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Abstracts of Lectures and
Reports

Te3u jgekmiii 1 1ommoBlaeil

ON THE COMPLETENESS FOR THE SYSTEMS OF
DIFFERENTIAL EQUATIONS

A.V. Agibalova

Donetsk National University, Donetsk, University Street 24, Ukraine
E-mail address: agannette@rambler.ru

Consider in L?([0,1];C") := L?[0,1] ® C™ the first-order systems of
ordinary differential equations

1. d
(1) j#%%+Q@MZA% y = col(y1, ..., Yn)

with the nondegenerate diagonal n X n matrix
B = diag(b] 'I,,...,b: ), n=ni+...+n,,

where b; # by for j # k, Q(-) the summable potential matrix, i. e.
Q(-) € L*([0,1];C"), Q@ = (Qj)] s—, Is its block-matrix representation
with respect to the orthogonal decomposition C* = C™ ¢ ... 3 C"r.

Systems (1) are of significant interest in some theoretical and practical
questions. For example, if n = 2m, r = 2, B = diag([,,,—1I,,) and
Q11 = Q22 = 0, then the system (1) is equivalent to the Dirac system
(see [3]). For 7 = n and b; = **/" an nth-order differential equation
is reduced to the system (1).
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We consider the 2 x 2 Dirac type system

(2) —iBy + Q(z)y = Ay,  y=col(y1,y2), z € [0,1],
where
(3) p=(t Y €C\R, and

—\0 CL_1 ’ a ) an

0
Q= Q12 , Qi2(), Q21 (z) € L1]0,1].
Q21 O
To the system (2) we attach boundary conditions of the form

(4) Ul(:U) = yl(O) =0,
Uz(y) := a22y2(0) + a3y (1) + az24y2(1) = 0.

The following theorem complement some results from [2].

. Let Qo1(+) € C[0,1]. If agsaszasy # 0 and Q21(1) # 0, then the system
of oot vectors of the problem (2)—(4) is complete in Lo ([0,1]; C?).

The talk is based on joint work with M. M. Malamud and L. L. Ori-

doroga.

[1] M. M. Malamud, On the completeness of the system of root vectors of Sturm-
Liouville operator subject to general boundary conditions, Func. Analysis and its

Appl. 42(3) (2008), 45-52

[2] M. M. Malamud, L. L. Oridoroga, Completeness theorems for systems of differ-

ential equations, Func. Analysis and its Appl. 34(4) (2000), 88-90

[3] V. A. Marchenko, Sturm-Liouville Operators and Their Applications, Kyiv,

Naukova Dumka, 1977

AN ELEMENT OF STABLE RANGE 1 AND A RING OF

AN ALMOST STABLE RANGE 1

S. I. Bilavska
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Department of Algebra and Logic, Ivan Franko National University of Lviv, Uni-
versytetska street 1, 79000, Ukraine
E-mail address: zosia _ meliss@yahoo.co.uk

Let R is a commutative ring with 1 # 0.

Definition 1. Note, that a row (ai,as,...a,) € R™ is an unimodular,
ifarR+asR+ ...+ a,R = R, that is, exist uy,us,...u, € R such that
ajul + agug + ...+ apuy, = 1.

Definition 2. The smallest positive natural n called a stable rank n of
a ring R if performed: for any unimodular row (ay,...an,ant1) length
n+1 exist an elements by, by, ...b, € R such that a row (a1 +an+1b1, a2+

Apy1b2, ... ap + apy1by) is a unimodular. We denote it by st.r(R) = n.
[1—2]

Let consider it more detail: if n = 1, then for a unimodular row (a, b)
exists t € R such that a + bt is an invertible element [3]. If n = 2, then
for a unimodular row (a, b, ¢) exist z,y € R such that (a 4+ cz,b+ cy) is
unimodular. 2]

Definition 3. FElement a € R called element of a stable range 1, if for

any b € R existst € R, such that a+ bt is an invertible element of a ring
R.

1. Let R is a commutative ring. Then any idempotent e € R is an
element of a stable range 1.

Definition 4. Commutative ring R is Bezout ring if every finitely gen-
erated ideal of ring R is a principal.

2. Let R 1s a commutative Bezout ring. Then a set of element of stable
range 1 1s a multiplicative closed.

Definition 5. Element a of a ring R called element of almost stable
range 1, if st.r(R/aR) = 1.

Definition 6. Ring R is a ring of an almost stable range 1 if for any
ideal I, I & J(R), st.r(R/I) =1, where J(R) is Jacobson radical .

1. Let R is a ring of almost stable range 1, then any unimodular row
over R supplemented with invertible matrice.
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3. Let a is an element of an almost stable range 1 of a commutative
ring R. If aR + bR + cR = R, then exist element y € R such that
aR+ (b+cy)R =R.

4. Let a is an arbitrary element of a ring R, such that for any b,c € R,
aR+bR+cR = R and exists y € R such that aR+ (b+cy)R = R. Then
a is an element of almost stable range 1.

2. Let R is a ring in which every non zero and non invertible element s
an element of an almost stable range 1 and if J(R) # 0, then st.r(R) = 1.

3. Let R is Bezout ring in which any element is an element of an almost

stable range 1. Then for any square matrice A, detA # 0, size n X n over
R ezist matrices P € GE,(R) and Q € GL,(R) such that

€1 0 0

0 £9 0
PAQ = . :

O 0 ... e,

where €; is elementary divisor of matrice A, 1 <i <n. [4]

Note, that GL,(R) - group of invertible matrice over ring R.
GE,(R) - subgroup of GL,(R) generated of elementary matrices.

[1] H. Bass K-theory and stable algebra, Inst. Hautes Etudes. Sci.Publ. Math., 22
(1964), 485-544.

[2] L.N. Vaserstein The stable rank of ring and dimensionality of topological spaces,
Functional Anal. Appl., 5 (1971), 102-110.

[3] L.N. Vaserstein Bass’s first stable range condition, J. Pure and Appl. Alg., 34
(1984), 319-330.

[4] B.V. Zabavsky Diagonalizability theorem for matrices over rings with finite
stable range, Alg.Discr.Math. - 2005. - N1 - 134-148.

EXTENT, NORMALITY AND OTHER PROPERTIES OF
SPACES OF SCATTEREDLY CONTINUOUS MAPS
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B.M. Bokalo and N.M. Kolos

Department of Mechanics and Mathematics, Ivan Franko National University,
Lviv, Universytetska street 1, Ukraine

E-mail address: Bogdanbokalo@mail.ru

E-mail address: Nadiya_Kolos@Qukr.net

A map f : X — Y between topological spaces is called scatteredly
continuous if for each non-empty subspace A C X the restriction f|a
has a point of continuity.

We study properties of scatteredly continuous maps between topolog-
ical spaces and properties of topological spaces of scatteredly continuous
maps. In particular, we will talk about normality and extent of spaces of
scatteredly continuous maps.

[1] R. Engelking, General Topology, PWN, Warzawa, 1977.

[2] B. Bokalo, N. Kolos, When does SCp(X) = RX hold?, Topology, Vol.48(2009),
178-181.

[3] Arkhangel’skii A.V., Topological spaces of functions, M.: MGU, 1989 (in Rus-
sian).

[4] Arkhangel’skii A.V., Bokalo B.M., The tangency of topologies and tangential
properties of topological spaces, Trudy Moskov. Mat. Obshch. 54 (1992), 160-
185, 278-279 (in Russian).

[65] T. Banakh, B. Bokalo, On scatteredly continuous maps between topological
spaces, Topology and Appl., Vol. 157 (2010), 108-122.

ALGEBRAS OF ENTIRE ANALYTIC FUNCTIONS ON /,

[.V. Chernega

Institute for Applied Problems of Mechanics and Mathematics, Lviv, Naukova Str.
3 b, Ukraine
E-mail address: icherneha@ukr.net
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We shall denote by Hy(¢,) the algebra of entire analytic functions
of bounded type on ¢, and by Hps(¥,) its subalgebra of all symmetric
functions. Also we use the notations M;(¢,) and My (¢,) for spectra of
the algebras H;(¢,) and Hyps(¢,) respectively, that is, the set of all non-
null continuous complex homomorphisms. In [1] the spectra of algebras of
symmetric holomorphic functions on ¢, are investigated. Maximal ideals
of algebras of analytic functions were studied in [2], [3].

We study the relationship between the spectra of Hys(€,) and Hy(4),).
If ¢ € My(¢,) then the restriction ¢® of ¢ to Hps(¢p) is a complex homo-
morphism of Hps(¢p). According to [3] there exists a sequence of Banach
spaces (F,)%; and a sequence of maps 6™ : E, — M;(4,), where
E, = {,, E, coincides with the subspace of all functionals on P("¢,)
which vanish on finite sums of products of polynomials of degree less

than n and 6 (2)(f) = f(2), such that for every ¢ € My(¢,)

(1) o(f) = #7210 (un) (F)

for some u,, € E,, n = 1,2,... and the convolution operation ” x” for
elements ¢, 0 € M (¥¢,) is defined by

(2) (px0)(f) = pO(f(- +2))), where f € Hy(X).

Hence for every ¢ € My(¢,), ¢° has the representation

" = (o 00 (un) )

Can we extend this formula for an arbitrary complex homomorphism of
Hps(£p)? Clearly, it is so if we can extend each character in M;s(¢,) to a
character in M;(£,,).

. If there exists a continuous homomorphism ® : Hy(€,) — Hps(lp), then
every character 0 € Mys(£,) can be extended to a character p € My(¢,) by
the formula o(f) = 0(®(f)). Moreover, if ® is a projection then @° = 6.

We study the existence of a homomorphism from H;(¢,,) onto Hyps(€))
and conditions of its continuity.

[1] R. Alencar, R. Aron, P. Galindo, and A. Zagorodnyuk, Algebras of symmetric
holomorphic functions on £y, Bull. Lond. Math. Soc. 35 (2003), 55-64

[2] R.M. Aron, B.J. Cole, and T.W. Gamelin, Spectra of algebras of analytic func-
tions on a Banach space, J. Reine Angew. Math. 415 (1991), 51-93

[3] A. Zagorodnyuk, Spectra of algebras of entire functions on Banach spaces, Proc.
Amer. Math. Soc. 134 (2006), 2559-2569
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TOPOLOGICAL INVERSE MONOIDS OF ALMOST
MONOTONE INJECTIVE CO-FINITE PARTIAL
SELFMAPS OF POSITIVE INTEGERS

Ivan Chuchman and Oleg Gutik

Department of Mechanics and Mathematics, Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine

E-mail address: chuchman  i@mail.ru

E-mail address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

In this paper all spaces are assumed to be Hausdorff. Furthermore we
shall follow the terminology of [1, 4, 5].

An algebraic semigroup S is called inverse if for any element x € S
there exists the unique = ! € S such that zxz~ 'z = x and z ez~ =
z~1. The element ! is called the inverse of z € S. If S is an inverse
semigroup, then the function inv: S — S which assigns to every element
x of S its inverse element ! is called an inversion.

A semitopological (resp. topological) semigroup is a topological space
together with a separately (resp. jointly) continuous semigroup opera-
tion. A topological inverse semigroup is an inverse topological semigroup
with the continuous inversion.

Let N be the set of all positive integers. A partial map a: N — N is
called almost monotone if there exists a finite subset A of N such that the
restriction a [y 4: N\ A — N is a monotone partial map. By I (N) we
shall denote the semigroup of monotone, almost non-decreasing, injective
partial transformations of N such that the sets N\ dom ¢ and N\ rank ¢
are finite for all o € £ (N).

Chuchman and Gutik showed that every Hausdorff Baire topology
7 on £7 (N) such that (£2(N),7) is a semitopological semigroup is
discrete [2, 7].

We construct two non-discrete (and hence non-Baire) topologies 7
and 75 on the semigroup . (N) such that the following assertions hold:

(i) (X (N),71) is a topological inverse semigroup and every .-
class in # 7 (N) is an open-and-closed subset of (£Z (N),71);

(i7) (2 (N),72) is a topological inverse semigroup and every -
class in #Z (N) is a closed non-open subset of (£% (N), 7).
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[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological
Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II,
Marcel Dekker, Inc., New York and Basel, 1986.

[2] I. Chuchman and O. Gutik, Topological monoids of almost monotone injective
cofinite partial selfmaps of positive integers, Conference on complex analysis
dedicated to the memory of A. A. Goldberg (1930-2008). Lviv, Ukraine, May
31-June 5, 2010. Abstracts. Lviv, 2010, P. 8-9.

[3] I. Chuchman and O. Gutik, Topological monoids of almost monotone, injective
cofinite partial selfmaps of positive integers, Preprint.

[4] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc.
Surveys 7, Providence, R.I., 1967.

[5] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

SUPEREXTENSIONS OF SEMILATTICES

Volodymyr Gavrylkiv

Department of Mathematics and Computer Sciences, Vasyl Stefanyk Precarpathian
National University, Ivano-Frankivsk, Shevchenko Street 57, Ukraine
E-mail address: vgavrylkiv@yahoo.com

In the talk we describe the algebraic structure of the semigroups G(X),
AMX), Ng(X), Fil(X) and 3(X) over semilattice X (see [5], [6]). The
semigroup G(X) (A(X)) over group X rarely is commutative: this holds
if and only if the group X has finite order |X| = 1 (|X| < 4, see [1]).
This leads to the following natural question: are semigroups G(X) or
A(X) commutative for some semigroup X of big cardinality |X|? We
prove that for any finite linear ordered semilattice X the semigroups
G(X), M(X), Np(X), Fil(X) and §(X) are commutative semigroups.

[1] T. Banakh, V. Gavrylkiv, O. Nykyforchyn, Algebra in superextensions of groups,
I: zeros and commutativity, Algebra Discrete Math. 3 (2008), 1-29



Abstracts of Lectures and Reports Tesn jexmiii i gomoBimeit 11

[2] T. Banakh, V. Gavrylkiv, Algebra in superextension of groups, Il: cancelativity
and centers, Algebra Discrete Math. 4 (2008), 1-14

[3] T. Banakh, V. Gavrylkiv, Algebra in the superextensions of groups, I1I: minimal
left ideals, Mat. Stud. 31(2) (2009), 142-148

[4] T. Banakh, V. Gavrylkiv, Ezxtending binary operations to functor-spaces,
Carpathian Mathematical Publication. 1(2) (2009), 113-126

[5] V. Gavrylkiv, The spaces of inclusion hyperspaces over noncompact spaces, Mat.
Stud. 28(1) (2007), 92-110

[6] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces,
Mat. Stud. 29(1) (2008), 18-34

ON SEMITOPOLOGICAL SYMMETRIC INVERSE
SEMIGROUPS OF A BOUNDED FINITE RANK

Oleg Gutik and Andriy Reiter

Department of Mechanics and Mathematics, Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine

E-masl address: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

E-mail address: reiter andriy@yahoo.com, reiter@i.ua

In this paper all spaces are assumed to be Hausdorff. Furthermore
we shall follow the terminology of [1, 7, 7, ?]. By w we denote the first
infinite cardinal.

An algebraic semigroup S is called inverse if for any element x € S
there exists the unique z=! € S such that zz7!'x = z and 7 1zz!
1. The element z~! is called the inverse of x € S. If S is an inverse
semigroup, then the function inv: S — S which assigns to every element
x of S its inverse element ! is called an inversion.

A semitopological (resp. topological) semigroup is a topological space
together with a separately (resp. jointly) continuous semigroup opera-
tion. A topological inverse semigroup is an inverse topological semigroup
with the continuous inversion.
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Let .#(X) denote the set of all partial one-to-one transformations of
X together with the following semigroup operation:

z(af) = (za)Bif,x € dom(af) = {y € dom« | ya € dom S},

for a, f € 7 (X).

The semigroup #(X) is called the symmetric inverse semigroup over
the set X (see [2]). The symmetric inverse semigroup was introduced by
Wagner [13].

We denote &' = {a € F(X) | ranka < n}, for n = 1,2,3,....
Obviously, £ (n =1,2,3,...) is an inverse semigroup, .#;" is an ideal of
J(X), foreachn =1,2,3,.... We observe that the the symmetric inverse
semigroup ., of finite transformations of the rank 1 is isomorphic to the
semigroup of matrix units B).

Let . be a class of (semi)topological semigroups. A semigroup S € .
is called H-closed in ., if S is a closed subsemigroup of any topo-
logical semigroup T' € . which contains S as a subsemigroup [5, ?].
A (semi)topological semigroup S € . is called absolutely H-closed in
the class . if any continuous homomorphic image of S into T' € .
is H-closed in . [6, ?7]. A semigroup S is called algebraically h-closed
in & it S with discrete topology 0 is absolutely H-closed in . and
(5,0) € .7 [5].

Gutik and Pavlyk in [7] consider the partial case of the semigroup .#}":
an infinite topological semigroup of A X A-matrix units B). There they
show that an infinite topological semigroup of A x A-matrix units B) does
not embed into a compact topological semigroup and B, is algebraically
h-closed in the class of topological inverse semigroups.

Gutik, Lawson and Repovs$ in [4] introduce the notion of semigroup
with a tight ideal series and investigate their closures in semitopological
semigroups, particularly inverse semigroups with continuous inversion.
As a corollary they show that the symmetric inverse semigroup of finite
transformations .#y* of infinite cardinal A is algebraically closed in the
class of (semi)topological inverse semigroups with continuous inversion.

In [9] Gutik and Reiter show that the topological inverse semigroup

" is algebraically h-closed in the class of topological inverse semigroups.
Also they prove that a topological semigroup S with countably compact
square S x S does not contain the semigroup .#{* for infinite cardinal
A and show that the Bohr compactification of an infinite topological
semigroup -#," is the trivial semigroup.
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In [8] Gutik, Pavlyk and Reiter show that a topological semigroup of
finite partial bijections .#)" of infinite set with a compact subsemigroup
of idempotents is absolutely H-closed and any countably compact topo-
logical semigroup does not contain .#y" as a subsemigroup. Also they give
sufficient conditions onto a topological semigroup .#; to be non-H-closed.

1. The semigroup #' is algebraically h-closed in the class of semitopo-
logical inverse semigroups with continuous tnversion.

We describe all congruences on the semigroup .#y' and construct a
Hausdorft compact topology 7. on .#{* such that (.}, 7.) is a semitopo-
logical inverse semigroup with continuous inversion.

2. Let A > w, n =1,2,3,..., and 7 be a Hausdorff topology on the
semigroup #5\'. Then the following conditions are equivalent:
(¢) (A3, T) is a compact semitopological semigroup;
(12) (F,7) is topologically isomorphic to (F3*, T.);
(¢ii) (A, T) is a countably compact semitopological semigroup;
(iv) (F, 1) is a countably compact semitopological semigroup with
continuous 1nversion.

[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological
Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II,
Marcel Dekker, Inc., New York and Basel, 1986.

[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1.,
Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc.
Surveys 7, Providence, R.I., 1967.

[3] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

[4] O. Gutik, J. Lawson, and D. Repovs, Semigroup closures of finite rank symmetric
inverse semigroups, Semigroup Forum 78:2 (2009), 326—-336.

[5] O. V. Gutik and K. P. Pavlyk, H-closed topological semigroups and Brandt \-
extensions, Mat. Metody Phis.-Mech. Polya. 44:3 (2001), 20-28 (in Ukrainian).

[6] O. V. Gutik and K. P. Pavlyk, Topological Brandt A-extensions of absolutely H -
closed topological inverse semigroups, Visnyk Lviv Univ. Ser. Mech.-Math. 61
(2003), 98-105.

[7] O. V. Gutik and K. P. Pavlyk, On topological semigroups of matriz units, Semi-
group Forum 71:3 (2005), 389-400.

[8] O. Gutik, K. Pavlyk and A. Reiter, Topological semigroups of matriz units and
countably compact Brandt \O-extensions, Mat. Stud. 32:2 (2009), 115-131.

[9] O. V. Gutik and A. R. Reiter, Symmetric inverse topological semigroups of finite
rank < n, Mat. Metody Phis.-Mech. Polya. 53:3 (2009) 7-14.

[10] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lecture
Notes in Mathematics, Vol. 1079, Springer, Berlin, 1984.
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[11] J. W. Stepp, A note on mazimal locally compact semigroups, Proc. Amer. Math.
Soc. 20:1 (1969), 251-253.

[12] J. W. Stepp, Algebraic mazimal semilattices, Pacific J. Math. 58:1 (1975), 243—
248.

[13] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119—
1122 (in Russian).

ON NON-NEGATIVE INTEGER QUADRATIC FORMS

G.V. Kriukova

Department of Algebra and Mathematical logic, The Faculty of Mechanics and
Mathematics, National Taras Shevchenko University of Kyiv, Kyiv, Volodymyrska
64, Ukraine

E-mazil address: galyna.kriukova@gmail.com

The use of quadratic forms as a tool for characterizing classes of finite
dimensional algebras and Lie algebras is well known and widely accepted.
We study properties of non-negative integer quadratic forms.

According to Roiter an integral quadratic form ¢ : Z" — Z

g@)= Y @ri+) gywiwg, (4,49, €2)
i€{1,...,n} 1<jg

is called semi integer if ¢;; € ¢;Z for all 4,5 € {1,...,n}, and it is called
integer if in addition ¢; # 0 for all ¢ € {1,...,n}. The integer form
q is called wnit if ¢; = 1 for all i € {1,...,n}. Two forms ¢ and ¢
and corresponding bigraphs B and B’ are equivalent if one comes from
another due to sequence of sing-invertions. Form is balanced if Yv € Z"
such that ¢(v) = 0 holds:

(v,9)g =q(v+y) —q(v) —q(y) =0, VyeZ"

With any such form in n variables one associates its Coxeter graph or
bigraph B,, which is labeled and partially directed.

1. A semi-integer quadratic form q is non-negative iff conditions hold:

(1) form q is balanced;
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(2) ¢ >0,ie{l,...,n};
(3) q@23 S 4qlqj7 Za] € {]—7 S 777'}; 1 < j;
(4) q does not contain as subform any of form equivalent to following
bigraphs:
O——>0 O O O o O @ O
O—>0—>0 C—>0 >0 O<—————==20 >0

R
N\ 2\ /\

This criterion generalizes result of [1] for unit forms. We compare non-
negativity criterions for integer quadratic forms, integer unit forms, real
quadratic forms ([2]).

[1] M. Barot, J. A. de la Péna. The Dynkin type of a non-negative unit form, Ex-
positiones Mathematicae. 17 (1999), 339-348.

[2] N.S. Golovaschuk, G.V. Kriukova. Non-negativity criterion for integer quadratic
forms, Bulletin of University of Kyiv. Series: Physics & Mathematics. 4 (2009)

ON WEAK FILTER CONVERGENCE OF UNBOUNDED
SEQUENCES

Alexander Leonov

Department of Mechanics and Mathematics, Kharkov National, University, pl. Svo-
body 4, 61077 Kharkov, Ukraine
E-mail address: aleon7@i.ua
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It is known that the properties of sequences that are filter convergent
in the weak topology differ significantly from the properties of the or-
dinary weakly convergent sequences. In particular a weakly convergent
sequence must be bounded but, say, a weakly statistically convergent se-
quence can tend to infinity in norm [1]. This effect induces the following
natural question:

. If a sequence has a weak limit with respect to a given filter F, how quick
can the norms of the elements in the sequence tend to infinity?

Of course the answer depends on the filter. In [3] we prove that For
every weakly statistically convergent sequence x,, with increasing norms
in a Hilbert space we prove that sup,, ||x,||/v/n < oco. This estimate is
sharp. We study analogous problem for some other types of weak filter
convergence.

[1] J.Connor, M.Ganichev and V.Kadets. A characterization of Banach spaces with
separable duals via weak statistical convergence. J. Math. Anal. Appl. 244 (2000),
no 1, 251 - 261.

[2] V. Kadets. Weak cluster points of a sequence and coverings by cylinders / Mat.
Fiz. Anal. Geom., 11 (2004), No 2, 161 - 168

[3] V.Kadets, A.Leonov, C.Orhan. Weak statistical convergence and weak fil-
ter convergence for unbounded sequences J. Math. Anal. Appl. to appear
doi:10.1016/j.jmaa.2010.05.031

ON ALGEBRAS OF ULTRADISTRIBUTIONS

V.Ya. Lozynska

Department of Functional Analysis, Pidstryhach Institute of Applied Problems of
Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, 3-b
Naukova Str., Ukraine

E-mail address: vliozynska@yahoo.com

The convolution algebras of ultradistributions of Beurling and of Roumieu
type are introduced and investigated.
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For a weight function w (see[l]) and an open set {2 € R™ we define

11 (Q) = {f € C(Q)|for all compact K € Q there is m € N

1 *k
sup_sup | () (@) eap( — — ¢*(ma])) < oo}
aeNN zeK m

and

Ew) () = {f € C°(Q)|for all compact K € Q and all m € N

picn(F) = sup_sup [ @)ean( —me (121)) < oo},

aeNON reK

where ¢* denotes the Young conjugate of the convex function ¢. We will
write &, if statement holds for both £,y and &(,.

The elements of £¢,,)(2)" (resp. &) (£2)") are called ultradistributions
of Roumieu type (resp. of Beurling type).

For a weight function w, an ultradistribution p € &,(R™), and f €
E«(R™) we define the convolution by

prf iR —=C, px f(t) = (us, f(E+8)) = (s, T_s f(1))-

1. The space E.(R™) is an algebra with respect to the convolution, that
15 defined by the relation

prv:E(RY) = C, (uxv, f) = (v,uxf),
w,v € EL(R™), f € E(R™). The convolution has the following properties
D*(ux f) = px (D f) = (=1)*(D*p) * f,
D¥(pxv) = (D*p) x v = px (D*v)
forallk € Z,.

[1] Braun R.W., Meise R., Taylor B.A., Ultradifferentiable functions and Fourier
analysis // Results in Mathematics — Vol. 17, (1990) — P. 206-237.

RELATIVELY THIN SUBSETS OF GROUPS
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Ie. Lutsenko

Department of Cybernetics, Taras Shevchenko National Kyiv University, Kyiv,
Volodimirska 64, Ukraine
E-mail address: ie.lutsenko@gmail.com

Let G be a group with the identity e, Z be a left translation-invariant
ideal in the Boolean algebra Pg of all subsets of G. A subset A C G is
said to be

e 7-large if there exist F' € Fg and I € 7 such that G = FAU I;
e T-smallif L'\ A is Z-large for every Z-large subset L;
o T-thinif ANgA € T for every g € G, g # e.

An ideal 7 is said to be T-complete if every Z-thin subset of G belong

to 7.

1. Let G be an infinite group, T be a translation-invariant ideal in Pg.
Then 17(Z) C Sz, where St is the ideal of all Z-small subsets of G.

1. Let G be an infinite group, I be a translation-invariant ideal in Pg.
Then the ideal St is T-complete.

2. Let F be a family of subsets of a group G, A C G, n € w. Then

Aerm(F) < ﬂ g .. .ginAc F.
00,500 €{0,1}

3. For a group G, the following statements hold
(1) G is a Boolean group if and only if 7" (Zg) = 7(Zx) = [G]i;
(2) if G is Boolean then 7 (Fg) = 7(Fa);
(3) if G is infinite and 7*(Fg) = 7(Fg) then G is Boolean.

4. Let G be an infinite Abelian group with finite subset {g € G : g*> = e},
Tc be the family of all thin subsets of G, Jg be the ideal of all sparse
subsets of G. Then 7(1g) \ Ja # 9.

2. Let G be an infinite Abelian group with finite number of elements of
order 2. Then the ideal Ja of sparse subsets of G is not T-complete.

5. Let G be a group with no elements of order 2. If T1, Ty € Ta then
T, UTs € T(Tg).
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6. Let G be an infinite group of cardinality o, F be a family of subsets
of G closed under taking subsets. Then

T (F) = U ™ (F),
B<at
where TPTYH(F) = 7(79(F)) and 7°(F) = U, <5 77 (F) for a limit ordinal
B<at.

ASYMPTOTIC DIMENSION OF SMALL SUBSETS IN
COARSE GROUPS

N. Lyaskovska

Department of Geometry and Topology at Ivan Franko National University of
Lviv, Ukraine
E-mail address: 1lyaskovska@yahoo.com

Recall that a subset A of a locally compact group G is

e large if there is compact subsets K with AK = G.
e smallif for any large subset L of G the complement L\ A is large.

By Th.1.8.11 [1], in the topological space R™ the ideal of nowhere
dense subsets coincides with the ideal of subsets A whose closure has
the topological dimension dim(A) < n. The following Theorem is an
analogue of this fact.

1. For any discrete finitely generated Abelian group G the subset A is
small iff asdim(A) < asdim(G).

For a subset A of a locally compact group G we write asdim(A) < n
for an integer number n > 0 if for every compact subset K C G there is
compact subset L C G and a cover U of A such that mesh(U) < L and
HU el : UngK # 0} <n—+1 for every g € G. We write mesh(U) < L
if for any U € U there is g € G with U C gL. We say that asdim(A) = n
if asdim(A) < n and asdim(A) £ n—1. If no integer n with asdim(A) < n
exists, then we put asdim(A) = oo.
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The following examples shows that the Abelian requirement in the
previous theorem is essential.

1. Let Fy be the free group with two generators a,b. Note that subgroup
A={a" : n €Z} is small but has asdim(A) = asdim(F3) = 1.

2. For any subset A of a locally compact Abelian group G holds if
asdim(A) < asdim(G)} then A is small.

[1] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6. Helder-
mann Verlag, Berlin, 1989.

VECTOR BUNDLES AND COBORDISMS

Sergiy Maksymenko

Institute of Mathematics of NAS of Ukraine, Kyiv, Tereshchenkivs’ka str., 3, 01601,
Ukraine
E-mail address: maks@imath.kiev.ua

Lectures 1-2. Classification of vector bundles. Examples of vector
bundles. Regular neighbourhoods of submanifolds. Main constructions
over vector bundles: subbundle, factor-bundle, induced bundle, Whitney
sum. Embeddings of vector bundles into trivial ones. Vector bundles over
[0, 1]. Invariance of induced bundles under homotopies. Grassman mani-

fold and the tautological vector bundle. Homotopy classification of vector
bundles.

Lectures 3-4. Cobordism theory. The notion of cobordism. Groups
of orientable and non-orientable cobordisms. Surgery. Transversality. Thom’s
construction. The main theorem of cobordism theory (by R. Thom).
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ON LAWSON IDEMPOTENT SEMIMODULES

O. Mykytsey

Department of Mathematics and Computer Science, Vasyl’ Stefanyk Precarpathian
National University, Ivano-Frankivsk, Shevchenka 57, Ukraine
E-mail address: oksana39@i.ua

Let L be a compact Hausdorff Lawson lattice, with V and A being
resp. join and meet, and let * : L X L, — L be an upper semicontinuous
operation, called multiplication, which is associative, distributive w.r.t.
V in the both variables, and the top element 1 € L is a two-side unit for
x. It implies that * is isotone in the both variables, hence ax 8 < a A (3
for all a, 8 € L. Then (L, V,*) is an idempotent semiring [1].

For an idempotent semiring S = (S, V,*,0,1) a right S—semimodule
is a set X with operations V: X x X — X and % : X x.§ — X such that
forall z,y,z€ X, a,0 € S5 :

)xVy=yVu;

2) (zVy)Vz=aV(yVz);

3) there is an (obviously unique) element 0 € X such that x V0 =z
for all x;

4) (xVy)xa=(rxa)V(yxa), x*(aVp)=(rxa)V(xx*x0);

5) x * (a*x ) = (x * a) * [5;

6) zx1=ux;

7)xx0=0.

We call X a compact Hausdorff Lawson right (L, V, %)- semimodule [2]
if X is an (L, V, *)-semimodule and carries a compact Hausdorff topology
such that the upper semilattice (X, V) is a Lawson lattice [3] and * is
lower semicontinuous.

We denote by (L, V, *) — LwS Mod the category that consist of all com-
pact Hausdorff Lawson (L, V, %)-semimodules and all their continuous
maps that preserve all suprema and infima and are *-uniform. We also
denote by (L, V, %) — LwSMod; and (L, V, x) — LwSMod, the categories
with the same objects, but with the classes of morfisms that consist of all
join-preserving (hence isotone) x-uniform maps such that the preimages
of all closed upper (resp. lower) sets are closed.
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For a compact Hausdorff Lawson lower semilattice X, the product
X x L is a compact Hausdorff Lawson lower semilattice as well. Let
expi X be the ordered by inclusion space of all closed subsets C' C X x L
such that, for all «, 8 € L, z,y € X :

(1) a < B,z <wy,(y,B) € C implies (z,a) € C}

(2) (z,a), (z,B) € C implies (z,a Vv ) € C;

3) C D (X x{0})U({min X} x L).

It is proved that expX X is a compact Hausdorff Lawson (L, V,*)-
semimodule.

Let L be our compact Hausdorff Lawson lattice L but with reverse
order.

. Is expg X a compact Hausdorff Lawson (L, V,*)-semimodule?

For expk X the following conventions are valid:
(1) a> B,z <y, (y,0) € C implies (z,a) € C,
(2") (z, @), (z,0) € C implies (z,a A §) € C;
(3) C O (X x{1})U({min X} x L).
For each closed F C X x L, the set
OX(F)={ (z,0) € X x L | # < inf(pri(A)),a > inf(pry(A))

for some A C (F U (X x {1}) U ({min X} x L)), A # 0}

is the least element of expg X wich contains F. In particular, 0 X (F') = F
if and only if F' € expk X.
We obtain a continuous retraction #X : exp(X x L) — expX X, hence

expg X is a compactum.

For a closed subset F C expg X, its intersection () F is is expg X,
therefore is a greatest lower bound of F. The equality

ﬁf - { (inf(prl(A)),Sup(prz(A))> | Ac fJ-}

implies that (| F is continuous w.r.t. F. The least upper bound of F is
equal to 0X (| JF), hence is continuous w.r.t. F as well. If F C expg X
is not closed, then supF = 0X(Cl (|JF)). For two elements Fy,Fs €
expg X, the join is equal to { (z,a A B) | (z,a) € F1,(x,0) € Fa}.

The distributivity of join w.r.t. meet in expX X is easily checked. Thus

expg X is a compact Hausdorff Lawson lattice.
We consider an operation / : L x L — L, called division such that

v/B=sup{ a|axB <~} forall (v,8) € L x L.
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If *: L xL — L isalower (upper) semicontinuous operation then
/L x L — L is an upper (resp. lower) semicontinuous operation.
We do not have associativity of /, but for all v, 3, € L :

(v/8)/6 =~/(6 * B).

For all F C L and «,y € L the following equalities are valid:

1) (inf F')/v = inf(F/7);

2) a/(inf F) = sup(a/F);

3) (sup F) /v = sup(F/v);

4) a/(sup F) = inf(a/ F).

Let a division of elements of expX X by elements of L be defined by
the formula

Cla={(z,8/a)]| (z,8) € C}U({minX} x L), C € expk X,a € L.

It makes expg X a compact Hausdorff Lawson (L, V, *)-semimodule.

[1] M. Akian, Densities of idempotent measures and large deviations, Trans. Amer.
Math. Soc. 351(11) (1999), 4515-4543

[2] O. Nykyforchyn, Adjoints and monads related to compact lattices and compact
Lawson idempotent semimodules, Preprint, 2010

[3] J.D. Lawson, Topological semilattices with small semilattices, J. Lond. Math.
Soc. 11 (1969) 719-724

APPROXIMATIONS OF CONTINUOUS FUNCTIONS ON
FRECHET SPACES

Mytrofanov M.A. and Ravsky A.V.

Department of Functional Analysis, Pidstryhach Institute of Applied Problems of
Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, 3-b
Naukova Str., Ukraine

Department of Functional Analysis, Pidstryhach Institute of Applied Problems of
Mechanics and Mathematics of National Academy of Sciences of Ukraine, Lviv, 3-b
Naukova Str., Ukraine

E-masl address: oravsky@mail.ru
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Using results for Banach spaces of [3] and [1], we consider approxima-
tions of a continuous function on a countable normed (real and complex)
Fréchet space by analytic and *-analytic.

A x-polynomial on a linear space is a generalization of a polynomial
(see [1] for details).

1. Let X be a separable complex Fréchet space with a countable system
{Pn}n>1 of norms and Y be a Banach space. Suppose that the space
X, = (X,pn) admits a separating *-polynomial for each n > 1. Let
f: X — Y be a function such that there is a number k > 1 such that
the sequence {f(x,)} C Y converges for each Cauchy sequence {x,} of
Xi.. Then the function f is uniformly approximable on X by x-analytic
functions.

2. Let X be a separable complexr Fréchet space with a countable system
{pn}n>1 of norms and Y be a Banach space. Suppose that the space
X, = (X, pn) admits a separating uniformly *-analytic function for each
n>1. Let f : X — Y be an uniformly continuous function such that
there is a number k > 1 such that the function f in uniformly continuous
on Xi. Then the function f is uniformly approrimable on X by x-analytic
functions.

Also we found a criterium of the existence of an extension of a con-
tinuous function from a dense subspace of a topological space onto the
space. In particular, we prove the following

1. Let X be a Fréchet-Urysohn space, Y a reqular topological space, D
dense subset of X, and f : D — Y a continuous map. The map f extends
to a continuous map from X to'Y if and only if for each convergent in
X sequence {x,} of D the sequence {f(x,)} converges.

[1] M. Mitrofanov, Approximation of continuous functions in complex Banach
spaces Math. notes. 86(4) (2009), 557570 (in Russian)

[2] R. Engelking, General topology, M.: Mir, 1986 (in Russian)

[3] J. Kurzweil,On approximation in real Banach spaces, Studia Math. 14 (1954),
214-231
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FREE IDEMPOTENT SEMIMODULES OVER COMPACT
HAUSDORFF LAWSON SEMILATTICES

O.R. Nykyforchyn

Vasyl’ Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk,
76025, Ukraine
E-mail address: oleh.nyk@gmail.com

Let L be a compact Hausdorff Lawson lattice with o @ 8 and o ®
(8 being resp. the join and the meet of a,3 € L, a bottom element 0
and a top element 1. Let also x : L x L — L be an operation, called
multiplication, which is associative, infinitely distributive w.r.t. @ in the
both variables (or, equivalently, distributive in the both variables and
lower semicontinuous), and the top element 1 € L is a two-side unit for
x. It implies that * is isotone in the both variables, hence ax f < a ® 3
for all a,, 8 € L. In fact, * = ® it the greatest of such possible operations.
Another example is the unit segment I = [0; 1] with the operations max,
min, and the usual multiplication.

Hence (L, ®, *) is an idempotent semiring [1]. If * is also commutative,
then x is a triangular norm (t-norm) [3] on L. Nevertheless, we do not
need the commutativity of % in this paper.

For an idempotent semiring S = (5, P, *,0,1) a (left idempotent) S-
semimodule is a set X with operations @ : X xX — X and x: SxX — X
which satisfy natural conditions [1] roughly analogous to ones for vector
spaces. Informally speaking, an idempotent semimodule is a vector space
over an idempotent semiring. The operation * is isotone in the both
variables.

We call X a compact Hausdorff Lawson (L,®, x)-semimodule if X is
an (L, @, x)-semimodule and carries a compact Hausdorff topology such
that the upper semilattice (X, ®) is a Lawson lattice and the operation
x 1 L x X — X is lower semicontinuous. We adopt a usual convention
and often write ax instead of o * x for « € L and x € X, preserving the
notation * for operations L x L — L.

We denote by LLaws the category of all compact Hausdorff Lawson
lower semilattices and their continuous meet-preserving mappings. Let
also LLawsy and LLaws| be the categories whose objects are compact
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Hausdorff Lawson lower semilattices, and arrows are monotone mappings
such that the preimages of all closed upper (resp. lower) sets are closed.

We denote by (L, @®,*)-LwSMod, the category that consists of all
compact Hausdorff Lawson (L, @, *)-semimodules and of all join-preserving
(hence isotone) lower semicontinuous maps between them that are -
uniform, i.e. preserve multiplication by elements of L. If the operation x* :
Lx L — L is also upper semicontinuous (i.e. is continuous), we define two
more categories. The objects of (L, &, *)-LwSMod and (L, &, *)-LwSMod;
are compact Hausdorff Lawson (L,®,*)-semimodules with continuous
multiplication by elements of L. The morphisms in (L, ®, *)-LwSMod
are continuous x-uniform mappings which preserve all suprema and in-
fima, while the class of morphisms of (L, &, *)-LwSMod, consists of all
upper semicontinuous join-preserving x-uniform mappings between ob-
jects of this category.

Now we will construct left adjoint functors to the obvious forgetful
functors U* : (L, ®, *x)-LwSMod — LLaws, Ut : (L, ®, x)-LwSMod; —
LLawsy, U : (L, @, x)-LwSMod| — LLaws.

For a compact Hausdorff Lawson lower semilattice X, the product
X x L is a compact Hausdorff Lawson lower semilattice as well. Let
expg X be the ordered by inclusion space of all closed subsets C' C X x L
such that, for all o, € L, z,y € X:

(1) a < B,z <y, (y,0) € C implies (z,a) € C (i.e. C is a lower
subset of X x L);

(2) (z,a), (z,8) € C implies (z,a® §) € C;

(3) C D X x {0}.

By the closedness of C', a stronger version of (2) is valid:

(2’)if A C L and = € X are such that (z,«a) € C for all o € A, then
(x,sup A) € C.

For each F' C X x L, the set

OX(F)={(x,a) € X x L |z <inf(pr{(F"))),a < sup(pry(F"))
for some F' C FU (X x {0}),F' # @}

is a least subset of X x L that contains F' and satisfies (1), (2’), (3). It
becomes more obvious if one observe that

OX(F)={(r,0) e X X L|a=0, ora<supA
for some A C L such that for all § € A there is (y,3) € F,z < y}.
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In particular, 0 X (F) = F if and only if F' satisfies (1), (2°), (3).
Observe that the closure of a subset C' C X x L, that satisfies (1), (2), (3),

satisfies these properties as well, hence © X (F) = CLl(0 X (F)) = 6 X (CL F)
is a least element of expi X that contains F'. It is equal to

OX(F)={(x,a) e X x L | a =0, or for all
o <a,r’ <xtherearen € N, (y1,a1),...,(Yn,an) € F
such that ' <y1,..., 7 <yn,a1 ... Day, = a'}.

If F is closed, then X (F) is closed as well, hence 0 X (F) = X (F),
and in this case we can equivalently take only closed subsets F’ of F'U
(X x {0}) in the definition. We obtain a continuous retraction 6.X :
exp(X x L) — expX X, thus expk X is a compactum.

For a closed subset F C expk X, its intersection (| F is in expX X,
therefore is a greatest lower bound of F. The equality

() F = {(inf(pr, (A)), inf(pry(A))) | A € F*}

implies that (| F is continuous w.r.t. F. The least upper bound of F is
equal to 6X (| J F), hence is continuous w.r.t. F as well. If F C expX X is
not closed, then sup F = ©X (| JF). For two elements F, F» € expX X,
the join is equal to {(a ® B, z) | (o, ) € F1,(8,z) € Fa}. The distribu-
tivity of join w.r.t. meet in expX X is easily checked. Thus expk X is
a compact Hausdorff Lawson lattice. Its bottom and top elements are
equal to X x {0} and X x L respectively.

Let the multiplication * : L x expk X — expk X be defined as follows:
for a set C € eXpIA X and a € L, the product aC' is the least element of

expX X that contains the set {(z,a * 3) | (z,3) € C}, i.e.
aC =0X({(z,axp) | (z,p) € C})).

There is an embedding nk X : X < expX X that sends each z € X
to (X x {0}) U ({z}] x L).

1. The semimodule expX X together with the mapping nk X : X —

eXpIAX is a free object over X (as an object of LLaws, LLawst, and
LLaws| ) in resp. (L, ®, *¥)-LwSMod, (L, P, *)-LwSMody, and
(L, @, *)-LwSMod, .
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Let Qoo = (90,91,---,9qk,--.) be a stochastic vector such that ¢; > 0,
oo
and — > ¢;Ing; < +00. For any x € [0, 1) there exists a unique sequence
i=0
{ai(x)} of non-negative integers such that

0 k—1
(1) =0+ k@) ][] dos) = Bor@as).ax@)...
k=2 j=1
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where [ (x) = Z q; with Z q; := 0.
=0 1=0

Expression (1) is said to be the polybasic @)-expansion for real num-
bers.

Let N;(x,k) be a number of the digit “” among the first k& digits of
the ()o-expansion of .

If the limit khm N‘(m k) = QC’O () exists, then its value is said to be

the asymptotic frequency of the digit “¢” in the ()~-expansion of .
1. For A-almost all x € [0,1) holds
vi(x) =¢q; (1€{0,1,2,...}).

and

M /o @) Gaz(@) - dan@) =€

Let ® be a covering system which consist of QQo.-cylinders of [0, 1),
ie.,
(2) ®={F:EF=A4 . .0, NEN, ; e NUO, i=1,2,...,n},

and let dimgy (F,®) be the Hausdorff dimension of set E C [0,1) with
respect to the covering system ®.

2. If ¢; = 57, then dimpy (E, ®) = dimy E,VE C [0,1).
The set

N(Qwx) = {:1: D di V?“(az) # q; or klim M

is said to be the set of ()s-non-normal numbers.

does not exist }

3.
dimp (N(Qso)) =1

DYNAMICAL COMPACTIFICATIONS

1.V. Protasov
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1. UNIFORM COMPACTIFICATIONS

Given a set X and U,V C X x X we put,
UV ={(z,y) : (x,2) € U,(z,y) € V for some z € X}

U~ ={(y,2) : (z,y) € U}

A uniform structure (or uniformity) U on X is a filter of subsets of X x X
with the following properties:

(1) A CU forevery U e U, where A = {(z,z) : x € X};
(2) for every U e U, U™t e U;
(3) for every U € U, there exists V' € U for which V2 C U.

Let U be an uniformity on X and let U € U. For any x € X and
Y C X, we put

U)={yeX:(z,y) €U}, UN]=|]U(y)

yey

Then U generates a topology on X in which a base of neighbourhoods
of the point x € X are the sets of the form U(z), where U € U. If X has
this topology, (X,U) is called a uniform space.

If (X,U) and (Y, V) are uniform spaces, a function f: X — Y is said
to be uniformly continuous if, for each V € V), there exists U € U such
that (f(z1), f(z2)) € V whenever (z1,z2) € U.

A topological space X is called uniformirable if its topology can be
generated by some uniformity on X. Metric spaces and topological groups
provide important examples of uniformirable spaces.

If (X,d) is a metric space, the filter which has as base the sets of the
form {(z,y) € X : d(z,y) < r}, where r > 0, is a uniformity on X. This
example includes all discrete spaces. If X is discrete, it has the trivial
uniformity Y/ ={U C X x X : ACU}.

If G is a topological group, its topology is defined by the right uni-
formity which has as base the sets {(z,y) € G x G : xy~! € V}, where
V' denotes a neighbourhood of identity. We shall assume that we have
assigned this uniformity to any topological group to which we refer.
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It is precisely the completely regular topological spaces which are uni-
formirable. X is said to be completely regular if, for every closed subset
E of X and every z € X \ E, there is a function f € Cg(X) for which
f(x) = 0, f[E] = {1}. For each f € Cgr(X) and each € > 0, we put
Ure ={(z,y) € X x X : |f(x) — f(y)| < €}. The finite intersections of
the sets of the form Uy ., then provide a base for a uniform structure on
X.

In particular, every compact space is uniformirable. In fact, X has
a unique uniform structure given by the filter of neighbourhood of the
diagonal in X x X.

A topological compactification of a space X is a pair (¢,Y), where Y
is a compact space, ¢ : X — Y is a topological embedding and p[X] is
dense in Y.

Let (X,U) be a uniform space. There is a topological compactifica-
tion (v,vX) of X such that it is precisely the uniformly continuous
functions in Cr(X) which have continuous extensions to vX. That is
{[f € Ca(X) : f = gogpforsomeg € Ca(yX)} = {f € Ca(X) :
f is uniformly continuous}.

Since v is an embedding, we shall regard X as being a subspace of v.X.
The compactification vX will be called the uniform compactification of
X. It has the following universal property.

Let XY be uniform spaces, f : X — Y be a uniformly continuous
mapping. Then there exists a continuous extension f7 :vX — ~Y.

The construction of v X is based on the next lemma which establish a
relation between compactifications of X and subalgebras of Cg(X).

Let X be any topological space and let A be a norm closed subalgebra of
Cr(X) which contains the constant functions. There is a compact space
Y and a continuous function ¢ : X — Y with the property that ¢[X] is
dense inY and A= {f € Cr(X): f =goy for some g € Cr(Y)}. The
mapping @ 1s an embedding if, for every closed subset E of X and every
x € X \ E, there exists f € A such that f(x) =0 and f[E] = {1}.

If X is discrete, vX coincides with with the Stone-Cech compactifi-
cation SX of X and can be described as follows. We take the points of
BX to be the ultrafilters on X, with the points of X identified with the
principal ultrafilters, and denote by X* = X \ X the set of all free
ultrafilters on X. The topology of 5X can be defined by stating that the
sets of the form A = {p € X : A € p}, where A is a subset of X, are a
base for the open sets.
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2. GREATEST (G-AMBIT AND ENVELOPING SEMIGROUP

Let G be a topological group with the identity e. A G-space is a
topological space X with a continuous action of G, that is, a mapping
G x X — X, (9,x) — gx satisfying g(hz) = (gh)r and ex = x for all
g,h e Gand r € X.

A G-mapping is a continuous mapping f : X — Y between G-spaces
such that f(gx) = g(f(x)) for all x € X, g € G.

A compact G-space X with a distinguished point z is called a G-ambit
if the orbit Gx of x is dense in X.

A morphism between G-ambits (X, z) and (Y, y) is a G-mapping X —
Y taking x to y.

Recall that a function f : G — R is right uniformly continuous if

Ve > 03V e N(G) VaVy € G :

zy eV =|fly) - f(@)] <k,

where N (G) is the filter of neighbourhood of e.

We denote by R the right uniformity on G and by vG the uniform
compactification of (G, R). The G-space vG has a distinguished point e
and the G-ambit (7G, e) has the following universal property:

for every compact G-space X and every p € X, there exists a unique
G-mapping f : vG — X such that f(e) = p, so vG is the greatest G-
ambit.

For every topological group G, the greatest G-ambit vG has a natural
structure of compact right-topological semigroup with the identity e such
that the multiplication G X yG — ~G extends the action G x vG — vG.
Given x,y € X, in virtue of the universal property of X, there is a unique
G-mapping 7, : vX — vX such that r,(e) = e, so we put zy = ry(x).

For a discrete group GG, the product pq of the ultrafilters can be defined
by the rule: given A C G,

Acpge{geG:gtAep) cq.

To define an enveloping semigroup of G-space X, we note that the
space X X provided with topology of point-wise convergence has a natu-
ral structure of compact right-topological semigroup (with operation of
composition) in which all the left shifts g — fg are continuous provided
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that f € XX is continuous. The enveloping semigroup £(X) is the clo-
sure in X X of the set {g(z) : ¢ € G}. The action of G on £(X) is defined
by f(z) — f(g9z), g € G.

The enveloping semigroup E(X) of G-space X is the greatest G-ambit
with the property that morphisms into X separate points. In other words,
morphisms of G-space £(X) — X separate points in £(X), and whenever
(Z,2) is a G-ambit such that morphisms of G-spaces Z — X separate
points in Z, there is unique morphism of G-spaces (E(X),idx) — (Z, z).

Let G be a discrete group. The shift system over G is topologically
Cantor cube ©Z,, upon which G acts by left translations. The enveloping
semigroup £(“Zy) is isomorphic to the greatest G-ambit vG.

3. UNIVERSAL MINIMAL (G-SPACES AND EXTREMAL AMENABILITY

A G-space is minimal if it has no proper G-invariant closed subset or,
equivalently, if the orbit G is dense in X for every x € X. The universal
mintmal compact G-space uG is characterized by the following property:
1G is minimal and, for every minimal compact G-space X there exists a
G-mapping of uG onto X.

For every topological group G, there exists universal minimal com-
pact G-space uG, which is unique up to G-isomorphisms. Fvery minimal
closed left ideal L of the greatest ambit vG is a minimal compact G-space,
moreover, L is a retract of vG.

In some cases, the space uG can be described explicitly. For example,
let F be a countable infinite discrete space, and let G = Sym(E) C FE be
the topological group of all permutations of G. Then uG can be identified
with the space of all linear orders on E. Every linear order is considered
as a subset of E x F is identified with the compact space £XF{0,1}.

Another example is the following. Let S' be a circle, and let G =
H_, (S1) be the group of all orientation-preserving homeomorphisms of
S1. Then pG can be identified with S!. If K is a compact manifold of
dimension > 1 and H(X) is the group of homeomorphisms of K, then
nG # K in view of the following general result:

For every topological group G, the action of G on the minimal compact
G-space uG is not 3-transitive.

A topological group G is called extremally amenable if every compact
G-space X has a G-fixed point z, i.e. gxr = x for every g € . Equiva-
lently, G is extremally amenable if uG is a singleton.
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Recall that a topological group G is amenable if every continuous
action of G by affine transformations on a convex compact subset of a
locally convex vector space has a G-fixed point.

A subset A of a group G is called left large if there exists a finite subset
F of G such that G = F A.

A topological group G is extremally amenable if and only if whenever
A C G is left large, AA™1 is dense in G.

Let us say that a group G of order-preserving automorphisms of a
linearly ordered set X is w-transitive if it takes any finite subset to any
finite subset of the same size.

An w-transitive group of order automorphisms of an infinite linearly
ordered set X, equipped with the topology of point-wise convergence on X,
is extremally amenable. The group Aut(Q, <), considered as a discrete
group has a common fized point on each compact metric space.

A necessary condition for a group G to be extremaly amenable is
that there be no non-constant continuous characters xy : G — T, where
T = {z € C: |z]| = 1} is the unit circle. Indeed, if x : G — T is a
character, xy # 1, then G admits a fixed-point free action on T given by
(9,2) = x(9)z.

Let G be an Abelian topological group. Suppose that G has no non-
trivial characters x : G — T. Is G extremaly disconnected?

For cyclic group the question can be reformulated as follows. Let K
be a compact space, and let f € H(K) be a fixed-point free homeo-
morphism of K. Let C' be the cyclic subgroup of H(K) generated by f.
Does there exist a complex number a such that |a| = 1, a # 1, and the
homeomorphism x : G — T defined by x(f") = a™ is continuous?

In the case G = Z, a negative answer to this question would imply a
negative answer to the following long-standing problem. We remind that
a Bohr topology on Z is the strongest precompact group topology.

Let A be a large subset of Z.. Is the set A — A a Bohr neighbourhood
of zero in 7.7

The above question has also a purely combinatorial equivalent.

Let A be a large subset of 7. Does there exist a large subset B such
that B— B+ B—-BCA—A?

For a topological group G the following statements are equivalent

(i) the canonical morphism vG — £(uG) is an isomorphism;
(ii) points of vG are separated by G-mappings to the minimal G-
spaces.
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For precompact group G, (ii) holds because vG = uG. For the group
Z with the discrete topology, (ii) does not hold.

Is a topological group precompact provided that the points of vG are
separated by G-mappings to the minimal G-spaces?

4. DYNAMICAL EQUIVALENCES AND CORONAS

Let G be a topological group, X be a G-space. The orbit equivalence
Eon X ((x,y) € E< 39 € G : gr =y ) produces the following three
derived equivalences on X

(E): (z,y) €E < clE, = clE,, where E,, E, are E-equivalence
classes containing x and y;

(E): F is the smallest by inclusion equivalence on X containing F
such that every FE-equivalence class is closed;

(E): FE is the smallest by inclusion closed in X x X equivalence on
X containing E.

For every infinite discrete group G, the remainder G* = 3G\ G of the
Stone-Cech compactification SG of G has a natural structure of G-space.
We describe the interrelations between the classes of the equivalences E,
E. E and the principal left ideals of the semigroup 3G.

The factor-space vG = G*/E is called a corona of G and can be
considered as a topological orbit space of G*. To clearify the virtual
equivalence E we use the slowly oscillating functions. A function f :
G — [0,1] is called slowly oscillating if, for all € > 0 and g € G, there
exists a finite subset F' of G such that |f(z) — f(gz)| < € for every
geG\F.

Given any p,q € G*, we have (p,q) € E if and only if, for every slowly
oscillating function f : G — [0,1], f%(p) = f*(q).

For every countable discrete group G, vG contains a topological copy
of w* = fw\w and there exists a continuous surjective mapping f : vG —
vN, where vN = {p € vZ : N € p}. Moreover, if G is locally finite, then
vG contains a topological copy of w* which is a retract of vG.

Besides the equivalences E, E. E on G*, we consider also the tent
relation E defined by

(x,y) € F < clE, C dE,, clE, C clE, for some z € G*,
which is also an equivalence if G is countable. Then we have

ECEcCECECE.
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IsE=FE for the orbit equivalence EE on Z*?
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ON ONE HYPERSPACE OF SUBSETS OF THE
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We consider the hyperspace M. (Q) that consists of the closed subsets
of the Hilbert cube such that all their points are in segments of fixed
length € > 0 which are entirely contained within the mentioned subsets.
Its topological and geometrical properties are studied. In particular it is
proved that M, (Q) is a metric compactum, a Lawson compact topological
upper semilattice [2], and, under additional assumptions about €, an
absolute retract.

1]

B.B. ®enopuyk, B.B. ®ununmnos. O0miass TOMOJIOTUs: OCHOBHBIE KOHCTPYKITHH.
M.: Hayxka, 1989.



Abstracts of Lectures and Reports Tesn jexriii i jomoBineit 37

[2] J.D. Lawson, Topological semilattices with small semilattices, J. Lond. Math. Soc.
11 (1969) 719-724.

NATURAL TRANSFORMATION OF FUNCTORS IN
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The objects of the asymptotic category are proper metric spaces and
the morphisms are proper asymptotically Lipschitz maps [1] .

To our purposes, it is reasonable to modify the asymptotic catego-
ry and to assume that its objects are discrete metric spaces. Then the
morphisms are the Lipschitz maps. In [2], the author introduced the con-
struction that assigns to every normal functor in the category of compact
Hausdorf spaces in the sense of E. Shchepin [3] a functor F' in the as-
ymptotic category.

For every proper metric space (X, d) a metric d on the space F (X) is
defined as follows.

Given a,b € F(X), we let

ci(a, b) = ll’lf{z d(fgi_l, f21> | f2i—17 fgii A@ — X are such that
i=1
there exist ¢; € F(A;), supp(c;) = A;, i =1,...,m, with
a=F(fi)(c1), F(f2)(c1) = F(f3)(c2), ...,
F(fam-1)(cm) = F(fam—2)(cm-1), F(fam)(cm) = b}.

The aim of this talk is to extend the mentioned construction onto the
case of natural transformation of finite normal functors.
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Recall that any natural transformation ¢: F' — G consists of a collec-
tion of morphisms (¢x: F(X) — G(X))x such that for every f: X —Y
we have ¢y F(f) = G(f)ox.

Teopema 1. Any natural transformation of finite normal functors of
finite degree generates a (unique) natural transformation of the corre-
sponding functors in the asymptotic category.

Since the Hausdorff metric dy on the hypersymmetric powers exp,, X
is equivalent to the metric d defined by means of the mentioned construc-
tion [2], one can define the natural transformation of support supp: F' —
exp,,-

As an application, one can extend the class of functors in the asymp-
totic topology.

Teopema 2. Let ¢: F' — G be a natural transformation of finite normal
functors of finite degree and let H C G be a subfunctor. Then ¢~ (H) is
a normal functor of finite degree.

Teopema 3. Let H C F be a subfunctor of a finite normal functor of
finite degree and let ¢: H — G be a natural transformation, where G
is also a finite normal functor of finite degree. Define (F Uy G)(X) =
(F(X)UG(X))/ ~, where a ~ ¢x(a), for everya € H(X). Then FUysG
1s a normal functor of finite degree.

The latter theorem describes the gluing operation for functors.
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ON NODAL ALGEBRAS
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The class of nodal algebras first was considered in [1], where it was

shown that nodal algebras are unique pure noetherian algebras such that
the classification of their modules of finite length is tame (all others being
wild).
Definition. A noetherian ring is called pure noetherian if it has no mini-
mal ideals. A ring N is called nodal if it is semi-perfect and pure noether-
ian, and there is a hereditary [2, 3] ring H 2O N, which is also semi-perfect
and pure noetherian such that

1) rad N = rad H;
2) lengthy(H ®@n U) < 2 for every simple left N-module U and
length (V @n H) < 2 for every simple right N-module V.

We describe nodal algebras over K[[¢]] where K is an algebraically
closed field. This characterization can be used to describe vector bundles
over certain noncommutative projective curves [4].
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