∞∑

k=2

βk(x) ·
k−1∏

j=1

qαj(x) =: ∆α1(x)α2(x)...αk(x)...,
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where βk(x) =
k−1∑
i=0

qi with
−1∑
i=0

qi := 0.

Expression (1) is said to be the polybasic Q∞-expansion for real num-
bers.

Let Ni(x, k) be a number of the digit “i” among the first k digits of
the Q∞-expansion of x.

If the limit lim
k→∞

Ni(x,k)
k =: νQ∞

i (x) exists, then its value is said to be

the asymptotic frequency of the digit “i” in the Q∞-expansion of x.

1. For λ-almost all x ∈ [0, 1) holds

νi(x) = qi (i ∈ {0, 1, 2, . . . }).
and

lim
n→∞

n
√

qα1(x)qα2(x) · . . . · qαn(x) = e−H .

Let Φ be a covering system which consist of Q∞-cylinders of [0, 1),
i.e.,

(2) Φ = {E : E = ∆α1...αn , n ∈ N, αi ∈ N ∪ 0, i = 1, 2, ..., n},
and let dimH(E, Φ) be the Hausdorff dimension of set E ⊂ [0, 1) with
respect to the covering system Φ.

2. If qi = 1
2i , then dimH(E, Φ) = dimH E, ∀E ⊂ [0, 1).

The set

N(Q∞) =
{

x : ∃i : νQ∞
i (x) 6= qi or lim

k→∞
Ni(x, k)

k
does not exist

}

is said to be the set of Q∞-non-normal numbers.

3.
dimH(N(Q∞)) = 1.

DYNAMICAL COMPACTIFICATIONS

I.V. Protasov
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1. Uniform compactifications

Given a set X and U, V ⊆ X ×X we put,

UV = {(x, y) : (x, z) ∈ U, (z, y) ∈ V for some z ∈ X}

U−1 = {(y, x) : (x, y) ∈ U}
A uniform structure (or uniformity) U on X is a filter of subsets of X×X
with the following properties:

(1) ∆ ⊆ U for every U ∈ U , where ∆ = {(x, x) : x ∈ X};
(2) for every U ∈ U , U−1 ∈ U ;
(3) for every U ∈ U , there exists V ∈ U for which V 2 ⊆ U .

Let U be an uniformity on X and let U ∈ U . For any x ∈ X and
Y ⊆ X, we put

U(x) = {y ∈ X : (x, y) ∈ U}, U [Y ] =
⋃

y∈Y

U(y)

Then U generates a topology on X in which a base of neighbourhoods
of the point x ∈ X are the sets of the form U(x), where U ∈ U . If X has
this topology, (X,U) is called a uniform space.

If (X,U) and (Y,V) are uniform spaces, a function f : X → Y is said
to be uniformly continuous if, for each V ∈ V, there exists U ∈ U such
that (f(x1), f(x2)) ∈ V whenever (x1, x2) ∈ U .

A topological space X is called uniformirable if its topology can be
generated by some uniformity on X. Metric spaces and topological groups
provide important examples of uniformirable spaces.

If (X, d) is a metric space, the filter which has as base the sets of the
form {(x, y) ∈ X : d(x, y) < r}, where r > 0, is a uniformity on X. This
example includes all discrete spaces. If X is discrete, it has the trivial
uniformity U = {U ⊆ X ×X : ∆ ⊆ U}.

If G is a topological group, its topology is defined by the right uni-
formity which has as base the sets {(x, y) ∈ G × G : xy−1 ∈ V }, where
V denotes a neighbourhood of identity. We shall assume that we have
assigned this uniformity to any topological group to which we refer.
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It is precisely the completely regular topological spaces which are uni-
formirable. X is said to be completely regular if, for every closed subset
E of X and every x ∈ X \ E, there is a function f ∈ CR(X) for which
f(x) = 0, f [E] = {1}. For each f ∈ CR(X) and each ε > 0, we put
Uf,ε = {(x, y) ∈ X ×X : |f(x) − f(y)| < ε}. The finite intersections of
the sets of the form Uf,ε, then provide a base for a uniform structure on
X.

In particular, every compact space is uniformirable. In fact, X has
a unique uniform structure given by the filter of neighbourhood of the
diagonal in X ×X.

A topological compactification of a space X is a pair (ϕ, Y ), where Y
is a compact space, ϕ : X → Y is a topological embedding and ϕ[X] is
dense in Y .

Let (X,U) be a uniform space. There is a topological compactifica-
tion (γ, γX) of X such that it is precisely the uniformly continuous
functions in CR(X) which have continuous extensions to γX. That is
{f ∈ CR(X) : f = g ◦ ϕ for some g ∈ CR(γX)} = {f ∈ CR(X) :
f is uniformly continuous}.

Since γ is an embedding, we shall regard X as being a subspace of γX.
The compactification γX will be called the uniform compactification of
X. It has the following universal property.

Let X, Y be uniform spaces, f : X → Y be a uniformly continuous
mapping. Then there exists a continuous extension fγ : γX → γY .

The construction of γX is based on the next lemma which establish a
relation between compactifications of X and subalgebras of CR(X).

Let X be any topological space and let A be a norm closed subalgebra of
CR(X) which contains the constant functions. There is a compact space
Y and a continuous function ϕ : X → Y with the property that ϕ[X] is
dense in Y and A = {f ∈ CR(X) : f = g ◦ ϕ for some g ∈ CR(Y )}. The
mapping ϕ is an embedding if, for every closed subset E of X and every
x ∈ X \ E, there exists f ∈ A such that f(x) = 0 and f [E] = {1}.

If X is discrete, γX coincides with with the Stone-Čech compactifi-
cation βX of X and can be described as follows. We take the points of
βX to be the ultrafilters on X, with the points of X identified with the
principal ultrafilters, and denote by X∗ = βX \ X the set of all free
ultrafilters on X. The topology of βX can be defined by stating that the
sets of the form A = {p ∈ βX : A ∈ p}, where A is a subset of X, are a
base for the open sets.
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2. Greatest G-ambit and enveloping semigroup

Let G be a topological group with the identity e. A G-space is a
topological space X with a continuous action of G, that is, a mapping
G × X → X, (g, x) 7→ gx satisfying g(hx) = (gh)x and ex = x for all
g, h ∈ G and x ∈ X.

A G-mapping is a continuous mapping f : X → Y between G-spaces
such that f(gx) = g(f(x)) for all x ∈ X, g ∈ G.

A compact G-space X with a distinguished point x is called a G-ambit
if the orbit Gx of x is dense in X.

A morphism between G-ambits (X,x) and (Y, y) is a G-mapping X →
Y taking x to y.

Recall that a function f : G → R is right uniformly continuous if

∀ε > 0 ∃V ∈ N (G) ∀x∀y ∈ G :

xy−1 ∈ V ⇒ |f(y)− f(x)| < ε,

where N (G) is the filter of neighbourhood of e.
We denote by R the right uniformity on G and by γG the uniform

compactification of (G,R). The G-space γG has a distinguished point e
and the G-ambit (γG, e) has the following universal property:

for every compact G-space X and every p ∈ X, there exists a unique
G-mapping f : γG → X such that f(e) = p, so γG is the greatest G-
ambit.

For every topological group G, the greatest G-ambit γG has a natural
structure of compact right-topological semigroup with the identity e such
that the multiplication γG×γG → γG extends the action G×γG → γG.
Given x, y ∈ X, in virtue of the universal property of X, there is a unique
G-mapping ry : γX → γX such that ry(e) = e, so we put xy = ry(x).

For a discrete group G, the product pq of the ultrafilters can be defined
by the rule: given A ⊆ G,

A ∈ pq ⇔ {g ∈ G : g−1A ∈ p} ∈ q.

To define an enveloping semigroup of G-space X, we note that the
space XX provided with topology of point-wise convergence has a natu-
ral structure of compact right-topological semigroup (with operation of
composition) in which all the left shifts g 7→ fg are continuous provided
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that f ∈ XX is continuous. The enveloping semigroup E(X) is the clo-
sure in XX of the set {g(x) : g ∈ G}. The action of G on E(X) is defined
by f(x) 7→ f(gx), g ∈ G.

The enveloping semigroup E(X) of G-space X is the greatest G-ambit
with the property that morphisms into X separate points. In other words,
morphisms of G-space E(X) → X separate points in E(X), and whenever
(Z, z) is a G-ambit such that morphisms of G-spaces Z → X separate
points in Z, there is unique morphism of G-spaces (E(X), idX) → (Z, z).

Let G be a discrete group. The shift system over G is topologically
Cantor cube GZ2, upon which G acts by left translations. The enveloping
semigroup E(GZ2) is isomorphic to the greatest G-ambit γG.

3. Universal minimal G-spaces and extremal amenability

A G-space is minimal if it has no proper G-invariant closed subset or,
equivalently, if the orbit Gx is dense in X for every x ∈ X. The universal
minimal compact G-space µG is characterized by the following property:
µG is minimal and, for every minimal compact G-space X there exists a
G-mapping of µG onto X.

For every topological group G, there exists universal minimal com-
pact G-space µG, which is unique up to G-isomorphisms. Every minimal
closed left ideal L of the greatest ambit γG is a minimal compact G-space,
moreover, L is a retract of γG.

In some cases, the space µG can be described explicitly. For example,
let E be a countable infinite discrete space, and let G = Sym(E) ⊂ EE be
the topological group of all permutations of G. Then µG can be identified
with the space of all linear orders on E. Every linear order is considered
as a subset of E ×E is identified with the compact space E×E{0, 1}.

Another example is the following. Let S1 be a circle, and let G =
H+(S1) be the group of all orientation-preserving homeomorphisms of
S1. Then µG can be identified with S1. If K is a compact manifold of
dimension > 1 and H(X) is the group of homeomorphisms of K, then
µG 6= K in view of the following general result:

For every topological group G, the action of G on the minimal compact
G-space µG is not 3-transitive.

A topological group G is called extremally amenable if every compact
G-space X has a G-fixed point x, i.e. gx = x for every g ∈ G. Equiva-
lently, G is extremally amenable if µG is a singleton.
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Recall that a topological group G is amenable if every continuous
action of G by affine transformations on a convex compact subset of a
locally convex vector space has a G-fixed point.

A subset A of a group G is called left large if there exists a finite subset
F of G such that G = FA.

A topological group G is extremally amenable if and only if whenever
A ⊆ G is left large, AA−1 is dense in G.

Let us say that a group G of order-preserving automorphisms of a
linearly ordered set X is ω-transitive if it takes any finite subset to any
finite subset of the same size.

An ω-transitive group of order automorphisms of an infinite linearly
ordered set X, equipped with the topology of point-wise convergence on X,
is extremally amenable. The group Aut(Q, 6), considered as a discrete
group has a common fixed point on each compact metric space.

A necessary condition for a group G to be extremaly amenable is
that there be no non-constant continuous characters χ : G → T, where
T = {z ∈ C : |z| = 1} is the unit circle. Indeed, if χ : G → T is a
character, χ 6= 1, then G admits a fixed-point free action on T given by
(g, x) 7→ χ(g)x.

Let G be an Abelian topological group. Suppose that G has no non-
trivial characters χ : G → T. Is G extremaly disconnected?

For cyclic group the question can be reformulated as follows. Let K
be a compact space, and let f ∈ H(K) be a fixed-point free homeo-
morphism of K. Let C be the cyclic subgroup of H(K) generated by f .
Does there exist a complex number a such that |a| = 1, a 6= 1, and the
homeomorphism χ : G → T defined by χ(fn) = an is continuous?

In the case G = Z, a negative answer to this question would imply a
negative answer to the following long-standing problem. We remind that
a Bohr topology on Z is the strongest precompact group topology.

Let A be a large subset of Z. Is the set A − A a Bohr neighbourhood
of zero in Z?

The above question has also a purely combinatorial equivalent.
Let A be a large subset of Z. Does there exist a large subset B such

that B −B + B −B ⊆ A−A?
For a topological group G the following statements are equivalent

(i) the canonical morphism γG → E(µG) is an isomorphism;
(ii) points of γG are separated by G-mappings to the minimal G-

spaces.
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For precompact group G, (ii) holds because γG = µG. For the group
Z with the discrete topology, (ii) does not hold.

Is a topological group precompact provided that the points of γG are
separated by G-mappings to the minimal G-spaces?

4. Dynamical equivalences and coronas

Let G be a topological group, X be a G-space. The orbit equivalence
E on X ((x, y) ∈ E ⇔ ∃g ∈ G : gx = y ) produces the following three
derived equivalences on X

(E̊ ): (x, y) ∈E̊ ⇔ clEx = clEy, where Ex, Ey are E-equivalence
classes containing x and y;

(Ė): Ė is the smallest by inclusion equivalence on X containing E

such that every Ė-equivalence class is closed;
(Ě): Ě is the smallest by inclusion closed in X ×X equivalence on

X containing E.
For every infinite discrete group G, the remainder G∗ = βG \G of the

Stone-Čech compactification βG of G has a natural structure of G-space.
We describe the interrelations between the classes of the equivalences E̊,
Ė, Ě and the principal left ideals of the semigroup βG.

The factor-space νG = G∗/Ě is called a corona of G and can be
considered as a topological orbit space of G∗. To clearify the virtual
equivalence Ě we use the slowly oscillating functions. A function f :
G → [0, 1] is called slowly oscillating if, for all ε > 0 and g ∈ G, there
exists a finite subset F of G such that |f(x) − f(gx)| < ε for every
g ∈ G \ F .

Given any p, q ∈ G∗, we have (p, q) ∈ Ě if and only if, for every slowly
oscillating function f : G → [0, 1], fβ(p) = fβ(q).

For every countable discrete group G, νG contains a topological copy
of ω∗ = βω\ω and there exists a continuous surjective mapping f : νG →
νN, where νN = {p̌ ∈ νZ : N ∈ p}. Moreover, if G is locally finite, then
νG contains a topological copy of ω∗ which is a retract of νG.

Besides the equivalences E̊, Ė, Ě on G∗, we consider also the tent
relation Ê defined by

(x, y) ∈ Ê ⇔ clEx ⊆ clEz, clEy ⊆ clEz for some z ∈ G∗,

which is also an equivalence if G is countable. Then we have

E ⊂ E̊ ⊂ Ê ⊆ Ė ⊂ Ě.
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Is Ê = Ė for the orbit equivalence E on Z∗?

[1] N.Hindman and D.Strauss, Algebra in the Stone-Čech compactification - Theory
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We consider the hyperspace Mε(Q) that consists of the closed subsets
of the Hilbert cube such that all their points are in segments of fixed
length ε > 0 which are entirely contained within the mentioned subsets.
Its topological and geometrical properties are studied. In particular it is
proved that Mε(Q) is a metric compactum, a Lawson compact topological
upper semilattice [2], and, under additional assumptions about ε, an
absolute retract.
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The objects of the asymptotic category are proper metric spaces and
the morphisms are proper asymptotically Lipschitz maps [1] .

To our purposes, it is reasonable to modify the asymptotic catego-
ry and to assume that its objects are discrete metric spaces. Then the
morphisms are the Lipschitz maps. In [2], the author introduced the con-
struction that assigns to every normal functor in the category of compact
Hausdorf spaces in the sense of E. Shchepin [3] a functor F in the as-
ymptotic category.

For every proper metric space (X, d) a metric d̂ on the space F (X) is
defined as follows.

Given a, b ∈ F (X), we let

d̂(a, b) = inf{
m∑

i=1

d(f2i−1, f2i) | f2i−1, f2i : Ai → X are such that

there exist ci ∈ F (Ai), supp(ci) = Ai, i = 1, . . . , m, with

a = F (f1)(c1), F (f2)(c1) = F (f3)(c2), . . . ,

F (f2m−1)(cm) = F (f2m−2)(cm−1), F (f2m)(cm) = b}.
The aim of this talk is to extend the mentioned construction onto the

case of natural transformation of finite normal functors.
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Recall that any natural transformation φ : F → G consists of a collec-
tion of morphisms (φX : F (X) → G(X))X such that for every f : X → Y
we have φY F (f) = G(f)φX .

Теорема 1. Any natural transformation of finite normal functors of
finite degree generates a (unique) natural transformation of the corre-
sponding functors in the asymptotic category.

Since the Hausdorff metric dH on the hypersymmetric powers expn X

is equivalent to the metric d̂ defined by means of the mentioned construc-
tion [2], one can define the natural transformation of support supp: F →
expn.

As an application, one can extend the class of functors in the asymp-
totic topology.

Теорема 2. Let φ : F → G be a natural transformation of finite normal
functors of finite degree and let H ⊂ G be a subfunctor. Then φ−1(H) is
a normal functor of finite degree.

Теорема 3. Let H ⊂ F be a subfunctor of a finite normal functor of
finite degree and let φ : H → G be a natural transformation, where G
is also a finite normal functor of finite degree. Define (F ∪φ G)(X) =
(F (X)tG(X))/ ∼, where a ∼ φX(a), for every a ∈ H(X). Then F ∪φ G
is a normal functor of finite degree.

The latter theorem describes the gluing operation for functors.

Лiтература

[1] A. Dranishnikov, Asymptotic topology, Russian Math. Surveys. 55 (6) (2000),
71–116.

[2] O. Shukel’, Functors of finite degree and asymptotic dimension zero, Matematy-
chni Studii. 29 (1) (2008), 101–107.

[3] E.V. Shchepin, Functors and uncountable powers of compacta, Uspekhi Mat.
Nauk. 36 (3) (1981), 3–62.
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The class of nodal algebras first was considered in [1], where it was
shown that nodal algebras are unique pure noetherian algebras such that
the classification of their modules of finite length is tame (all others being
wild).
Definition. A noetherian ring is called pure noetherian if it has no mini-
mal ideals. A ring N is called nodal if it is semi-perfect and pure noether-
ian, and there is a hereditary [2, 3] ring H ⊇ N , which is also semi-perfect
and pure noetherian such that

1) rad N = rad H;
2) lengthN (H ⊗N U) 6 2 for every simple left N -module U and

lengthN (V ⊗N H) 6 2 for every simple right N -module V .
We describe nodal algebras over K[[t]] where K is an algebraically

closed field. This characterization can be used to describe vector bundles
over certain noncommutative projective curves [4].
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Introduction

Let A be a complex commutative topological algebra. Let us denote
by M(A) the spectrum (set of continuous characters = set of continuous
complex-valued homomorphisms) of A. It is well known from the Theory
of commutative algebras that there is a bijective correspondents between
maximal ideals of A and its complex homomorphisms. So, we will identify
M(A) with the set of maximal ideals of A.

Recall that A is a semisimple algebra if the complex homomorphisms
in M(A) separate points of A. It is well known that every semisimple
commutative Fréchet algebra A is isomorphic to some subalgebra of con-
tinuous functions on M(A) endowed with a natural topology. More ex-
actly, for every a ∈ A there exists a function â : M(A) → C defined
by â(φ) := φ(a). The weakest topology on M(A) such that all functions
â, a ∈ A, are continuous is called the Gelfand topology. The Gelfand
topology coincides with the weak-star topology of the strong dual space
A′, restricted to M(A). If A is a Banach algebra, M(A) is a weak-star
compact subset of the unit ball of A′.

The map
A 3 a ; â ∈ C(M(A))

is called the Gelfand transform of A, where C(M(A)) is the algebra of
all continuous functions on M(A).

If A is a uniform algebra of continuous functions on a metric space
G, then for any x ∈ G the point evaluation functional δ(x) : f 7→ f(x)
belongs to M(A).

Let us consider several important examples. Let G be a metric spaces
and Cb(G) be the uniform Banach algebra of all bounded continuous
functions on G. Then the spectrum of Cb(G) coincides with the the
Czech-Stone compactification βG of G. That is, every function f ∈ Cb(G)
can be extended to a continuous function f̂ on βG and for every point
ξ ∈ βG the map f 7→ f̂(ξ) is a complex homomorphism of Cb(G).

Let A(Ω) be a uniform algebra of all analytic functions on an open
domain Ω ∈ Cn which are continuous on the closure Ω. Then M(A(Ω))
is the polynomial convex hull [Ω] of Ω (see [24] for details), where [Ω]
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is defined as a subset of Cn such that for every polynomial f, |f(x)| ≤
supz∈Ω |f(z)|. A set is polynomially convex if it coincides with its polyno-
mial convex hull. If Ω is convex, then [Ω] = Ω. In particular, if Ω = Cn,
then A(Ω) is the algebra of all entire functions on Cn, H(Cn) and its
spectrum coincides with the point evaluation functionals of Cn.

Following these examples we can think the spectrum of an uniform al-
gebra as a maximal natural domain such that all elements of this algebra
can be considered as a continuous function on this domain. Our purpose
is investigation of the spectra of various algebras of analytic functions.

1. Algebras of Polynomials

1.1. Introduction to Polynomials. Let X and Y be complex Banach
spaces. For every positive integer numbers n,m ∈ N, XnY m will denote
the Cartesian product of n copies of X and m copies of Y and xnym will
denote the element (x, . . . , x, y, . . . , y) from XnY m.

For n ∈ N we let L(nX, Y ) denote the space of all continuous n-linear
mappings from X to Y. Let us denote by ∆n the natural embeddings
called diagonal mappings from X to Xn defined as

∆n : X → Xn

x 7→ (x, . . . , x).

Definition 7. A mapping P from X to Y is called a continuous n-
homogeneous polynomial if P (x) = B(∆n(x)) for some B ∈ L(nX, Y ).
We let denote P(nX, Y ) the vector space of all continuous n-homogeneous
polynomials. An n-linear mapping B is called symmetric if B(x1, . . . , xn) =
B(xσ(1), . . . , xσ(n)) for any permutation σ on the set {1, . . . , n}. The
space of all continuous symmetric n-linear maps will be denoted by Ls(nX, Y ).

1. The spaces L(nX, Y ) and Ls(nX,Y ) are Banach spaces with norms
of uniform convergence on the unit ball of Xn.

1. The map
Ls(nX, Y ) → P(nX, Y )

B 7→ B ◦∆n

is an isomorphism between the Banach space Ls(nX,Y ) and the space
P(nX,Y ) with norm of uniform convergence on the unit ball of X and

(1) ‖B ◦∆n‖ ≤ ‖B‖ ≤ nn

n!
‖B ◦∆n‖.
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Доведення. The main tool of the proof is the polarization formula (see
[19, p. 8]):

(2) F (x1, . . . , xn) =
1

2nn!

∑
εi=±1

ε1 . . . εnF ◦∆n

( n∑

j=1

εixj

)
.

By the polarization formula

‖B‖ ≤ 1
2nn!

∑

1≤i≤n

∑
εi=±1

sup
‖xi‖≤1

∥∥∥B ◦∆n

( n∑

j=1

εixi

)∥∥∥ =

nn

2nn!

∑

1≤i≤n

∑
εi=±1

sup
‖xi‖≤1

∥∥∥B ◦∆n

( 1
n

n∑

j=1

εixj

)∥∥∥ ≤ nn

n!
‖B ◦∆n‖.

The left-hand side of inequality (1) is trivial. ¤

For a positive integer n and a Banach space X let

(3) c(n,X) := inf{M > 0: ‖B‖ ≤ M‖B◦∆n‖, for all B ∈ Ls(nX, Y )}.
We call c(n,X) the nth polarization constant of X. From (1) it follows
that

(4) 1 ≤ c(n,X) ≤ nn

n!
.

It is well known that c(n, `1) = nn/n! and c(n, `2) = 1 (see [20, p. 45])
for details.

2. P(nX, Y ) is a Banach space and for any P ∈ P(nX, Y ) there is a
unique n-linear symmetric map AP ∈ Ls(nX, Y ), the so-called associ-
ated with P n-linear map, such that P = AP ◦∆n.

Let us say that a class F(X,Y ) of some nonlinear mappings from X to
Y admits a linearization if there is a linear space W (X) and an injective
map UF(X,Y ) : X → W (X) such that for any F ∈ F(X, Y ) there is a
linear operator LF ∈ L(W (X), Y ) such that the diagram

(5)

X
F−→ Y

UF(X,Y ) ↓ ↗ LF

W (X)

commutes. The map UF(X,Y ) is called the canonical map associated with
the linearization.
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3. The space L(nX, Y ) admits a linearization.

Доведення. Let us denote by X(n) the space of all formal finite sums∑
i λi(x1, . . . , xn), where λi ∈ K. Let I denote the subspace of X(n)

generated by the elements of the form

(x1, . . . , xk + x′k, . . . , xn)− (x1, . . . , xk, . . . , xn)− (x1, . . . , x
′
k, . . . , xn),

(x1, . . . , λxk, . . . , xn)− λ(x1, . . . , xk, . . . , xn), 1 ≤ k ≤ n.

We let define the n-fold tensor product ⊗nX of X with itself by X(n)/I.
Put x1 ⊗ · · · ⊗ xn := (x1, . . . , xn) + I and denote by in the n-linear
mapping from Xn into ⊗nX such that in : (x1, . . . , xn) 7→ x1 ⊗ · · · ⊗ xn.
Then for any B ∈ L(nX, Y ) let

i∗n(B)
(∑

i

λixi1 ⊗ · · · ⊗ xin

)
:=

∑

i

λiB(xi1, . . . , xin).

The map i∗n is well defined and i∗n(B)(xi1 ⊗ · · · ⊗ xin) = B(xi1, . . . , xin).
So if F = B and F(X, Y ) = L(nX, Y ), then LB = i∗n(B), UL(nX,Y ) = in
and W (X) = ⊗nX in (5). ¤

2. The space L(nX,Y ) is isometrically isomorphic to the space of linear
continuous operators L(⊗n

πX, Y ) from the projective tensor product
⊗n

πX, where ⊗n
πX is the completion of ⊗nX by the norm

‖w‖ = inf
{ ∑

i1,...,in

‖xi1‖ . . . ‖xin‖ : w =
∑

i1,...,in

xi1 ⊗ · · · ⊗ xin

}
.

Let us define the symmetric projective tensor product ⊗n
s,πX of X to

itself as the closed subspace of ⊗n
πX generated by the vectors

x1 ⊗s · · · ⊗s xn :=
1
n!

∑

σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n),

where xi ∈ X and Sn is the group of permutations of the set {1, . . . , n}.
4. The space ⊗n

s,πX is complemented in ⊗n
πX and the map

νn

( ∑
xi1 ⊗ · · · ⊗ xin

)
=

∑
xi1 ⊗s · · · ⊗s xin

is a projection.

5. L(⊗n
s,πX, Y ) ' Ls(nX,Y ).
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From the polarization formula and Corollary 5 it follows that

(6) x1⊗s· · ·⊗sxn =
1
2n

∑

1≤i≤n

∑
εi=±1

ε1 . . . εn

( n∑

j=1

εixi

)
⊗· · ·⊗

( n∑

j=1

εixi

)
.

Therefore for each vector w ∈ ⊗n
s,πX there is a representation

w =
∞∑

i=1

x⊗n
i =

∞∑

i=1

n times︷ ︸︸ ︷
xi ⊗ · · · ⊗ xi .

Put

(7) |||w||| := inf
{ ∞∑

i=1

‖xi‖n : w =
∞∑

i=1

x⊗n
i

}
.

Then for any B ∈ Ls(nX, Y )

|||B||| = sup
|||w|||=1

‖i∗n(B)(w)‖ = ‖B ◦∆n‖.

Thus we have proved the following theorem.

3. There is an equivalent norm ||| · ||| on ⊗n
s,πX such that the space

L((⊗n
s,πX, ||| · |||), Y ) is isometric to P(nX,Y ) for every Banach space Y.

From the polarization inequality (4) and formula (7) we have the next
polarization inequality for tensor products:

(8) ‖w‖ ≤ |||w||| ≤ c(n,X)‖w‖.
A map P : X → Y is said to be a polynomial of degree n if P =

P0 +P1 + · · ·+Pn, where P0 ∈ Y, Pk ∈ P(kX, Y ) and Pn 6= 0. The space
of all polynomials from X to Y will be denoted by P(X, Y ). We denote
the spaces P(kX,C) and P(X,C) by P(kX) and P(X) respectively. Note
that P(X) is a topological algebra with the locally convex topology of
uniform convergence on bounded sets. We will use notations P(≤nX, Y )
and P(≤nX) for spaces of Y -valued and C-valued respectively, m-degree
polynomials on X, m ≤ n.

P ∈ P(X) is called a polynomial of finite type if it is a finite sum of
finite products of linear functionals. More general, if P ∈ P(X,Y ), then
P is a polynomial of finite type if for every linear functional h ∈ Y ′,
h◦P is a polynomial of finite type. The space of n-homogeneous polyno-
mials of finite type is denoted by Pf (nX,Y ). The closure of Pf (nX,Y ) in
the topology of uniform convergence on bounded sets is called the space
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of approximable polynomials and denoted by PA(nX,Y ). Each approx-
imable polynomial is weakly continuous on bounded sets. The following
theorem is proved in [8] by Aron and Prolla.

4. X ′ has the approximation property if and only if for every n Pf (nX, Y )
coincides with the space of all n-homogeneous weakly continuous polyno-
mials for an arbitrary Banach space Y, Pw(nX,Y )

It is unknown does equality Pf (nX) = Pw(nX) implies the approxi-
mation property of X ′ however, Aron, Cole and Gamelin in [5] show that
if X is a reflexive Banach space without the approximation property, then
Pf (2X ⊕X ′) 6= Pw(2X ⊕X ′).

1.2. The Aron-Berner Extension. A given continuous n-linear map-
ping B : X × · · · ×X → C, B can be extended to a continuous, n-linear
mapping B̃ : X ′′ × · · · ×X ′′ → C by

(9) B̃(x′′1 , . . . , x′′n) = lim
α1

. . . lim
αn

B(xα1 , . . . , xαn),

where for each k, (xαk
) is a net in X converging weak-star to x′′k .

Let P ∈ P(nX) and B be the n-linear map associated with P. Then
the Aron-Berner extension P̃ of P is defined as P̃ := B̃(x, . . . , x).

5. Let {xα} be a net in the unit ball of X that converges weak-star to
z, ‖z‖ < 1. Then there is a net {yβ} in the unit ball of X such that each
yβ is an arithmetic mean of a finite number of xα’s, and P (yβ) → P̃ (z)
for every polynomial P on X.

Let I be a set of indices and (Xi)i∈I be a family of Banach spaces.
Denote by `∞(Xi; I) the `∞ direct sum of Xi’s, that is, the collection of
all (xi)i∈I ∈

∏
i∈I Xi such that (‖xi‖)i∈I is bounded. Then

‖(xi)i∈I‖∞ := sup
i∈I

‖xi‖.

Let U be an ultrafilter on I and (xi)i∈I ∈ `∞(Xi; I). The boundedness of
the map I → R: I 7→ ‖xi‖ ensures that limU ‖xi‖ exists in R. Evidently,

NU := {(xi) ∈ `∞(Xi; I) : lim
U
‖xi‖ = 0}

is a closed linear subspace of `∞(Xi; I). Let us define the ultraproduct of
the family (Xi)i∈I with respect to the ultrafilter U as the quotient space
`∞(Xi; I)/NU equipped with the usual quotient norm. We shall denote
it by

(∏
Xi

)
U
. If Xi = X for each i ∈ I, we shall write XU instead of
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( ∏

Xi

)
U

and we shall refer to XU as the ultrapower of X with respect

to the ultrafilter U . The ultrapower XU consists of elements (xi)U , where
xi ∈ X for every i ∈ I and (xi)U = (yi)U if limU xi = limU yi.

The ultrafilter U on X associated with the weak convergence is called
a local ultrafilter for X.

There are two approaches for construction of extensions of polynomials
from a Banach space to its ultrapower. Let P ∈ P(nX) and BP be the
symmetric n-linear functions associated with P. Then we define an n-
linear functions on XU by

B̃P (x1, . . . , xn) = lim
i1,U

. . . lim
in,U

B̃P (x(1)
1 , . . . , x(n)

n )

for xk = (x(k)
i )U . It is easy to see that B̃P is well defined, B̃P is an

extension of B̃P and that ‖B̃P ‖ = ‖BP ‖. Thus we can define an extension
of P to XU by

P̃ ((xi)U ) = B̃P ((xi)U , . . . , (xi)U ).

If U is the local ultrafilter on X then the restriction of P̃ to the canonical
image of X ′′ in XU coincides with the Aron-Berner extension of P to
X ′′. Note that if BP is symmetric, it does not necessary follow that B̃P

is symmetric.

6. The following assertions are equivalent:

(1) For every ultrafilter U and every continuous symmetric bilinear
function B on X, the ultrapower extension B̃P is symmetric.

(2) For every ultrafilter U and every continuous symmetric n-linear
function B on X, the ultrapower extension B̃P is symmetric.

(3) For local ultrafilter on X and every continuous symmetric bilin-
ear function B on X, the ultrapower extension B̃P from X into
X ′′ is symmetric.

(4) Every continuous symmetric linear operator from X into X ′ is
weakly compact.

(5) Every continuous symmetric bilinear function on X extends to a
separately weak-star continuous bilinear function on X ′′.

A Banach space X is said to be symmetrically regular if the assertions
1-5 of Theorem 6 holds.
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Since every polynomial P ∈ P(nX) is bounded on bounded nets, we
can define

P ((xi)U ) := lim
U

P (xi)

and we have ‖P‖ = ‖P‖. Note that, in general, P̃ 6= P .
A closed subspace Y of a Banach space X is locally complemented in

X if there is a constant M such that whenever F is a finite-dimensional
subspace of X there is a linear map (depending on the given finite-
dimensional subspace) T : F → X so that ‖T‖ ≤ M and Tx = x
for all x ∈ F ∩X.

Thus, for instance, the Principle of Local Reflexivity of Lindenstrauss
and Rosenthal says that every Banach space is locally complemented
in its bidual. Also, it is well-known that every Banach space is locally
complemented in its ultrapowers

7. Let Y be a subspace of X. Then there exists a linear extension operator
P(nY ) → P(nX) for all (or some) n ≥ 1 if and only if Y is locally
complemented in X.

1.3. Spectra of Algebras of Polynomials.

6. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let F =
(f1, . . . , fn) be a map from Y to Cn such that the restriction of each fj

to any finite dimensional space of Y is a polynomial. Then the closure of
the range of F is an algebraic variety.

Доведення. Let Y0 be a finite dimensional subspace of Y. It is well known
to algebraic geometry that the closure F (Y0)− of F (Y0) is an irreducible
algebraic variety of dimension k ≤ n. Without loss of generality, we
can assume that Y0 is chosen so that the dimension k of F (Y0)− is a
maximum. If Y1 is any finite dimensional subspace of Y such that Y1 ⊇ Y0

then F (Y1)− is also an irreducible algebraic variety of dimension k, which
contains F (Y0)−. It follows that F (Y1)− = F (Y0)−, and we conclude that
F (Y0)− = F (Y )−. ¤

8. (Aron, Cole, Gamelin). Let Y be a complex vector space. Let A be
an algebra of functions on Y such that the restriction of each f ∈ A to
any finite dimensional subspace of Y is an analytic polynomial. Let I be
a proper ideal in A. Then there is a net (yα) in Y such that f(yα) → 0
for all f ∈ I.
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Доведення. Suppose that the conclusion fails. Then there are (f1, . . . , fn) ∈
I such that

max(|f1(y)|, . . . , |fn(y)|) ≥ 1, y ∈ Y.

Let F be the map from Y to Cn having components f1, . . . , fn. Let V be
an algebraic variety which does not contain 0. Hence there is a polynomial
p on Cn such that p = 0 on V and p(0) = 1. Since the functions p together
with the coordinate functions z1, . . . , zn have no common zero, the ideal
they generate in the polynomial ring on Cn is not proper (by the Hilbert
Nullstellensatz). So there exist polynomials q0, q1, . . . , qn on Cn such that

pq0 + z1q1 + · · ·+ znqn = 1 on Cn,

implying
z1q1 + · · ·+ znqn = 1 on V.

Now let g1, . . . , gn ∈ A be the compositions of q1, . . . , qn respectively with
F. Then f1g1 + · · ·+ fngn = 1, and the ideal I is not proper. ¤

7. Let φ be any (possibly discontinuous) complex-valued homomorphism
of Hb(X). Then there is a net (xα) in x such that P (xα) → φ(P ) for all
analytic polynomials P on X.

For a given uniform algebra A of continuous functions on a Banach
space X we define an A-topology on X as the weakest topology such that
all functions of A are continuous. That is A-topology is the restriction
of the Gelfand topology to X. We say that a net xα is A-convergent
(notation xα →A φ) if f(xα) is convergent for every f ∈ A.

8. Let P0(X) be a subalgebra of P(X). Then for every bounded P0-
convergent net (xα) ∈ X there is a continuous complex-valued homomor-
phism φ on P0(X) such that P (xα) → φ(P ) for each P ∈ P0(X).

Доведення. It is easy to see that

φ(P ) := lim
α

P (xα)

is a complex-valued homomorphism on P0(X). From the boundedness of
xα it follows that φ is continuous. ¤

9. Let P0(X) be a subalgebra of P(X) with unity which contains all
finite type polynomials. Let J be an ideal in P0(X) which is generated by
a finite number of polynomials P1, . . . , Pn ∈ P0(X). If the polynomials
P1, . . . , Pn have no common zeros, then J is not proper.
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Доведення. According to Lemma 6 there exists a finite dimensional
subspace Y0 = Cm ⊂ X such that F (Y0)− = F (X)−, where F (x) =
(P1(x), . . . Pn(x)). Let e1, . . . , em be a basis in Y0 and e∗1, . . . , e

∗
m be the

coordinate functionals. Denote by Pk |Y0 the restriction of Pk to Y0. Since
dim Y0 = m < ∞, there exists a continuous projection T : X → Y0. So
any polynomial Q ∈ P(Y0) can be extended to a polynomial Q̂ ∈ P0(X)
by formula Q̂(x) = Q(T (x)). Q̂ belongs to P0(X) because it is a finite
type polynomial. Let us consider the map

G(x) = (P1(x), . . . , Pn(x), ê∗1(x), . . . , ê∗m(x)) : X → Cm+n.

By definition of G, G(X)− = G(Y0)−.
Suppose that J is a proper ideal in P0(X) and so J is contained in a

maximal ideal JM . Let φ be a complex homomorphism such that JM =
kerφ. By Theorem 8 there exists a P0-convergent net (xα) such that
φ(P ) = limα P (xα) for every P ∈ P0(X). Since G(X)− = G(Y0)−, there
is a net (zβ) ⊂ Y0 such that limα G(xα) = limβ G(zβ). Note that each
polynomial Q ∈ P(Y0) is generated by the coordinate functionals. Thus
limβ Q(zβ) = limα Q̂(xα) = φ(Q). Also limβ Pk |Y0 (zβ) = limα Pk(xα) =
φ(Pk), k = 1, . . . , n. On the other hand, every P0-convergent net on a
finite dimensional subspace is weakly convergent and so it converges to
a point x0 ∈ Y0 ⊂ X. Thus Pk(x0) = 0 for 1 ≤ k ≤ n that contradicts
the assumption that P1, . . . , Pn have no common zeros. ¤

Note that we also prowed that each complex homomorphism φ : P0(X) →
C is a local evaluation. It means given P1, . . . , Pn ∈ P0(X), there exists
x0 ∈ X such that φ(Pk) = Pk(x0) for k = 1, . . . , n.

For an ideal J ∈ P0(X), V (J) denotes the zero of J, that is, the
common set of zeros of all polynomials in J. Let G be a subset of X.
Then I(G) denotes the hull of G, that is, a set of all polynomials in
P0(X) which vanish on G. The set RadJ is called the radical of J if
P k ∈ J for some positive integer k implies P ∈ RadJ. P is called a
radical polynomial if it can be represented by a product of mutually
different irreducible polynomials. In this case (P ) = Rad(P ).

A subalgebra A0 of an algebra A is called factorial if for every f ∈ A0

the equality f = f1f2 implies that f1 ∈ A0 and f2 ∈ A0.
Using a standard idea from Algebraic geometry, now we can prove

the next theorem which is a generalization of the well known Hilbert
Nullstellensatz for algebras of polynomials of infinitely many variables.
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10. Let P0(X) be a factorial subalgebra in P(X) which contains all
polynomials of finite type and J be an ideal P0(X) which is generated by
a finite sequence of polynomials P1, . . . , Pn. Then RadJ ⊂ P0(X) and

I[V (J)] = RadJ

in P0(X).

Доведення. Since P0(X) is factorial, RadJ ⊂ P0(X) for every ideal J ⊂
P0(X). Evidently, I[V (J)] ⊃ RadJ. Let P ∈ P0(X) and P (x) = 0 for
every x ∈ V (J). Let y ∈ C be an additional “independent variable”
which is associated with a basis vector e of an extra dimension. Consider
a Banach space X ⊕ Ce = {x + ye : x ∈ X, y ∈ C}. We denote by
P0(X) ⊗ P(C) the algebra of polynomials on X ⊕ Ce such that every
polynomial in P0(X)⊗P(C) belongs to P0(X) for arbitrary y ∈ C. The
polynomials P1, . . . , Pn, Py − 1 have no common zeros. By Theorem 9
there are polynomials Q1, . . . , Qn+1 ∈ P0(X)⊗ P(C) such that

n∑

i=1

PiQi + (Py − 1)Qn+1 ≡ 1.

Since it is an identity it will be still true for all vectors x such that
P (x) 6= 0 if we substitute y = 1/P (x). Thus

n∑

i=1

Pi(x)Qi(x, 1/P (x)) = 1.

Taking a common denominator, we find that for some positive integer N,
n∑

i=1

Pi(x)Q′
i(x)P−N (x) = 1

or

(10)
n∑

i=1

Pi(x)Q′i(x) = PN (x),

where Q′(x) = Q(x, P−1)PN (x) ∈ P0(X). The equality (10) holds on an
open subset X\ kerP, so it holds for every x ∈ X. But it means that PN

belongs to J. So P ∈ RadJ. ¤

9. Suppose kerP, P ∈ P(X) contains a linear subspace Z of codimension
one. Then there exists a polynomial Q ∈ P(X) and a linear functional L
such that P = QL.
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Доведення. Let L be a linear functional on X such that kerL = Z.
By Theorem 10 L divides PN for some positive integer N. So L divides
P. ¤

10. Suppose kerP, P ∈ P(X) is a union of a finite numbers of linear
subspaces. Then P is a product of a finite numbers of linear functionals.

Доведення. From the Hahn-Banach Theorem it follows that kerP is
contained in a finite union of one codimensional linear subspaces. So P is
factor of a product of linear functionals. Thus P is a product of a finite
numbers of linear functionals. ¤

11. Let P0(X) be a factorial subalgebra in P(X) which contains all
polynomials of finite type and has the following property: If Q ∈ P0(X)
and Q = Q1 + · · · + Qn is the (necessary unique) representation of Q
by homogeneous polynomials, then all Qk there are in P0(X). If P is
continuous in the weakest topology on X such that all polynomials in
P0(X) are continuous, then P ∈ P0(X).

Доведення. Without loss of the generality, we can assume that P is
m-homogeneous and irreducible. By the conditions of the theorem P
must be bounded on a set {x ∈ X : |P1(x)| < 1, . . . , |Pn(x)| < 1} for
some P1, . . . , Pn ∈ P0(X). Let J be an ideal generated by P1, . . . , Pn.
If x0 ∈ V (J), then tx0 ∈ V (J) for every number t. So P is bonded on
the subspace tx0, t ∈ C. But this is possible only if P is an identical
zero on this subset. Hence V (J) ⊂ ker P. Denote by A0 a minimal fac-
torial algebra which contains P0(X) and P. By Theorem 10 there are
Q1, . . . , Qn ∈ A0 such that

P1Q1 + · · ·+ PnQn = P.

We can assume that Qk, k = 1, . . . , n are homogeneous and
{

deg Qk + deg Pk = m if deg Pk ≤ m
Qk = 0 if deg Pk > m.

Indeed, let Qk =
∑

j Qj
k is the decomposition of Qk by j-homogeneous

polynomials. Then
n∑

k=1

PkQk =
n∑

k=1

PkQm−deg Pk

k +
n∑

k=1

Pk

∑

j 6=m−deg Pk

Qj
k = P
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Since
n∑

k=1

Pk

∑

j 6=m−deg Pk

Qj
k

contains no m-homogeneous polynomials and deg P = m,

n∑

k=1

Pk

∑

j 6=m−deg Pk

Qj
k = 0.

Putting Qk = Qm−deg Pk

k , we have the required restrictions for Qk. Since
P is irreducible and deg Qk < deg P = m, Qk belongs to P0(X) ⊂ A0

for every k. Therefore P ∈ P0(X). ¤

We say a set V is an algebraic set of finite type if V is the set of
common zeros of some finite number of polynomials P1, . . . , Pn ∈ P(X).
V is called an algebraic variety of finite type if the ideal (P1, . . . , Pn) is
prime.

Let V = V (P1, . . . , Pn) be an algebraic set of finite type. We can
define an algebra of polynomials on V as a quotient algebra P(V) :=
P(X)/I(V). From Theorem 10 it follows that P is the identical zero in
P(V) if and only if PN ∈ (P1, . . . , Pn) for some N and P(V) is an integral
domain if and only if (P1, . . . , Pn) is prime.

12. Let φ be a complex homomorphism (possible discontinuous) of P(V).
Then there is a net (xα) ⊂ V such that φ(P ) = limα P (xα) for every
P ∈ P(V).

Доведення. Note first that each complex homomorphism of P(V) is a
local evaluation at V. Indeed, if φ is a complex homomorphism of P(V),
then φ may be considered as a complex homomorphism of P(X) which
vanishes on I(V). As we have indicated, φ must be a local evaluation
at points of x, that is, for every polynomials P1, . . . , Pn ∈ P(X) there
exists x0 ∈ X such that φ(Pk) = Pk(x0). Since φ vanishes on I(V),
x0 ∈ V. Thus for every Q1, . . . , Qn ∈ P(V) there exists x0 ∈ V such that
φ(Qk) = Qk(x0), 1 ≤ k ≤ n.

Consider the set of zeros of all finitely generated ideals in P(V):

{
Vα =

m⋂

k=1

ker[Pα,k − φ(Pα,k)] : Pα,k ∈ P(X)
}

.
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Each Vα is nonempty and The set {Vα} is naturally ordered by inclusion.
Let (xα) ⊂ V be a net such that xα ∈ Vα. It is clear, φ(P ) = limα P (xα)
for every P ∈ P(V). ¤

1.4. Applications for Symmetric Polynomials. Let G be a group of
linear isometries of X. A subset V of X is said to be G-symmetric if it
is invariant under the action of G on X. A function with a G-symmetric
domain is G-symmetric if f(σ(x)) = f(x) for every σ ∈ G. It is clear that
the kernel of a G-symmetric polynomial is G-symmetric. We consider the
question: under which conditions a polynomial with a G-symmetric set
of zeros is G-symmetric?

First we observe that if P (x) is an irreducible polynomial then P (σ(x))
is irreducible for every σ ∈ G. Indeed, if P (σ(x)) = P1(x)P2(x), then

P (x) = P1(σ−1(x))P2(σ−1(x)).

Recall that a group homomorphism of G to S1 = {eiϑ : 0 ≤ ϑ < 2π}
is called a character of G.

11. Suppose G has no nontrivial characters. If P is radical and kerP is
a G-symmetric set, then P is a G-symmetric polynomial.

Доведення. Since ker P = kerP ◦ σ for every σ ∈ G, then, by Theorem
10, P = cP ◦ σ for some constant c. Because σ is an isometry, |c| = 1. If
c 6= 1, then c = c(σ) is a nontrivial character of G. So c = 1. ¤

Suppose, for example G = S1, that is, the group of actions x Ã eiϑx.
Then a homogeneous polynomial is G-symmetric only if it is a constant.
However, zero set of any homogeneous polynomial is S1-symmetric.

Note that the subset of all G-symmetric polynomials is a subalgebra
in P(X).

13. Suppose that the algebra of G-symmetric polynomials on X is facto-
rial and G has no nontrivial characters. Then the kernel of a G-symmetric
polynomial P is G-symmetric if and only if P is G-symmetric.

Доведення. Let P = P k1
1 . . . P kn

n , where P1, . . . , Pn are mutually dif-
ferent irreducible polynomials. Then P1 . . . Pn has the same set of zero
that P. So if kerP is G-symmetric, then by Proposition 11, P1 . . . Pn is G-
symmetric. By the assumption of the theorem, all polynomials P1, . . . , Pn

must be G-symmetric. So P is G-symmetric as well. ¤
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Note that if there exist a G-symmetric polynomial P = P1P2 such that
P1 is not G-symmetric, then P 2

1 P2 is a not G-symmetric polynomial with
a G-symmetric kernel.

If X is the infinite-dimensional space `p, 1 ≤ p < ∞ and G is the
group of permutations of basis elements, then it is not difficult to see
that the algebra of G-symmetric polynomial is factorial and G has no
nontrivial characters. For any finite-dimensional space there exists a
nonsymmetric polynomial which has a symmetric kernel. For example
P (x) = x2

1x2 . . . xn has a symmetric kernel in Cn but is not symmetric if
n > 1.

Note that the algebra Ps(`p) of symmetric polynomials on `p with
respect to the group of permutations of basis elements (ek) ⊂ `p does
not satisfy the conditions of Theorem 10. However, this theorem is still
true for this algebra. For simplicity we consider the case of `1 space.

14. The elementary symmetric polynomials (Ri)n
i=1,

Ri(x) =
∑

k1<···<ki

xk1 . . . xki ,

where x =
∑

xiei ∈ `1 form an algebraic basis in Ps(`1). It means that
every symmetric polynomial Q ∈ Ps(`1) can be represented by the way

(11) Q(x) = q(R1(x), . . . , Rn(x)),

where q is a polynomial in P(Cn) and (Rk)∞k=1 are algebraically inde-
pendent, that is, if p(R1(x), . . . , Rn(x)) ≡ 0 for some p ∈ P(Cn), then
p ≡ 0.

Доведення. It is well known from Algebra (see [36]) that for any sym-
metric polynomial Q(m) ∈ Ps(Cm), deg Q(m) = n there i a polynomial
q ∈ P(Cn) such that

Q(m)(x) = q(R(m)
1 (x), . . . , R(m)

n (x)),

where

R
(m)
i (x) =

m∑

k1<···<ki

xk1 . . . xki .

Let Vm = span(e1, . . . , en) ⊂ `1. We set

Tm :
∞∑

i=1

xiei 7→
n∑

i=1

xiei
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the projection from `1 to Vm. Let Q ∈ Ps(`1), deg Q = n. Then there
exists a polynomial q ∈ P(Cn) such that for every m ≥ n and for every
x ∈ `1

Q(Tm(x)) = q(R(m)
1 (x), . . . , R(m)

n (x)).

Taking the limit as m →∞ we will get (11).
To show that Rj are algebraically independent, we observe that for

every (ξ1, . . . , ξn) ∈ Cn there exists a vector xξ = (x1, . . . , xn, 0, 0 . . .) ∈
`1 such that

(12) R1(xξ) = ξ1, . . . , Rn(xξ) = ξn.

Indeed, according to the Vieta formula, the solutions of the equation

xn − ξ1x
n−1 + . . . (−1)nξn = 0

satisfy the conditions Ri(x1, . . . , xn) = ξi and so xξ = (x1, . . . , xn) is as
required.

If p(ξ1, . . . , ξn) 6= 0 for some (ξ1, . . . , ξn) ∈ Cn, then

P (R1(xξ), . . . , Rn(xξ)) 6= 0.

¤

12. Let P1, . . . , Pm ∈ Ps(`1) be such that kerP1∩· · ·∩kerPm = ∅. Then
there are Q1, . . . , Qm ∈ Ps(`1) such that

m∑

i=1

PiQi ≡ 1.

Доведення. Let n = maxi(deg Pi). We may assume that

Pi(x) = gi(R1(x), . . . , Rn(x))

for some gi ∈ P(Cn). Let us suppose that at some point ξ ∈ Cn, ξ =
(ξ1, . . . , ξn), gi(ξ) = 0. Then there is xξ ∈ `1 such that Ri(x0) = ξi

(see formula 12). So the common set of zeros of all gi is empty. Thus
by the Hilbert Nullstellensatz there are polynomials q1, . . . , qm such that∑

i giqi ≡ 1. Put Qi(x) = qi(R1(x), . . . , Rn(x)). ¤

2. Algebras of Analytic Functions

2.1. Introduction to Analytic Functions. Ω is finitely open subset
of a Banach space X if for any finite dimensional affine subspace E of
X, endowed with the Euclidean topology, E ∩ Ω is open in E.
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Definition 8. We say that a map f : Ω → Y is G-analytic (Gâteaux-
analytic), and write f ∈ HG(Ω, Y ), if the restriction of f onto E ∩ Ω is
analytic for any finite-dimensional affine subspace E (or, equivalently, for
any complex line E ∈ X). A G-analytic map defined on an open subset
Ω ⊂ X to Y is called analytic, written f ∈ H(Ω, Y ), if it is continuous.

Every analytic function f ∈ H(Ω, Y ) can be locally represented by its
Taylor’s series expansion

f(a + x) =
∞∑

n=0

fn(x) =
∞∑

n=0

1
n!

dnf(a)(x, . . . , x)

which converges uniformly on a neighborhood of a ∈ Ω, where
dnf(a)(x, . . . , x) ∈ P(nX) is the nth Fréchet derivation of f at a by the
direction (x, . . . , x).

13. Let fk be a sequence of continuous k-homogeneous polynomials
from X to Y . A necessary and sufficient condition for existence of f ∈
H(X,Y ) such that fk = dkf(0) is that for any given ε > 0 each x ∈ X
has a neighborhood U such that supU ‖fk‖1/k ≤ ε for k large enough.

Let f ∈ H(Ω, Y ), where Ω is an open subset of X, and x ∈ Ω. The
radius of uniform convergence %x(f) of f at x is defined as supremum of
λ, λ ∈ C such that x + λB ⊂ Ω and the Taylor series of f at x converges
to f uniformly on x + λB, where B is the unit ball of X. The radius of
boundedness of f at x is defined as supremum of λ, λ ∈ C such that f is
bounded on x + λB.

15. The radius of uniform convergence of f at x coincides with the
radius of boundedness of f at x and if f ∈ H(X,Y ), then

%0(f) :=
(
lim sup

n→∞
‖fn‖1/n

)−1

,

where fn = dk(x)f/n!.

Denote by Hb(X) the space of entire functions of bounded type that
consists of entire functions on X which are bounded on bounded subsets
(i.e. have the radius of boundedness equal to infinity). Note that if X is
an infinite dimensional Banach space, then there exists a C-valued entire
function on X, f, such that %(f) < ∞ for every x ∈ X (see e.g. [19],
p.169). The space Hb(X) is a Fréchet algebra endowed with topology,
generated by seminorms

‖f‖r = sup{|f(x)| : x ∈ X, ‖x‖ < r},
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where r > 0 is a rational number.
Each linear functional φ ∈ Hb(X)′ is continuous with respect to the

norm of uniform convergence on some ball in X. The radius function
R(φ) of φ is defined as infimum of all r > 0 such that φ is continuous
with respect to the norm of uniform convergence on the ball rB.

Denote by φn the restriction of φ to the subspace of n-homogeneous
polynomials P(nX). Then φn is a continuous linear functional on P(nX)
and

‖φn‖ = sup{φ(P ) : P ∈ P(nX), ‖P‖ ≤ 1}.
16. The radius function R on Hb(X)′ is given by

R(φ) = lim sup
n→∞

‖φn‖1/n.

Доведення. Let φn be the restriction of φ to P(nX) and

‖φn‖ = sup{|φn(P )| : P ∈ P(nX) with ‖P‖ ≤ 1}.
Suppose that

0 < t < lim sup
n→∞

‖φn‖1/n.

Then there is a sequence of homogeneous symmetric polynomials Pj of
degree nj →∞ such that ‖Pj‖ = 1 and |φ(Pj)| > tnj . If 0 < r < t, then
by homogeneity,

‖Pj‖r = sup
x∈rB

|Pj(x)| = rnj ,

so that
|φ(Pj)| > (t/r)nj‖Pj‖r,

and φ is not continuous on with respect to the norm of uniform conver-
gence on rB. It follows that R(φ) ≥ r, and on account of the arbitrary
choice of r we obtain

R(φ) ≥ lim sup
n→∞

‖φn‖1/n

Let now s > lim sup
n→∞

‖φn‖1/n so that sm ≥ ‖φm‖ for m large. Then

there is c ≥ 1 such that ‖φm‖ ≤ csm for every m. If r > s is arbitrary

and f ∈ Hb(X) has Taylor series expansion f =
∞∑

n=1

fn, then

rm‖fm‖ = ‖fm‖r ≤ ‖f‖r, m ≥ 0.
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Hence
|φ(fm)| ≤ ‖φm‖‖fm‖ ≤ csm

rm
‖f‖r

and so
‖φ(f)‖ ≤ c

( ∑ sm

rm

)
‖f‖r.

Thus φ is continuous with respect to the uniform norm on rB, and
R(φ) ≤ r. Since r and s are arbitrary,

R(φ) ≤ lim sup
n→∞

‖φn‖1/n.

¤

17. Suppose that φn ∈ P(nX)′ for n ≥ 0, and suppose that norm of φn

satisfy
‖φn‖ ≤ csn

for some c, s > 0. Then there is a unique φ ∈ Hb(X)′ whose restriction
to P(nX) coincides with φn, n ≥ 0.

The next theorem easily follows from Theorem 5.

18. Let f ∈ Hb(X) and f =
∑

fn is its Taylor series. Then there
exists f̃ ∈ Hb(X ′′) with the Taylor series expansion f̃ =

∑
f̃n such that

f̃n is the Aron-Berner extension of fn. Moreover, ‖f̃‖ = ‖f‖ and the
operator f 7→ f̃ is a homomorphism between the Fréchet algebras Hb(X)
and Hb(X ′′).

2.2. The Spectrum of Hb. Let us denote by An(X) the closure of the
algebra, generated by polynomials from P(≤nX) with respect to the uni-
form topology on bounded subsets. It is clear A1(X)∩P(nX) = PA(nX)
and An(X) is a Fréchet algebra of entire analytic functions on X for every
n. The closure of the algebra of all polynomials P(X) with respect to the
uniform topology on bounded subsets coincides with Hb(X). The closure
of the algebra of all polynomials with respect to the uniform topology
on the unit ball B, H∞

uc(B) is the algebra of all analytic functions on B
which are uniformly continuous on B. We will use short notations Mb

and Muc for the spectra M(Hb(X)) and M(H∞
uc(B)) respectively.

14. Let φ ∈ Hb(X)′ such that φ(P ) = 0 for every P ∈ P(mX) ∩
Am−1(X), where m is a fixed positive integer and φm 6= 0. Then there is
ψ ∈ Mb such that ψk = 0 for k < m and ψm = φm. The radius function
R(ψ) = ‖φm‖1/m.
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Доведення. Since φm 6= 0, there is an element w ∈ (⊗m
s,πX)′′, w 6= 0 such

that for any m-homogeneous polynomial P, φ(P ) = φm(P ) = P̃(m)(w),
where P̃(m) is the Aron-Berner extension of linear functional P(m) from
⊗m

s,πX to (⊗m
s,πX)′′ and ‖w‖ = ‖φm‖. For an arbitrary n-homogeneous

polynomial Q we set

(13) ψ(Q) =
{

Q̃(m)(w) if n = mk for some k ≥ 0
0 otherwise,

where Q̃(m) is the Aron-Berner extension of the k-homogeneous polyno-
mial Q(m) from ⊗m

s,πX to (⊗m
s,πX)′′.

Let (uα) be a net from ⊗m
s,πX that converges to w in the weak-star

topology of (⊗m
s,πX)′′, where α belongs to an index set A. We can assume

that uα has a representation uα =
∞∑

j=1

x⊗m
j,α for some xj,α ∈ X. Let us

show that ψ(PQ) = ψ(P )ψ(Q) for any homogeneous polynomials P and
Q. Let us suppose first that deg(PQ) = mr+l for some integers r ≥ 0 and
m > l > 0. Then P or Q has degree equal to mk + s, k ≥ 0, m > s > 0.
Thus, by the definition, ψ(PQ) = 0 and ψ(P )ψ(Q) = 0. Suppose that
deg(PQ) = mr for some integer r ≥ 0. If deg P = mk and deg Q = mn

for k, n ≥ 0, then deg(PQ) = m(k + n) and ψ(PQ) = (P̃Q)(m)(w) =
P̃(m)(w)Q̃(m)(w) = ψ(P )ψ(Q).

Let now deg P = mk + l and deg Q = mn + r, l, r > 0, l + r = m.
Write ν = 1/(deg P + deg Q)! = 1/(m(k + n + 1))!. Let APQ denote the
symmetric multilinear map, associated with PQ. Then

APQ(x1, . . . , xm(k+n+1))

= ν
∑

σ∈Sm(k+n+1)

AP (xσ(1), . . . , xσ(mk+l))AQ(xσ(mk+l+1), . . . , xσ(m(k+n+1))),

where Sm(k+n+1) is the group of permutations on {1, . . . , m(k + n + 1)}.
Thus for α1, . . . , αk+n+1 ∈ A we have
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ψ(PQ)

= (P̃Q)(m)(w) = lim
α1,...,αk+n+1

ÃPQ(m)(uα1 , . . . , uαk+n+1)

= lim
α1,...,αk+n+1

ÃPQ(m)




∞∑

j=1

x⊗m
j,α1

, . . . ,
∞∑

j=1

x⊗m
j,αk+n+1




= ν
∑

σ∈Sm(k+n+1)

lim
ασ(1),...,ασ(k+n+1)

∞∑

j1,...,jk+n+1=1

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

,

xl
jσ(k+1),ασ(k+1)

)AQ(xr
jσ(k+1),ασ(k+1)

, xm
jσ(k+2),ασ(k+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

).

Fix some σ ∈ Sm(k+n+1) and fix all xjσ(i),ασ(i) , for i ≤ k and for
i > k + 1. Then

∞∑

j1,...,jk+n+1=1

lim
ασ(k+1)

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

, xl
jσ(k+1),ασ(k+1)

)

×AQ(xr
jσ(k+1),ασ(k+1)

, xm
jσ(k+2),ασ(n+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

) = 0

because for fixed xkσ(i),ασ(i) , i ≤ k

Pσ(y) :=
∞∑

j1,...,jk,jk+2,...,jk+n+1=1

AP (xm
jσ(1),ασ(1)

, . . . , xm
jσ(k),ασ(k)

, yl)

is an l-homogeneous polynomial and for fixed xkσ(i),ασ(i) , i > k + 1

Qσ(y) :=
∞∑

j1,...,jk,jk+2,...,jk+n+1=1

AQ(yr, xm
jσ(k+2),ασ(n+2)

, . . . , xm
jσ(k+n+1),ασ(k+n+1)

)

is an r-homogeneous polynomial. Thus PσQσ ∈ Am−1(X). Hence

lim
α

(PσQσ)(m)(uα) = ψ(PσQσ) = 0

for every fixed σ. Thus ψ(PQ) = 0. On the other hand, ψ(P )ψ(Q) = 0
by the definition of ψ. So ψ(PQ) = ψ(P )ψ(Q).

Thus we have defined the multiplicative function ψ on homogeneous
polynomials. We can extend it by linearity and distributivity to a linear
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multiplicative functional on the algebra of all continuous polynomials
P(X). If ψn is the restriction of ψ to P(nX), then ‖ψn‖ = ‖w‖n/m if

n/m is a positive integer and ‖ψn‖ = 0 otherwise. Hence ψ =
∞∑

n=0

ψn is

a continuous linear multiplicative functional on Hb(X) by Theorem 17
and the radius function of ψ can be computed by

R(ψ) = lim sup
n→∞

‖ψn‖1/n = lim sup
n→∞

‖w‖n/mn = ‖w‖1/m = ‖φm‖1/m

as required. ¤

For each fixed x ∈ X, the translation operator Tx is defined on Hb(X)
by

(Txf)(y) = f(y + x), f ∈ Hb(X).
It is not complicated to check that Txf ∈ Hb(X) and for fixed φ ∈ Hb(X)′

the function x 7→ φ(Txf), x ∈ X, belongs to Hb(X) (see [4]).
For fixed φ, θ ∈ Hb(X)′ the convolution product φ ∗ θ in Hb(X) is

defined by
(φ ∗ θ)(f) = φ(θ(Txf)), f ∈ Hb(X).

Let φ, θ ∈ Mb. By Corollary 7, there exist nets (xα), (yβ) ⊂ X such
that

(14) φ(P ) = lim
α

P (xα), θ(P ) = lim
β

P (yβ)

for every polynomial P. According to our notations, we will write the
condition (14) by xα →P φ and yβ →P θ. Thus for every polynomial P we
have: (φ ∗ θ)(P ) = limβ limα P (xα + yβ). Note that Mb is a semigroup
with respect to the convolution product and φ ∗ θ 6= θ ∗ φ in general (see

[7, Remark 3.5]). We denote φ1 ∗ · · · ∗ φn briefly by
n
+×

k=1
φk.

Let Ik be the minimal closed ideal in Hb(X), generated by all m-
homogeneous polynomials, 0 < m ≤ k. Evidently, Ik is a proper ideal
(contains no unit) so it is contained in a closed maximal ideal (see [31,
p. 228]). Let

Φk := {φ ∈ Mb : kerφ ⊃ Ik}.
We set Φ0 := Mb. The functional δ(0), that is point evaluation at zero,
belongs to Φk for every k > 0.

15. If Am(X) 6= Am−1(X) for some m > 1, then there exists ψ ∈ Φm−1

such that ψ /∈ Φm.
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Доведення. Let P ∈ P(mX) and P 6∈ Am−1(X). Since Am−1(X) is a
closed subspace of Hb(X), by the Hahn-Banach Theorem there exists a
linear functional φ ∈ Hb(X)′ such that φ(Q) = 0 for every Q ∈ Am−1(X)
and φ(P ) 6= 0. So φk ≡ 0 for k < m and φm(P ) 6= 0. By Lemma 14 there
exists ψ ∈ Mb such that ψk = φk for k = 1, . . . ,m. Thus ψ ∈ Φm−1, but
ψ /∈ Φm. ¤

Note that A1(c0) = An(c0) for every n, but Ak(`p) = Am(`p) for
k 6= m if and only if k < p and m < p. Moreover, if X admits a polynomial
which is not weakly sequentially continuous, then the chain of algebras
{Ak(X)} does not stabilize and if X contains `1, then Ak(X) 6= Am(X)
for k 6= m [26, ?].

16. If φ, ψ ∈ Mb and ψ ∈ Φk−1, then φ ∗ψ(P ) = φ(P )+ψ(P ) for every
P ∈ P(kX).

Доведення. Let (xα) and (yβ) be nets in X such that xα →P φ and yβ →P ψ.
For any fixed yβ and 0 < n < k, AP (xk−n, yn

β ) is a (k− n)-homogeneous
polynomial. Thus

φ(AP (xk−n, yn
β )) = lim

α
AP (xk−n

α , yn
β ) = 0.

Therefore,
φ ∗ ψ(P ) = lim

β,α
P (xα + yβ)

=
∑

n+m=k

lim
β,α

AP (xn
α, ym

β ) =
∑

n+m=k

lim
β

(
lim
α

AP (xn
α, ym

β )
)

= lim
β

(
lim
α

AP (xα, . . . , xα) + AP (yβ , . . . , yβ)
)

= φ(P ) + ψ(P ).

¤

17. If P ∈ P(kX), φj ∈ Φj−1, then for every m > k,
m
+×

j=1
φj(P ) =

k
+×

j=1
φj(P ).

Доведення. Since φj ∈ Φj−1, φj(P ) = 0 for every j > k. ¤

Given a sequence (φn)∞n=1 ⊂ Mb, φn ∈ Φn−1, the infinite convolu-

tion
∞
+×

n=1
φn denotes a linear multiplicative functional on the algebra of

all polynomials P(X) such that
∞
+×

n=1
φn(P ) =

k
+×

n=1
φn(P ) if P ∈ P(kX)



Abstracts of Lectures and Reports Тези лекцiй i доповiдей 63

for an arbitrary k. This multiplicative functional uniquely determines a
functional in Mb (which we denote by the same symbol

∞
+×

n=1
φn) if it is

continuous.
The point evaluation operator δ maps X into Mb by x 7→ δ(x),

δ(x)(f) = f(x). The operator δ̃ is the extension of δ onto X ′′, i.e.
δ̃(x′′)(f) = f̃(x′′) for every x′′ ∈ X ′′.

19. There exists a sequence of dual Banach spaces (En)∞n=1 and a se-
quence of maps δ(n) : En → Mb such that E1 = X ′′, En = P(nX)′∩I⊥n−1,

δ(1) = δ̃ and such that an arbitrary complex homomorphism φ ∈ Mb has
a representation

(15) φ =
∞
+×

n=1
δ(n)(un)

for some un ∈ En, n = 1, 2, . . ..

Доведення. Put E1 = X ′′. Then δ(1)(x′′) = δ̃(x′′) ∈ Mb for every x′′ ∈
X ′′. Suppose that spaces Ek and maps δ(k) are constructed for k < n.
Denote by En the set {πn(φ) : φ ∈ Φn−1}, where πn(φ) = φn is the
restriction of φ onto subspace P(nX). In other words, En consists of
linear continuous functionals on P(nX) that vanish on all polynomials
in P(nX) ∩ An−1. If An = An−1, then En ≡ 0. Otherwise, by Corollary
15, there are nonzero points in En.

By Lemma 16, for P ∈ P(nX) and φ, ψ ∈ Φn−1 ⊂ Mb, πn(φ∗ψ)(P ) =
φ∗ψ(P ) = φ(P )+ψ(P ) = πnφ(P )+πnψ(P ). Hence πn(φ∗ψ) = πn(φ)+
πn(ψ). For an arbitrary complex number a, aφ ∈ Hb(X)′ and πk(aφ) =
aπk(φ). So aφ vanishes on all homogeneous polynomials of degree less
than n. By Lemma 14 there exists ψ ∈ Mb such that ψk = aφk for
1 ≤ k ≤ n. Thus ψ ∈ Φn−1 and aφn = ψn ∈ En. Hence En is a linear
space and polynomials from P(nX) are acting on En as linear functionals.
Put Wn = P(nX)/(In−1 ∩P(nX)). Then Wn is a Banach space of linear
functionals on En and the functionals from Wn separate points of En. Let
us define a norm on En, ‖ ·‖n as the supremum of values of a vector from
En on the unit ball of Wn. Therefore W ′

n = (P(nX)/(In−1∩P(nX)))′ =
P(nX)′ ∩ I⊥n−1 ⊃ En. On the other hand, if u ∈ P(nX)′ ∩ I⊥n−1, then by
Lemma 14 u = πn(φ) for some φ ∈ Mb and so u ∈ En. Thus En = W ′

n.
For given w ∈ En let us define δ(n)(w)(Q) = ψ(Q) on homogeneous

polynomials Q by formula (13) and extend it to the unique complex
homomorphism on Hb(X) as in Lemma 14. So δ(n) maps En into Mb.



64 Algebra, Topology, and Analysis — VII (2010)

For any φ ∈ Mb put u1 := φ1 ∈ X ′′ = E1, u2 := φ2 − π2(δ(1)(u1)). It is
clear that u2 ∈ E2. Suppose that we have defined uk ∈ Ek, k < n. Set

(16) un := φn − πn

(
n−1
+×

k=1
δ(k)(uk)

)
.

Let us show that un ∈ En. It is enough to check that for every P ∈ P(nX)
such that P = PkPm, deg Pk = k 6= 0, deg Pn = n 6= 0 implies un(P ) = 0.
Note that for every n-homogeneous polynomials Pn,

φn − πn

(
n−1
+×

k=1
δ(k)(uk)

)
(Pn) = φn −

n−1
+×

k=1
δ(k)(uk)(Pn).

From the multiplicativity of φ and Lemma 17 it follows that

un(P ) = φn(PkPm)− n−1
+×

j=1
δ(j)(uj)(PkPm) = φk(Pk)φm(Pm)

−
(

n−1
+×

j=1
δ(j)(uj)(Pk)

) (
n−1
+×

j=1
δ(j)(uj)(Pm)

)

=
(

uk(Pk) +
k−1
+×

j=1
δ(j)(uj)(Pk)

)(
um(Pm) +

m−1
+×

j=1
δ(j)(uj)(Pm)

)

−
(

k
+×

j=1
δ(j)(uj)(Pk)

)(
m
+×

j=1
δ(j)(uj)(Pm)

)
= 0.

The last equality holds because by the induction assumption, uk ∈ Ek,
um ∈ Em and hence, by Lemma 16,

(17) uk(Pk) +
k−1
+×

j=1
δ(j)(uj)(Pk) =

k
+×

j=1
δ(j)(uj)(Pk)

and

um(Pm) +
m−1
+×

j=1
δ(j)(uj)(Pm) =

m
+×

j=1
δ(j)(uj)(Pm).

Let us consider the functional
∞
+×

j=1
δ(j)(uj). Since uk ∈ Ek, by Lemma 16,

∞
+×

j=1
δ(j)(uj)(f) = f(0) +

∞∑
n=1

n
+×

j=1
δ(j)(uj)(fn),

where f =
∑

fn is the Taylor series expansion of f. Hence
∞
+×

j=1
δ(j)(uj)

is well defined on P(X). On the other hand, applying (16) and (17) we
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obtain
(

φ− ∞
+×

j=1
δ(j)(uj)

)
(Pn) = φn(Pn)− n

+×
j=1

δ(j)(uj)(Pn)

= un(P ) +
n−1
+×

j=1
δ(j)(uj)(Pn)− n

+×
j=1

δ(j)(uj)(Pn) = 0

for arbitrary Pn ∈ P(nX). Thus φ =
∞
+×

j=1
δ(j)(uj) on P(X). Hence φ =

∞
+×

j=1
δ(j)(uj) on Hb(X). ¤

20. Let (uk)∞k=1 be a sequence such that uk ∈ Ek for every k. Then

φ =
∞
+×

k=1
δ(k)(uk) is a continuous complex homomorphism in Mb if and

only if sup
k
‖uk‖1/k < ∞. In this case

(18) sup
k
‖uk‖1/k ≤ R(φ) ≤ e sup

k
‖uk‖1/k.

3. Applications

3.1. Discontinuous Complex Homomorphisms. The Michael Prob-
lem. E. Michael [30] posed the following problem in 1952 which is still
open:

Is every complex homomorphism of a commutative Fréchet algebra con-
tinuous?

In [31, p. 240] Mujica proved that the The Michael Problem can be
reduced to the case of the algebra Hb(X) for an arbitrary Banach space
X with a Schauder basis. However a dens subalgebra of Hb(X) may
admit a discontinuous complex homomorphism. Dixon [21] has given an
example of an algebra of polynomials of infinitely many variables which
admits discontinuous scalar-valued homomorphisms. In [23] Galindo et
al. gave a construction of a discontinuous scalar-valued homomorphism
of algebra of polynomials on arbitrary infinite-dimensional Banach space.
Their idea is to take a discontinuous functional on X ′ and extend it to
a functional on P(X). The next proposition shows that the restriction
of a discontinuous complex homomorphism on An(X) ∩ P(X) can be
continuous for every n.
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18. If the sequence of algebras An(X) does not stabilize, then there is a
discontinuous complex homomorphism ζ on P(X) such that the restric-
tion of ζ on An(X) ∩ P(X) is a continuous complex homomorphism for
every n.

Доведення. By Corollary 15 and Theorem 19 there exists an infinity
sequence (uk)∞k=1, uk ∈ Ek, uk 6= 0. Since each Ek is a linear space, we can

choose uk such that supk ‖uk‖1/k
k = ∞. Put ζ =

∞
+×

k=1
δ(k)(uk). Evidently,

ζ(f) =
n
+×

k=1
δ(k)(uk)(f) for every f ∈ An(X). So ζ is well defined and

continuous on An(X) ∩ P(X). If ζ is continuous on P(X), then it can
be extended to a continuous complex homomorphism on Hb(X). But it
contradicts Theorem 20. ¤

A discontinuous complex homomorphism of Hb(X) (if it exists) even-
tually, need not to be discontinuous on P(X).

19. If there exists a discontinuous complex homomorphism φ of Hb(X),
then there exists a discontinuous complex homomorphism ψ of Hb(X)
such that the restriction of φ on X ′ is discontinuous.

Доведення. Let (fn) be a sequence in Hb(X) such that ‖fn‖r → 0 as
n → ∞ for every r > 0 and φ(fn) > 4n. Let (en) be a normalized basis
sequence in X with a normalized biorthogonal sequence (e∗n) ⊂ X. Put

F (x) :=
∞∑

n=1

1
2n

fn(x)en.

It is easy to check that F ∈ Hb(X, X). So the composition operator
TF : f 7→ f ◦ F is a continuous homomorphism from Hb(X) to itself. We
set ψ := φ ◦ F. Then ψ is a complex homomorphism of Hb(X) and

|ψ(e∗n)| =
∣∣∣φ(fn)

2n

∣∣∣ > 2n.

¤

3.2. Homomorphisms. Recall that En ⊂ E∞ ⊂ Mb,

En := E1 × · · · × En = {(u1, . . . , un) : uk ∈ Ek, 1 ≤ k ≤ n}.
20. Let Θ be a continuous homomorphism from Hb(X) to itself. Then

for every positive integer n there exists a map Fn : En → En such that
for every f ∈ An(X), Θ(f) = f̂ ◦ Fn.
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Доведення. If u = (u1, . . . , un) ∈ En. Then φu ◦ Θ =
m
+×

k=1
δ(k)(uk) ◦ Θ ∈

Mb. By Theorem 19 there exists a point v = (v1, v2, . . .) ∈ Mb such
that φu ◦ Θ(f) = f̂(v). If f ∈ An(X), f̂(v) = f̂((v1, . . . , vn)). So we
can assume that v ∈ En. Put Fn(u) := v. Thus we have constructed the
required mapping u 7→ Fn(u) with the property Θ(f) = f̂ ◦ Fn. ¤

We notice that Fn need not to be analytic in En. For example, let
0 6= u2 ∈ E2 and g be a linear functional on X. We define F : X → E2

by F (x) :=
√

g(x)u. Then

ΘF (f)(x) := f ◦ F (x) =
∞∑

n=0

(g(x))nf2n(u2),

for an arbitrary f =
∑

fn ∈ Hb(X). It is easy to see that ΘF is a
continuous homomorphism of Hb(X) to itself but F is not holomorphic.

A homomorphism Θ from Hb(X) to itself is called AB-composition
homomorphism [15] if there exists F ∈ Hb(X ′′, X ′′) such that Θ̃(f)(x′′) =
f̃(F (x′′)), where f̃ is the Aron-Berner extension of f.

21. Every polynomial on X is approximable if and only if every homo-
morphism on Hb(X) is an AB-composition homomorphism.

Доведення. Suppose that every polynomial on X is approximable. Then
Hb(X) = A1(X). By Proposition 20 for every homomorphism Θ: Hb(X) →
Hb(X) there exists a mapping F : X ′′ → X ′′ such that Θ(f) = f̂ ◦ F =
f̃ ◦F. In particular, for every f ∈ X ′, f̃ ◦F ∈ Hb(X). So we can say that
F is weak-star analytic map on X ′′. By a classical result of Dunford [22]
and Grothendieck [28] on weak-star analytic mappings, F is analytic on
X ′′. Since f̃ ◦F is bounded on bounded sets of X ′′ for every f ∈ X ′ and
weak-star boundedness implies boundedness, F ∈ Hb(X ′′, X ′′).

Suppose now that An(X) 6= A1(X) for some n. Let us choose un ∈
En un 6= 0 and l ∈ X ′, l 6= 0. Put F (x) := l(x)un and Θ(f)(x) :=
f̂(F (x)). Since F ∈ Hb(X,En), Θ(f)(x) ∈ Hb(X). But Θ is not an AB-
composition homomorphism because Θ 6≡ 0 and Θ(f) = 0 for every
f ∈ A1. ¤

Since the approximation property of X ′ implies that every weakly
continuous on bounded sets polynomial is approximable [8], we have the
following corollary.
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21. (c.f. [15]). Let X ′ have the approximation property. Then every
polynomial on X is weakly continuous on bounded sets if and only if
every homomorphism on Hb(X) is an AB-composition homomorphism.

The result of Theorem 21 can be improved for a reflexive Banach
space.

22. (Mujica [32]). If P(X) = PA(X) for a reflexive Banach space X,
then for every continuous homomorphism Θ: Hb(X) → Hb(X) there is
a unique map F ∈ Hb(X, X) such that Θ(f) = f ◦ F.

22. Let X be a reflexive Banach space with P(X) = PA(X) and F ∈
Hb(X,X). Suppose that Θ(f) = f ◦F is an isomorphism of Hb(X). Then
F is invertible and F−1 ∈ Hb(X, X).

Доведення. By Theorem 22 there exists a map G ∈ Hb(X,X) such that
Θ−1(f) = f ◦G. It is easy to see that G = F−1. ¤

3.3. Derivations. Let uk ∈ Ek. According to Theorem 19 we can define
a complex homomorphism φ ∈ Mb = δ(k)(uk) and φ(f) = f̂(uk) for every
f ∈ Hb(X). However, uk belongs to (⊗k

s,πX)′′ and so there is an another
natural way to define a linear functional on Hb(X), associated with uk.

Let θ = θ(uk) =
∑

θm ∈ Hb(X)′ such that θk(P ) = P̂ (uk) if P ∈ P(kX)
and θm = 0 if m 6= k. Recall that here θm is the restriction of θ to P(kX).
It is easy to see that θ is not a homomorphism if uk 6= 0. We define a
linear operator on Hb(X), ∂(k)(uk) by

∂(k)(uk)(f)(x) := θ(uk) ◦ Tx(f).

For the multilinear form AP associated with an n-homogeneous poly-
nomial P we denote by ÂP (xn−k, uk) the value of the Gelfand transform
at uk ∈ Ek of the k-homogeneous polynomial AP (xn−k, ·), where x is
fixed.

23. Let uk ∈ Ek. Then the operator ∂(k)(uk) is a continuous derivation
on Hb(X),

(19) ∂(k)(uk)(P )(x) =
(

n
k

)
ÂP (xn−k, uk)

for every P ∈ P(nX) and

(20) δ(k)(uk)(f)(x) =
∞∑

m=0

(k!)m

(mk)!
∂m
(k)(uk)(f)(x)
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for every f ∈ Hb(X).

Доведення. To prove formula (19) we observe that

P (z + x) =
n∑

m=0

(
n
m

)
AP (xn−m, zm).

So for a fixed x,

∂(k)(uk)(P )(x) = θ(uk)(P (z + x)) =
(

n
k

)
ÂP (xn−k, uk).

Note that if deg P ≤ k, then ∂(k)(uk)(P )(x) = 0 for every x by the
definition of ∂(k)(uk).

Let P ∈ P(nX) and Q ∈ P(mX). The multilinear form APQ(xnm−k, zk)
associated with PQ can be represented by

APQ(xnm−k, zk) = A1
PQ(xnm−k, zk)+A2

PQ(xnm−k, zk)+A3
PQ(xnm−k, zk),

where
A1

PQ(xn−k, zk) = AP (xn−k, zk)AQ(xm);

A2
PQ(xn−k, zk) = AP (xn)AQ(zk, xm−k)

and

A3
PQ(xn−k, zk) =

1
k − 1

k−1∑
s=1

AP (xn−szs)AQ(zk−s, xm−k+s).

If n ≤ k (resp. m ≤ k), then A1
PQ (resp. A2

PQ) is equal to zero. By
definitions of θ(uk) and uk,

θ(uk)A3
PQ(xn−k, zk) = 0

for any fixed x. So

∂(k)(uk)(PQ)(x) = ∂(k)(uk)(P )(x)Q(x) + P (x)∂(k)(uk)(Q)(x).

Since ∂(k)(uk) is linear, it is a differentiation on the algebra Hb(X). The
continuity of ∂(k)(uk) follows from the continuity of θ(uk) and the trans-
lation Tx.

Let P ∈ P(nX) and n = km. From (19) we have that

∂m
(k)(uk)(P ) =

(
km
k

)(
k(m− 1)

k

)
· · ·

(
k
k

)
P̂ (uk) =

(mk)!
(k!)m

δ(k)(uk)(P ).
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Thus

δ(k)(uk) =
∞∑

m=0

(k!)m

(mk)!
∂m
(k)(uk).

¤

This approach can be generalized by the following way. Let vp 6= 0 be
an arbitrary element in Ep for some positive integer p. Denote by Tvp

the operator on Hb(X)

Tvp(f) := f̂(·+ vp).

We can write
∂(k,p)(uk)(f̂)(vp) := θ(uk) ◦ Tvp(f).

Repeating arguments of Theorem 23, we can see that for every P ∈
P(kmX),

∂(k,k)(uk)(P̂ )(vk) = mÂP (vm−1
k , uk).

Moreover, if f =
∑

fn ∈ Hb(X), then

f̂(vk + uk) =
∞∑

m=0

∂m
(k,k)(uk)(f̂km)(vk)

m!

Aron, Cole and Gamelin in [4] considered the operation ∂(k)(uk) for
the case when k = 1 and so uk = u1 = z for some z ∈ X ′′. They used
notation (z)Txf = (∗z)f(x) instead ∂(1)(z)f(x). For this special case and
using this notation formula (20) can be rewritten as

δ(1)(z)f = δ̃(z)f =
∞∑

m=

1
m!

z∗m = exp(∗z).

3.4. Ball Algebras of Analytic Functions. In this section we con-
sider maximal ideals of uniform algebras of analytic functions on the ball
rB for some r > 0, where B is the unit ball of a Banach space.

We will consider the following algebras: Let H∞(rB) be the algebra
of bounded analytic functions on rB, H∞

uc(rB) be the algebra of uni-
formly continuous analytic functions on rB and H∞

c (rB) be the algebra
of bounded analytic functions on B which are continuous on the closure
B. It is clear that

Hb(X) ⊂ H∞
uc(rB) ⊂ H∞

c (rB) ⊂ H∞(rB).

Also it is easy to check that H∞
uc(rB) consists of precisely the uniform

limit on rB of functions in Hb(X). Since the set of φ ∈ Mb satisfying
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R(φ) ≤ r) is the Hb(X)-convex hull of rB in Mb, we have the following
theorem.

24. For each fixed r > 0, the compact set {φ ∈ Mb : R(φ) ≤ r} coincides
with the spectrum of H∞

uc(rB).

23. The spectrum of H∞
uc(B) contains unit balls of Ek for every k.

Let now H be a uniform algebra such that H∞
uc(rB) ⊂ H ⊂ H∞(rB)

and MH be its spectrum. There is a natural projection ι : MH → Mb

such that ι(ψ) is the restriction of ψ ∈ MH to Hb(X). Note that we can
extend the definition of the radius function R to ψ ∈ MH by declaring
R(ψ) to be the smallest value of r, 0 ≤ r ≤ 1, such that ψ is continuous
with respect to the norm of uniform convergence on rB.

25. Let H be a uniform algebra between H∞
uc(B) and H∞(B). The image

ι(MH) of the projection ι consists of precisely the set φ ∈ Mb such that
R(φ) ≤ 1.

Доведення. If ψ ∈ MH and |ψ(f)| ≤ ‖f‖rB for all f ∈ H, then this
inequality holds in particular for all h ∈ Hb(X), so that R(ι(ψ)) ≤ R(ψ)
for all ψ ∈ MH .

Suppose φ ∈ Mb satisfies R(φ) < 1. Then φ is continuous on Hb(X)
with respect to the norm of uniform convergence on R(φ)B. Now each
f ∈ H∞(B) is a uniform limit on any ball rB, 0 < r < 1 of the partial
sums of its Taylor series. Hence φ extends uniquely to f and determine
a unique ψ ∈ MH with ι(ψ) = φ and R(ψ) < 1. Clearly R(φ) = R(ψ).

Suppose φ ∈ Mb satisfies R(φ) = 1. Let φ =
∞
+×

k=1
δ(k)(uk). For |ξ| < 1,

consider the homomorphism φξ :=
∞
+×

k=1
δ(k)(ξuk). Since R(φξ) = |ξ| < 1,

φξ extends to a homomorphism in MH . If ψ is any cluster point in MH

of the extension of the φξ as ξ → 1, |ξ| < 1, then ι(ψ) = φ. Thus the
image of ι is precisely {φ ∈ Mb : R(φ) ≤ 1}. ¤

Comparing Theorem 25 and Theorem 24 we can see that if H =
H∞

uc(B), then the projection ι is one-to-one.

26. Let H be a uniform algebra between H∞
uc(B) and H∞(B). Then the

natural projection of the spectrum MH of H onto {φ ∈ Mb : R(φ) ≤ 1}
is one-to-one if and only if H = H∞

uc(B).

Доведення. Suppose f ∈ H is not uniformly continuous. Then there are
ε > 0 and sequences (xn) and (yn) in B such that ‖xn − yn‖ → 0, while
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|f(xn) − f(yn)| ≥ ε for all n. A subnet xnα converges in Mb to some φ
satisfying R(φ) ≤ 1. The net ynα

then also converges in Mb to φ. Since
|f(xn) − f(yn)| ≥ ε, we see that xnα

and ynα
have cluster points θ and

θ′ in MH such that f(θ) 6= f(θ′). However, θ and θ′ both coincide with
φ on H∞

uc(B), that is θ and θ′ both project onto φ. ¤

We notice that in [4] is proved that if X is an infinite-dimensional
Banach space, then H∞

uc(B) 6= H∞
c (B).

3.5. C∗-Algebras of Continuous Functions. For a given complex Ba-
nach space X we denote by X< a Banach space which coincides with X as
a point set but endowed with the real structure. In the other words, X<

is X where we allow real scalar multiplication only. Evidently X = X<

as topological spaces and each continuous function f on X is well defined
and continuous on X<. We will denote by f< the act of f on X<.

Definition 9. A mapping Q : X → C is called an n-degree ∗-polynomial
if

Q< : X< → C

is a complex-valued polynomial of n degree on the real Banach space X<.

We denote by P∗(X) the algebra of all ∗-polynomials on X and by
CP(B) the completion of P∗(X) in the uniform topology on the unit ball
B of X. CP(B) contains all continuous polynomials on X and all con-
tinuous anti-polynomials on X, where anti-polynomials are just complex
conjugates to polynomials. Let us denote by Ca(B) a minimal closed sub-
algebra of CP(B) which contains all continuous polynomials on X and all
continuous anti-polynomials. Notice that CP(B) 6= Ca(B) in the general
case. For example it is easy to check that a ∗-polynomial Q on `2,

Q
( ∞∑

n=1

xnen

)
=

∞∑
n=1

xnxn

belongs to CP(B) but does not belong to Ca(B).

27. The spectrum M(Ca(B)) of Ca(B) consists of all characters φ of
H∞

uc(B) for which there are nets (xα) ⊂ B such that

(21) φ(P ) = lim
α

P (xa) ∀P ∈ P(X)).
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Доведення. Let φ ∈ H∞
uc(B) such that (21) holds for some (xα) ⊂ B.

Then φ(P ) := φ(P ) is well defined for every P ∈ P(X). If Q is in an alge-
braic span of polynomials and antipolynomials, |φ(Q)| ≤ supα |Q(xα)| ≤
‖Q‖. So φ can be extended by continuity to a character on Ca(B).

Let now φ be a character on Ca(B). Since Ca(B) is a C∗-algebra,
M(Ca(B)) is the Czech-Stone compactification of B in the Gelfand topol-
ogy of Ca(B) on B. Hence B is dense in βB = M(Ca(B)), that is, there
exists a net (xα) ⊂ B such that φ(f) = limα f(xa) for every f ∈ Ca(B).
So (21) holds. ¤

By the theorem we can write M(Ca(B)) ⊂ M(H∞
uc(B)). Since M(H∞

uc(B)) =
{φ ∈ Mb : R(φ) ≤ 1}, we can apply Theorem 19 and Theorem 20.

24. Let φ ∈ M(Ca(B)). Then there exists a sequence (uk)∞k=1, uk ∈ Ek

such that supk ‖uk‖1/k ≤ 1 and

φ(f) =
∞
+×

k=1
δ(k)(uk)(f) and φ(f) =

∞
+×

k=1
δ(k)(uk)(f)

for every f ∈ H∞
uc(B).

A given positive integer m we denote by Qm a ∗-polynomial on `2m

as

Qm(x) = Qm

( ∞∑
n=1

xnen

)
=

∞∑
n=1

xm
n xm

n .

Let xα be a weakly polynomially zero net in `2m with ‖xα‖ = 1, where
α belongs to an index set A. Let U be a free ultrafilter on A. We set

ψ(f) = lim
U

f(xα).

It is clear that ψ(f) = f(0) if f ∈ Ca(B) but ψ(Qm) = 1. So we can see
that Ca(B) 6= CP(B) in `2m and there exists a character ψ in M(CP(B))
which vanishes on homogeneous polynomials of Ca(B).
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[35] A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer.
Math. Soc. 101 (1987), 697–704.

[36] van der Waerden, B. L., Modern Algebra, Ungar (1964).
[37] A. Zagorodnyuk, Spectra of algebras of entire functions on Banach spaces, Proc.

Amer. Math. Soc. 134 (2006), 2559–2569.

SOME APPLICATIONS OF ELEMENTARY SUBMODELS
IN TOPOLOGY

Lyubomyr Zdomskyy
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Our talks will be devoted to applications of elementary submodels
in topology. In particular, we shall present some streamlined proofs of
classical results like Arhangel’skiis famous result that the cardinality of
first countable compact spaces is at most c, and some others. We shall
also try to present some more recent results like the main combinatorial
lemma in the construction of an L-space by J. Moore.

The exposition will mainly follow the article [1].

[1] Dow, A., An introduction to applications of elementary submodels to topology,
Topology Proc. 13 (1988), 17–72.

ГЕОМЕТРИЧНI IНВАРIАНТИ ДИСКРЕТНИХ
НЕАВТОНОМНИХ СПРЯЖЕНИХ ЗВОРОТНИХ

ДИНАМIЧНИХ СИСТЕМ

Атаманюк О.Б.

Прикарпатський нацiональний унiверситет iменi Василя Стефаника, Iвано-
Франкiвськ, Шевченка 57, Україна

E-mail address: bogdanatamaniuk@ukr.net

Дослiджуються дискретнi неавтономнi зворотнi динамiчнi системи
та їх геометричнi властивостi [1],[2], якi зберiгаються при топологiчному
спряженнi. Топологiчне спряження - це такий гомеоморфiзм мiж
двома динамiчними системами (X, T ) та (Y, S), для якого виконується
рiвнiсть: S ◦ π = π ◦ T .

Теорема 1. Iнварiантом топологiчної спряженостi є TGE - тонка
гомотопiчна еквiвалентнiсть.

Теорема 2. Iнварiантом топологiчної спряженостi є SCU - сильна
C-унiверсальнiсть вiдображеннь.

Теорема 3. При топологiчному спряженнi зберiгаються майже
гомеоморфiзми.
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Теорема 4. При топологiчному спряженнi зберiгається напiвнеперервнiсть
знизу та напiвнеперервнiсть зверху.

Теорема 5. При топологiчному спряженнi зберiгається властивiсть
SDAP - сильна дискретна апроксимацiйна властивiсть. За означенням,
простiр X задовольняє умову SDAP тодi, коли для будь-якого вiдображення
f : Q × N → X та для будь-якого покриття ω ∈ Cov(X) iснує
вiдображення g : Q×N → X, яке задовольняє двi умови: 1) (g, f) <
ω, тобто ω -близькiсть, 2) сiмейство {g(Q × {n}) : n ∈ N} є
дискретним сiмейством в X.

Теорема 6. При топологiчному спряженнi зберiгається властивiсть
С-оборотностi та спектральної рухомостi.

Теорема 7. При топологiчному спряженнi зберiгається DCP - дискова
клiткова властивiсть та DHCP - дискова гомотопiчна клiткова
властивiсть.

Теорема 8. Для спектрально-рухомих орбiт рiзновиди м’якостi
(апроксимативної м’якостi) переносяться iз зв’язуючих проекцiй
на граничнi проекцiї (орбiти).

Теорема 9. При топологiчному спряженнi зберiгаются рiзновиди
м’якостi (апроксимативної м’якостi) спектрально-рухомих орбiт
дискретних неавтономних зворотних динамiчних систем.

Теорема 10. Для спектрально-рухомих орбiт зберiгається властивiсть
SCU- сильної С- унiверсальностi проекцiй при переходi вiд зв’язуючих
проекцiй до граничних проекцiй (орбiт).

Теорема 11. При топологiчному спряженнi спектрально-рухомих
орбiт зберiгається властивiсть SCU - сильно С - унiверсальних
орбiт дискретних неавтономних зворотних динамiчних систем.

Лiтература
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ЕКСПАНДЕРИ. IСНУВАННЯ I ПОБУДОВА

О.Д. Глухов

Нацiональний авiацiйний унiверситет, Київ, Україна,
E-mail address: aglukhov@ukr.net

1. Означення.
2. Спектр графа i алгебрична зв’язнiсть.
3. Випадковi графи. Iснування експандерiв.
4. Побудова експандерiв. Зигзаг-добуток. Графи Рамануджана.
5. Лема про групи перестановок. Перестановочна склейка графiв.
6. Експандери iз заданими пiдграфами.
7. Один приклад побудови експандера.

ПРОСТОРИ ЄМНОСТЕЙ НА МЕТРИЧНИХ
НЕКОМПАКТНИХ ПРОСТОРАХ

I.Д. Глушак

Прикарпатський нацiональний унiверситет iменi Василя Стефаника, м. Iвано-
Франкiвськ, вул. Шевченка,57,

E-mail address: inna-gl@rambler.ru

Нехай X-метричний некомпактний простiр.
Функцiя c : exp X ∪ {∅} → I називається τ -гладкою ємнiстю на X,

якщо:
1) c(∅) = 0, c(X) = 1;
2) вона монотонна;
3) для кожної монотонно спадної системи (Fα) замкнених в X

множин та множини G ⊂
cl

X, такої що
⋂
α

Fα ⊂ G, виконується нерiвнiсть

inf
α

c(Fα) ≤ c(G).
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На множинi τ -гладких ємностей M̌X порiвнюються двi топологiї
τ1 та τ2. Топологiя τ1 визначена передбазою, яка складаєтьяс з множин
вигляду

O−(F, a) = {c ∈ M̌X | c(F ) < a},

O+(U, a) = {c ∈ M̌X | iснує множинаG⊂
cl

X,

G−цiлком вiдокремлена вiд X \ U, c(G) > a},
для всiх F ⊂

cl
X, U ⊂

op
X, a ∈ I.

А топологiя τ2 породжена метрикою:

d̂(c, c′) = inf{δ > 0 | c(Ōδ(F ))+δ ≥ c′(F ), c′(Ōδ(F ))+δ ≥ c(F ),∀F ⊂
cl

X}.
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ПРОЦЕС ГЛОБАЛЬНОЇ ЛIНЕАРИЗАЦIЇ ДЛЯ
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Розглянемо аналiтичну функцiю

ξ(z) =
∞∑

n=0

cnzn
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в околi нуля, радiуса ρ0(ξ) = 1
lim sup |cn|1/n .

Нехай X− комплексний банахiв простiр,
⊗n

γ,s X− n−тий симетричний
тензорний степiнь простору X, поповнений вiдносно тензорної норми

γ, Fα,γ =
∞⊕

n=0
(
⊗n

γ,s X)α− простiр скiнченних прямих сум, поповнений

вiдносно деякої норми α, Φξ = {ϕ◦Fξ : ϕ ∈ F ′α,γ}− клас аналiтичних
функцiй обмеженого типу в кулi Bρ0(ξ), де ϕ− неперервний лiнiйний
функцiонал на просторi Fα,γ , а через Fξ(x) позначимо формальний

ряд
∞∑

n=0
cnx⊗n. Тодi при фiксованих ξ, α, γ пара Fξ,Fα,γ задає лiнеаризацiю

функцiй з класу Φξ на Bρ0(ξ). Аналогiчно, якщо A− лiнiйний оператор
з Fα,γ в деякий нормований простiр Y, то A ◦ Fξ буде аналiтичним
вiдображенням з Bρ0(ξ) в Y. У доповiдi розглядатимуться вiдобра-
ження вигляду ξ(z) = az+b

cz−d , ξ(z) = az+b
−cz+d , ξ(z) = 1

1−z та процес
глобальної лiнеаризацiї цих вiдображень.

IНДЕКСИ ДЕЯКИХ ЗЛIЧЕННИХ ГРАФIВ

Андрiй Коротков

Київський нацiональний унiверситет iменi Тараса Шевченка, Київ, Україна,
E-mail address: myolymp@ukr.net

ОПЕРАДИ ТА ГОМОТОПIЧНI АЛГЕБРИ

В.В. Любашенко

Iнститут математики НАН України, вул. Терещенкiвська, 3, Київ-4, 01601
МСП

E-mail address: lub@imath.kiev.ua
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1. Диференцiально–градуйований свiт — лiнеаризацiя гомотопiчного
свiту.

2. Операди. Алгебри над операдами.
3. Гомотопiчнi алгебри — алгебри над dg-резольвентами стандартних

операд.
4. Гомотопiчно асоцiативнi алгебри (A∞-алгебри).
5. Морфiзми A∞-алгебр утворюють бiмодуль над операдою A∞.
6. Гомотопiчно унiтальнi A∞-алгебри.
7. Морфiзми гомотопiчно унiтальних A∞-алгебр як бiмодуль

над операдою.
8. Мультикатегорiї — кольоровi операди.
9. Морфiзми A∞-алгебр з кiлькома аргументами.

10. Розслабленi моноїдальнi Cat-категорiї.
11. Cat-двосхили та Cat-мультикатегорiї.
12. Розслабленi Cat-операди та Cat-мультикатегорiї.
13. Розслаблена Cat-операда DG.
14. Модуль над операдою з n + 1 дiєю (n ∧ 1-модуль).
15. A∞-морфiзми з n аргументами утворюють n ∧ 1-модуль над

A∞.
16. Гомотопiчно унiтальнi A∞-морфiзми з n аргументами.

ГОМОМОРФIЗМИ АЛГЕБРИ Pvs(X 2
∞).

А.В. Загороднюк and В. В. Максимiв

Факультет математики та iнформатики, Прикарпатський нацiональний унiверситет
iменi Василя Стефаника, Iвано-Франкiвськ, вул. Шевченка, 57, Укаїна

E-mail address: andriyzag@yahoo.com
E-mail address: maksymivvika@gmail.com

Нехай X — банахiв простiр iз симетричним базисом. Очевидно, що
X можна розглядати, як простiр числових послiдовностей. Позначимо
Ps(X) алгебру полiномiв на X, якi є симетричними (iнварiантними)
вiдносно перестановок елементiв цих послiдовностей.
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У цiй роботi ми дослiджуємо полiноми на декартових добутках
банахових просторiв iз симетричним базисом, якi є iнварiантними
вiдносно дiї деякої природної пiдгрупи S(N) (ми будемо їх називати
блочно-симетричними). Точнiше, нехай: X∞∞ = (

∑
X)l1

= ⊕l1X. Тодi
кожен елемент x ∈ X∞∞ можна подати у виглядi послiдовностi x =

(x1, . . . , xn, . . .), де xn ∈ X з нормою ‖x‖ =
∞∑

k=1

‖xk‖. Будемо казати,

що полiном P на просторi X∞∞ називається блочно-симетричним
(векторно-симетричним), якщо: P (x1, , . . . , xn, . . .) = P (xσ(1), , . . . , xσ(n), . . .)
для будь-якої блочної перестановки σ. Позначимо через Pvs(X∞∞ )
алгебру блочно-симетричних полiномiв на просторi X∞∞ .

Справедливим є твердження: Нехай Xn
m = ⊕m

1 Cn. Тодi Pvs(Xn
m)

має скiнченну систему твiрних.
У доповiдi буде описано твiрнi елементи Pvs(X∞∞ ) у двох випадках:

Xn
2 = Cn⊕Cn i X 2

m = ⊕m
1 C2. Також буде показано, що iснує неперервний

гомоморфiзм з алгебри Pvs(X 2
∞) у алгебру Ps(l1), який є проектором

i неперервний гомоморфiзм з алгебри Pvs(X 2
∞) у алгебру P(l1).
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ЛОКАЛЬНI МАЙЖЕ-КIЛЬЦЯ ПОРЯДКУ p3 З
НЕАБЕЛЕВОЮ АДИТИВНОЮ ГРУПОЮ

ЕКСПОНЕНТИ p

I.Ю. Раєвська

Iнститут математики НАН України, Київ, вул. Терещенкiвська, 3, Україна
E-mail address: raemarina@rambler.ru

Алгебраїчна структура R з двома бiнарними операцiями + i ·
називається (лiвим)майже-кiльцем,якщо (R, +) – необов’язково абелева
група, (R, ·) – напiвгрупа та r(s+t) = rs+rt для всiх r, s, t ∈ R. Група
(R, +) позначається через R+ та називається адитивною групою, а
її нейтральний елемент 0 – нулем майже-кiльця R. Очевидно r ·0 = 0
для кожного r ∈ R. Майже-кiльце R називається нуль-симетричним,
якщо 0·r = 0 та майже-кiльцем з одиницею, якщо напiвгрупа (R, ·) є
моноїдом. Група всiх оборотних елементiв моноїда (R, ·) називається
мультиплiкативною групою в R та позначається через R∗. Майже-
кiльце R з одиницею називається локальним, якщо множина LR всiх
необоротних елементiв iз (R, ·) утворює адитивну пiдгрупу в R+, i
майже-полем, якщо LR = 0.

Локальнi майже-кiльця iз скiнченною абелевою адитивною p−групою
вивчалися у роботi. В описанi всi неiзоморфнi нуль-симетричнi локальнi
майже-кiльця з елементарною абелевою адитивною групою порядку
p2, якi не є майже-полями. В данiй роботi наводяться необхiднi та
деякi достатнi умови iснування локальних майже-кiлець на неабелевiй
адитивнiй групi порядку p3 та експоненти p. Як вiдомо, для таких
груп p > 2, а комутант спiвпадає з центром i має порядок p.

Нехай R− локальне майже-кiльце, адитивна група R+ якого неабелева
порядку p3 та експоненти p, та L – множина всiх необоротних елементiв
iз R. Тодi L – нормальна пiдгрупа порядку p2 в R+ i, отже, R+ =<
e1 > +L, де e1 – одиничний елемент в R. Оскiльки L мiстить комутант
групи R+, то її твiрнi e2 та e3 можна вибрати так, що e3 = −e1 −
e2 + e1 + e2. Тодi L =< e2 > + < e3 > i пiдгрупа < e3 > є центром
групи R+. Отже, якщо r ∈ R, то r = e1r1+e2r2+e3r3 з коефiцiєнтами
r1, r2, r3, якi можна розглядати як елементи поля Fp лишкiв по модулю
p, що однозначно визначаються елементом r. Таким чином, для кожного
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x ∈ R та кожного i ∈ {1, 2, 3} однозначно визначенi елементи ρ1j(x), ρ2j(x), ρ3j(x)
поля Fp, а отже вiдображення ρij : R → Fp, для яких xej = e1ρ1j(x)+
e2ρ2j(x)+e3ρ3j(x). Очевидно, що ρi1(x) = xi для i ∈ {1, 2, 3}, оскiльки
xe1 = x для кожного x ∈ R.

Лема 1. Для кожного x = x1e1 + x2e2 + x3e3 ∈ R виконуються
рiвностi ρ12(x) = ρ13(x) = ρ23(x) = 0 та ρ33(x) = x1ρ22(x).

Лема 2. Якщо x, y ∈ R, то

xy = (xe1)y1 + (xe2)y2 + (xe3)y3 = e1(x1y1) + e2(x2y1 + ρ22(x)y2)+

e3(x3y1 + ρ23(x)y2 + x1ρ22(x)y3 + x1x2

(
y1

2

)
),

причому вiдображення ρ22 : R → Fp та ρ23 : R → Fp задовольняють
умовам:

(1) ρ22(xy) = ρ22(x)ρ22(y),
(2) ρ23(xy) = ρ23(x)ρ22(y) + x1ρ22(x)ρ23(y).

Теорема 1. Кожне локальне майже-кiльце R з неабелевою адитивною
групою порядку p3 та експоненти p визначається вiдображеннями
ρ22 : R → Fp та ρ23 : R → Fp, що задовольняють умовам (1) та
(2) леми 2. Бiльш того, майже-кiльце R нуль-симетричне тодi i
тiльки тодi, коли ρ22(0) = 0.

Навпаки, нехай G – адитивна неабелева група порядку p3 та експоненти
p з твiрними e1, e2 та e3 = −e1−e2 +e1 +e2. Тодi G =< e1 > + < e2 >
+ < e3 > i кожний елемент x ∈ G однозначно записується у виглядi
x = x1e1 +x2e2 +x3e3, де коефiцiєнти x1, x2, x3 можна розглядати як
елементи поля Fp.

Теорема 2. Якщо вiдображення ρ22 : R → Fp та ρ23 : R → Fp

задовольняють умовам ρ22(x) = x1 та ρ23(x) = x1(1−x1) для кожного
x ∈ G, то операцiя

e1(x1y1)+e2(x2y1+ρ22(x)y2)+e3(x3y1+ρ23(x)y2+x1ρ22(x)y3+x1x2

(
y1

2

)
)

на адитивнiй групi G є асоцiативною та лiво-дистрибутивною i
визначає деяке нуль-симетричне локальне майже-кiльце R = (G, +, ·).
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ПРО МУЛЬТИПЛIКАТИВНI ГРУПИ МАЙЖЕ-ПОЛIВ
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В роботi [1] мультиплiкативна група майже-поля названа спадковою,
якщо кожна її пiдгрупа iзоморфна мультиплiкативнiй групi деякого
майже-поля, та наведена повна класифiкацiя таких груп. Нижче розглядаються
мультиплiкативнi групи майже-полiв, в яких лише неабелевi пiдгрупи
задовольняють данiй умовi. Нагадаємо, що майже-полем називається
алгебраїчна структура F з двома операцiями, додаванням та множенням,
що задовольняє наступним умовам:

(1) F утворює групу F+ вiдносно додавання, яка називається
адитивною групою майже-поля F;

(2) множина ненульових елементiв F ∗ = F \0 iз F утворює групу
вiдносно множення, яка називається мультиплiкативною групою
майже-поля F ;

(3) в F виконується одностороннiй (наприклад, лiвий) дистрибутивний
закон, тобто a(b + c) = ab + ac для всiх a, b, c ∈ F .

Скiнченнi майже-поля вивчались Цассенхаузом в [2] (див. також
[3], теорема 20.7.2). Зокрема, ним було встановлено, що їх адитивнi
группи є елементарними абелевими, та детально описано будову мультиплiкативних
групп таких майже-полiв.

Нами доведена наступна теорема.
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Теорема 1. Нехай F - скiнченне майже-поле, кожна неабелева пiдгрупа
мультиплiкативної групи F ∗ якого iзоморфна мультиплiкативнiй
групi деякого майже-поля. Тодi F ∗ - група одного з наступних типiв:

(1) циклiчна група;
(2) група кватернiонiв Q8;
(3) неабелева метациклiчна група порядку 24;
(4) спецiальна лiнiйна группа SL(2, 3) степеня 2 над полем iз

3-х елементiв;
(5) неабелева метациклiчна група порядку 63;
(6) неабелева метациклiчна група порядку 80.
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