УДК 512.53

SEMIGROUPS OF LINKED UPFAMILIES

V. M. Gavrylkiv

Vasyl Stefanyk Precarpathian National University; 76025, Ivano-Frankivsk, Shevchenko Str., 57; e-mail: ygavrylkiv@gmail.com

Given a semigroup S we study right and left zeros, idempotents, the minimal ideal, left cancelable and right cancelable elements of the semigroup N(S) of linked upfamilies and characterize groups G whose extensions N(G) are commutative.

Key words: semigroup, linked upfamily, idempotent, zero, minimal ideal.

Introduction

It was shown in [10] that any associative binary operation $*: S \times S \to S$ can be extended to an associative binary operation $\circ: \upsilon(S) \times \upsilon(S) \to \upsilon(S)$ by the formula

$$\mathsf{L} \circ \mathsf{M} = \langle \bigcup_{a \in L} a * M_a : L \in \mathsf{L}, \ \{M_a\}_{a \in L} \subset \mathsf{M} \rangle$$

for upfamilies $L, M \in v(S)$. In this case the Stone-Cech compactification $\beta(S)$ is a subsemigroup of the semigroup v(S). The semigroup v(S) contains many other important extensions of S. In particular, it contains the semigroup N(S) of linked upfamilies. A upfamily $L \in v(S)$ is called *linked* if intersection $A \cap B$ is non-empty for any sets $A, B \in L$.

A non-empty subset I of a semigroup S is called an ideal (resp. a right ideal, a left ideal) if $IS \cup SI \subset I$ (resp. $IS \subset I$, $SI \subset I$). An element z of a semigroup S is called a zero (resp. a left zero, a right zero) in S if az = za = z (resp. za = z, az = z) for any $a \in S$. An element $a \in S$ is called an idempotent if aa = a. An ideal $I \subset S$ is called minimal if any ideal of S that lies in I coincides with I. By analogy we define minimal left and minimal right ideals of S. The union K(S) of all minimal left (right) ideals of S coincides with the minimal ideal of S, see [11, Teop. 2.8]. A semigoup S is said to be a right zeros semigroup if ab = b for any $a, b \in S$. A semigroup S is called right simple if aS = S for any $a \in S$. An element a of a semigroup S is called left cancelable (resp. right cancelable) if for any points $x, y \in S$ the equation ax = ay (resp. xa = ya) implies x = y. This is equivalent to saying that the left (resp. right) shift $l_a: S \to S$, $l_a: x \mapsto ax$, (resp. $r_a: S \to S$, $r_a: x \mapsto xa$) is injective.

1 Zeros and the minimal ideal of the semigroup N(S)

For a semigroup S right zeros in N(S) admit a simple description. We define a linked upfamily $L \in N(S)$ to be *shift-invariant* if for every $L \in L$ and $s \in S$ the sets sL and $s^{-1}L = \{t \in S \mid st \in L\}$ belong to L.

Proposition 1. A linked upfamily $L \in N(S)$ is a right zero in N(S) if and only if L is shift-invariant.

Proof. Assuming that a linked upfamily $L \in N(S)$ is shift-invariant, we shall show that $M \circ L = L$ for every $M \in N(S)$. Take any set $F \in M \circ L$ and find a set $M \in M$ and a upfamily $\{L_s\}_{s \in M} \subset L$ such that $\bigcup_{s \in M} sL_s \subset F$. Since $L \in N(S)$ is shift-invariant, $\bigcup_{s \in M} sL_s \in L$ and thus $F \in L$. This proves the inclusion $M \circ L \subset L$. On the other hand, for every $F \in L$ and every $S \in S$ we get $S^{-1}F \in L$ and thus $S \subset L \cap S$ and thus $S \subset L \cap S$ aright zero of the semigroup $S \subset S$.

Now assume that L is a right zero of N(S). Observe that for every $s \in S$ the equality $\langle s \rangle \circ L = L$ implies $sL \in L$ for every $L \in L$.

On the other hand, the equality $\{S\} \circ L = L$ implies that for every $L \in L$ there is a upfamily $\{L_s\}_{s \in S} \subset L$ such that $\bigcup_{s \in S} sL_s \subset L$. Then for every $s \in S$ the set $s^{-1}L = \{t \in S \mid st \in L \} \supset L_s \in L$ belong to L witnessing that L is shift-invariant.

By $\overrightarrow{N}(S)$ we denote the set of shift-invariant linked upfamilies in N(S). Proposition 1 implies that $M \circ L = L$ for every $M, L \in \overrightarrow{N}(S)$. This means that if $\overrightarrow{N}(S)$ is not empty, then it is a semigroup of right zeros. **Proposition 2.** If a semigroup S contains a right zero, then the minimal ideal K(S) of S coincides with the set of all right zeros of S.

Proof. Let Z be the semigroup of all right zeros of S. Then for every $s,t \in S$ and every $z \in Z$ we get t(zs)=(tz)s=zs. Therefore $zs \in Z$ that is $ZS \subset Z$ and Z is a right ideal. It follows from definition of right zeros that SZ=Z. This shows that Z is an ideal of S. It suffices to chek that Z lies in each ideal I of S. Indeed, $Z = IZ \subset IS \subset I$.

Now we find conditions on the semigroup S guaranteeing that the set $\vec{N}(S)$ is not empty.

Proposition 3. A semigroup S is right simple if and only if $\{S\}$ is a right zero of N(S).

Proof. Assuming that $\{S\}$ is a right zero of N(S) observe that for every $a \in S$ the equation $\langle \{a\} \rangle \circ \{S\} = \{S\}$ implies that aS = S.

On the other hand, if aS=S for every $a \in S$, then $M \circ \{S\}=\{S\}$ for all $M \in N(S)$. This means that $\{S\}$ is a right zero of N(S).

Since each group G is a right simple semigroup, then G contains a right zero by Proposition 3. Therefore Propositions 1 and 2 imply that the minimal ideal K(N(G)) of semigroup N(G) coincides with the set $\overrightarrow{N}(G)$ of all shift-invariant upfamilies of N(G).

A subset A of a group G is called *self-linked* if $A \cap xA$ is non-empty for each $x \in G$. For a set A of a group G the upfamily $\{xA \mid x \in G\}$ is orbit of a set A under natural left action of a group G on the set of subsets of G. Proposition 1 implies that each right zero of the semigroup N(G) is the union of orbits of self-linked sets of the group G.

Proposition 4. The cardinality of the minimal ideal K(N(G)) of the semigroup N(G) over a group G of cardinality |G| < 8 can be founded from the following table:

G	C_1	C_2	C_3	C_4	$C_2 \oplus C_2$	C_5	C_6	D_3	C_7
<i>K</i> (<i>N</i> (<i>G</i>))	1	1	2	2	2	5	11	17	45

Proof. a) If a group G has cardinality 1 or 2, then G is the unique self-lnked subset of G. Therefore $K(N(G)) = \{\{G\}\}\$.

- b) In the case $|G| \in \{3,4\}$ a group G contains two different orbits of self-linked sets which generated by the sets G and $G \setminus \{e\}$, where e is the neutral element of G. Thus N(G) contains two right zeros: $\{G\}$ and $\{G,G \setminus \{g\} \mid g \in G\}$.
- c) If |G|=5, then G is a cyclic group. In this case G contains $C_5^3 = 10$ 3-element sets that generate two different orbits of self-linked sets. Since

intersaction of any two 3-element sets is non-empty, then these two orbits (and its union) generate 3 right zeros. Also N(G) contains 2 right zeros $\{G\}$ and $\{G, G \setminus \{g\} \mid g \in G\}$. Therefore N(G) contains 5 right zeros.

- d) Let |G|=6 and G is isomorphic to a cyclic group $C_6=\{e, a, a^2, a^3, a^4, a^5 | a^6=e\}$. In this case G contains two orbits of 3-elements self-linked sets generated by the sets $A=\{e, a, a^3\}$ and $B=\{e, a^2, a^3\}$. Since $A \cap a^2B=\emptyset$, then these two orbits generate two right zeros $\langle gA | g \in G \rangle$ and $\langle gB | g \in G \rangle$ that contain all sets F of cardinality |F|>3. The group C_6 contains three orbits of 4-element subsets generated by the sets $\{e, a, a^2, a^3\}$, $\{e, a, a^3, a^4\}$ and $\{e, a, a^2, a^4\}$. These orbits generate $2^3-1=7$ different right zeros. Also $N(C_6)$ contains 2 right zeros $\{C_6\}$ and $\{C_6, C_6 \setminus \{g\} | g \in C_6\}$. Therefore $|K(N(C_6))|=2+7+1+1=11$.
- e) If |G|=6 and G is isomorphic to the diedral group $D_3=\{e, a, a^2, b, ab, a^2b | a^3=b^2=e, ba=a^2b\}$, then G contains no 3-element self-linked subsets, but all 4-element subsets are self-linked. In this case G contains four orbits of 4-element self-linked sets generated by the sets $\{e, a, a^2, b\}$, $\{e, a, b, ab\}$, $\{e, a^2, b, ab\}$ and $\{e, a^2, ab, a^2b\}$. These orbits generate $2^4-1=15$ different right zeros. Also N(G) contains 2 right zeros $\{G\}$ and $\{G, G \setminus \{g\} \mid g \in G\}$. Therefore $|K(N(D_3))|=15+1+1=17$.
- f) Let |G|=7. Then G is isomorphic to the cyclic group $C_7=\{e, a, a^2, a^3, a^4, a^5, a^6 | a^7=e\}$. In this case G contains two orbits of 3-element self-linked sets generated by the sets $A=\{e, a, a^3\}$ and $B=\{e, a^2, a^3\}$. Since $A \cap a^2B=\emptyset$, then these two orbits generate two right zeros $\langle gA | g \in G \rangle$ and $\langle gB | g \in G \rangle$. The group C_7 has 5 orbits of 4-element self-linked subsets that generate $2^5-1=31$ different right zeros. Also C_7 has 3 orbits of 5-element self-linked subsets that generate $2^3-1=7$ right zeros. Since the right zero $\langle g\{e,a,a^2,a^3\} | g \in C_7 \rangle$ does not contain 5-element self-linked set $\{e,a,a^2,a^4,a^5\}$, then the linked upfamily $\langle g\{e,a,a^2,a^3\},g\{e,a,a^2,a^4,a^5\} | g \in C_7 \rangle$ also is a right zero of $N(C_7)$. In the same manner $\langle g\{e,a,a^3,a^4\},g\{e,a^2,a^3,a^4,a^5\} | g \in C_7 \rangle$ and $\langle g\{e,a^2,a^3,a^5\},g\{e,a,a^2,a^3,a^5\} | g \in C_7 \rangle$ are right zeros of $N(C_7)$. Adding right zeros $\{C_7\}$ and $\{C_7,C_7,\{g\} | g \in C_7\}$ we conclude that $|K(N(C_7))|=2+31+7+3+1+1=45$.

Now we describe groups G that have (left) zeros and characterize groups G whose extensions N(G) are commutative.

Theorem 1. For a group G the following conditions are equivalent:

- 1) the semigroup N(G) is commutative;
- 2) the semigroup N(G) has a zero;
- 3) the semigroup N(G) has a left zero;

4) G is a cyclic group of cardinality 1 or 2.

Proof. 1) \Rightarrow 2) It is easy to see that the linked upfamily $\{G\}$ is shift-invariant and is a right zero of N(G) according to Proposition 1. Since the semigroup N(G) is commutative, then $\{G\}$ is a zero of N(G). The implication 2) \Rightarrow 3) is trivial.

- $\neg 4) \Rightarrow \neg 3$) If |G| > 2, then N(G) contains at least two shift-invariant linked upfamilies $\{G\}$ and $\{G, G \setminus \{g\} \mid g \in G\}$. According to Proposition 1 it has at least two right zeros and therefore N(G) has no a left zero.
- $4) \Rightarrow 1$) If |G|=1, then |N(G)|=1 and N(G) is commutative. In the case |G|=2 the group G is cyclic and the semigroup N(G) has three elements: two principal ultrafilters and shift-invariant linked upfamily $\{G\}$. Since principal ultrafilters commute with $\{G\}$ and $\{G\}$ is a right zero, then $\{G\}$ is the zero of the semigroup N(G). Therefore N(G) is isomorphic to the semigroup G^0 and N(G) is commutative.

2 Idempotents of the semigroup N(G)

In this section we describe some upfamilies of idempotents of the semigroup N(G) over a group G.

Proposition 5. Let G be a group with the neutral element e and $|G| \ge 2$. For any nonempty subset $A \subset G \setminus \{e\}$, such that $|A \cap \{g,g^{-1}\}| \le 1$ for each $g \in G$, the linked upfamily $\mathsf{I}_{\mathsf{A}} = \langle \{e,g\}, \{e,g^{-1}\} \mid g \in A \rangle$ is an idempotent of the semigroup N(G).

Proof. First we show that $I_A \subset I_A \circ I_A$. If $L \in I_A$, then $L \supset \{e,g\}$ or $L \supset \{e,g^{-1}\}$ for some $g \in A$. Since $\{e,g\} = e\{e,g\} \cup g\{e,g^{-1}\} \in I_A \circ I_A$ and $\{e,g^{-1}\} = e\{e,g^{-1}\} \cup g^{-1}\{e,g\} \in I_A \circ I_A$, then $L \in I_A \circ I_A$.

On the other hand, if $L \in I_A \circ I_A$, then $L \supset \bigcup_{a \in I} aM_a$, where $\{I, M_a \mid a \in I\} \subset I_A$. Since $e \in I$, then $L \supset eM_e = M_e \in I_A$ and $L \in I_A$. Therefore $I_A \circ I_A = I_A$ and I_A is an idempotent of the semigroup N(G).

Proposition 6. If g is an element of order 2 of a group G and $|G| \ge 3$, then the linked upfamily $I_g = \langle \{e,g\}, G \setminus \{e\}, G \setminus \{g\} \rangle$ is an idempotent of the semigroup N(G).

Proof. First we prove that $I_g \subset I_g \circ I_g$. If $L \in I_g$, then $L \supset G \setminus \{e\}$ or $L \supset G \setminus \{g\}$ or $L \supset \{e,g\}$. Since $G \setminus \{e\} = e(G \setminus \{e\}) \cup g(G \setminus \{g\}) \in I_g \circ I_g$, $G \setminus \{g\} = e(G \setminus \{g\}) \cup g(G \setminus \{e\}) \in I_g \circ I_g$ and $\{e,g\} = \{e,g\} \{e,g\} \in I_g \circ I_g$, then $L \in I_g \circ I_g$.

Let $L \in I_g \circ I_g$, then $L \supset \bigcup_{a \in I} aM_a$, where $\{I, M_a \mid a \in I\} \subset I_g$. If $e \in I$, then $L \supset eM_e = M_e \in I_g$ and $L \in I_g$. It remains to concider the case $I = G \setminus \{e\}$. Then $g \in I$ and consider the following three cases:

- 1) if $M_g = \{e, g\}$, then $L \supset \bigcup_{a \in I} aM_a \supset gM_g = M_g \in I_g$ and $L \in I_g$;
- 2) if $M_g = G \setminus \{e\}$, then $L \supset \bigcup_{a \in I} aM_a \supset gM_g = G \setminus \{g\} \in I_g$ and $L \in I_g$;
- 3) if $M_g = G \setminus \{g\}$, then $L \supset \bigcup_{a \in I} aM_a \supset gM_g = G \setminus \{e\} \in I_g$ and $L \in I_g$. Therefore $I_g \circ I_g \subset I_g$ and I_g is an idempotent of the semigroup N(G).

Proposition 7. Let G be a group with the neutral element e and $|G| \ge 3$. For any subset $A \subset G \setminus \{e\}$, such that $|A \cap \{g, g^{-1}\}| \le 1$ for each $g \in G$ and $A \ne \{a\}$ where $a^2 = e$, the linked upfamily $I_A^e = \langle G \setminus \{e\}, \{e, g\}, \{e, g^{-1}\} \mid g \in A \rangle$ is an idempotent of the semigroup N(G).

Proof. First we show that $I_A^e \subset I_A^e \circ I_A^e$. If $L \in I_A^e$, then $L \supset \{e,g\}$ or $L \supset \{e,g^{-1}\}$ or $L \supset G \setminus \{e\}$ for some $g \in A$. Consider the case $L \supset G \setminus \{e\}$. If each element of the set A is of order 2, then fix any two different elements $g, h \in A$. Since $g \ne h$, then $gh \ne h^2 = e$ and $G \setminus \{e\} = e(G \setminus \{e\}) \cup g\{e,h\}$ $\in I_A^e \circ I_A^e$. If there exists an element $g \in A$, $g^2 \ne e$, then $G \setminus \{e\} = e(G \setminus \{e\}) \cup g\{e,g\} \in I_A^e \circ I_A^e$. Therefore in this case $L \in I_A^e \circ I_A^e$. Let $L \supset \{e,g\}$ or $L \supset \{e,g^{-1}\}$. Since $\{e,g\} = e\{e,g\} \cup g\{e,g^{-1}\} \in I_A^e \circ I_A^e$ and $\{e,g^{-1}\} = e\{e,g^{-1}\} \cup g^{-1}\{e,g\} \in I_A^e \circ I_A^e$, then $L \in I_A^e \circ I_A^e$.

To show that $\mathsf{I}_\mathsf{A}^\mathsf{e} \circ \mathsf{I}_\mathsf{A}^\mathsf{e} \subset \mathsf{I}_\mathsf{A}^\mathsf{e}$ fix any set $L \in \mathsf{I}_\mathsf{A}^\mathsf{e} \circ \mathsf{I}_\mathsf{A}^\mathsf{e}$. Then $L \supset \bigcup_{a \in I} aM_a$, where $\{I, M_a \mid a \in I\} \subset \mathsf{I}_\mathsf{A}^\mathsf{e}$. If $e \in I$, then $L \supset eM_e = M_e \in \mathsf{I}_\mathsf{A}^\mathsf{e}$ and $L \in \mathsf{I}_\mathsf{A}^\mathsf{e}$. It remains to concider the case $I = G \setminus \{e\}$. Let $a \in G \setminus \{e\}$. Lose no generality we can assume that $M_a \in \{G \setminus \{e\}, \{e,g\}, \{e,g^{-1}\} \mid g \in A\}$. Consider the following three cases:

- 1) If $M_a = G \setminus \{e\}$, then $aM_a = G \setminus \{a\}$. Since $\mathsf{I}_\mathsf{A}^\mathsf{e}$ contains at least two different 2-element sets, then for some $g \in A$ we have $L \supset \bigcup_{a \in G \setminus \{e\}} aM_a \supset G \setminus \{a\} \supset \{e,g\} \in \mathsf{I}_\mathsf{A}^\mathsf{e}$ and $L \in \mathsf{I}_\mathsf{A}^\mathsf{e}$;
 - 2) If $a \in A$ and $M_a = \{e, a^{-1}\}$, then $aM_a = \{e, a\} \in I_A^e$ and $L \in I_A^e$;
- 3) If $M_a \neq \{e, a^{-1}\}$ for any $a \in G \setminus \{e\}$, then $a \in aM_a \subset G \setminus \{e\}$. Therefore $L \supset \bigcup_{a \in G \setminus \{e\}} aM_a = G \setminus \{e\} \in \mathsf{I}_\mathsf{A}^\mathsf{e}$ and $L \in \mathsf{I}_\mathsf{A}^\mathsf{e}$.

Therefore $I_A^e \circ I_A^e = I_A^e$ and I_A^e is an idempotent of the semigroup N(G). Propositions 5-7 imply the following

Corollary 1. For any infinite group G the semigroup N(G) has $2^{|G|}$ idempotents that are not right zeros.

3 Left cancelable and right cancelable elements of the semigroup N(S)

In this section we describe left cancelable and right cancelable elements of the semigroup N(S).

Theorem 2. Let G be a group. A linked upfamily $L \in N(G)$ is left cancelable in the semigroup N(G) if and only if L is a principal ultrafilter.

Proof. Assume that L is left cancelable in N(G). First we show that L contains some singleton. Assuming the converse, take any point $g_0 \in G$ and note that $L(G \setminus \{g_0\}) = G$ for any $L \in L$. To see that this equality holds, take any point $a \in G$, choose two distinct points $b, c \in L$ and find solutions $x, y \in G$ of the equations bx = a and cy = a. Since G is right cancellative, then $x \neq y$. Consequently, one of the points x or y is distinct from g_0 . If $x \neq g_0$, then $a = bx \in L(G \setminus \{g_0\})$. If $y \neq g_0$, then $a = cy \in L(G \setminus \{g_0\})$. Now for the linked upfamily $\{G, G \setminus \{g_0\}\} \neq \{G\}$, we get $L \circ \{G, G \setminus \{g_0\}\} = \{G\} = L \circ \{G\}$, which contradicts the choice of L as a left canceleble element of N(G). Thus L contains some singleton $\{c\}$. Since L is a linked upfamily, then $L = \langle \{c\} \rangle$ is a principal ultrafilter, which proves the "only if" part of the theorem.

To prove the "if" part, take any principal ultrafilter $\langle \{g\} \rangle$ generated by a singleton $\{g\} \subset G$. We claim that two linked upfamilies $M, L \in N(G)$ are equal provided $\langle \{g\} \rangle \circ L = \langle \{g\} \rangle \circ M$. Indeed, given any set $L \in L$ observe that $gL \in \langle \{g\} \rangle \circ L = \langle \{g\} \rangle \circ M$ and hence gL = gM for some $M \in M$. The left cancelativity of G implies that $L = M \in M$, which yields $L \subset M$. By the same argument we can also check that $M \subset L$.

By the same arguments as in "if" part of Theorem 2 one can prove that principal ultrafilters are right cancelable elements in the semigroup N(G).

If G is a group, then the formula

$$\mathsf{L} \circ \mathsf{M} = \langle \bigcup_{a \in L} a * M_a : L \in \mathsf{L}, \ \{M_a\}_{a \in L} \subset \mathsf{M} \rangle$$

implies that the product $L \circ M$ of any two linked upfamilies L and M is a principal ultrafilter if and only if both L and M are principal ultrafilters. Therefore we deduce the following proposition.

Proposition 8. For a group G the set $N(G) \setminus \{\langle \{g\} \rangle : g \in G\}$ is an ideal in N(G).

Proposition 9. Let G be a finite group. A linked upfamily $L \in N(G)$ is right cancelable in the semigroup N(G) if and only if L is a principal ultrafilter.

Proof. Assume that some linked upfamily $M \in N(G) \setminus \{\langle \{g\} \rangle : g \in G\}$ is right cancelable. This means that the right shift $r_M : N(G) \to N(G)$, $r_M : A \mapsto A \circ M$, is injective. According to Proposition 8, the set $N(G) \setminus \{\langle \{g\} \rangle : g \in G\}$ is an ideal in N(G). Consequently, $r_M(N(G)) = N(G) \circ M \subset N(G) \setminus \{\langle \{g\} \rangle : g \in G\}$. Since N(G) is finite, r_M cannot be injective.

Proposition 10. Let S be a semigroup. A linked upfamily $L \in N(S)$ is right cancelable in N(S) provided for every $s \in S$ there is a set $L_s \in L$ such that $sL_s \cap tL_t$ is emptyset for any distinct $s,t \in S$.

Proof. Assume that $A \circ L = B \circ L$ for two linked upfamilies $A, B \in N(S)$. First we show that $A \subset B$. Take any set $A \in A$ and observe that the set $\bigcup_{a \in A} aL_a$ belongs to $A \circ L = B \circ L$. Consequently, there is a set $B \in B$ and a upfamily of sets $\{M_b\}_{b \in B} \subset L$ such that

$$\bigcup_{b\in B}bM_b\subset\bigcup_{a\in A}aL_a.$$

It follows from $L_b \in L$ that $M_b \cap L_b$ is not empty for every $b \in B$.

Since the sets aL_a and bL_b are disjoint for different $a,b\in S$, the inclusion

$$\bigcup_{b \in B} b(M_b \cap L_b) \subset \bigcup_{b \in B} bM_b \subset \bigcup_{a \in A} aL_a$$

implies $B \subset A$ and hence $A \in B$.

By analogy we can prove that $B \subset A$.

References

- 1. Banakh T. Algebra in superextensions of groups, I: zeros and commutativity / T. Banakh, V. Gavrylkiv, O. Nykyforchyn // Algebra Discrete Math. 2008. No.3. P. 1-29.
- 2. Banakh T. Algebra in superextension of groups, II: cancelativity and centers / T. Banakh, V. Gavrylkiv // Algebra Discrete Math. 2008. No.4. P. 1-14.
- 3. Banakh T. Algebra in superextension of groups: minimal left ideals / T. Banakh, V. Gavrylkiv // Mat. Stud. 2009. **31.** P. 142-148.
- 4. Banakh T. Algebra in the superextensions of twinic groups / T. Banakh, V. Gavrylkiv // Dissert. Math. 2010. 473. 74 pp.
- 5. Banakh T. Algebra in superextensions of semilattices / T. Banakh, V. Gavrylkiv // Algebra Discrete Math. 2012. 13:1. P. 26-42.
- 6. Banakh T. Algebra in superextensions of inverse semigroups, / T. Banakh, V. Gavrylkiv // Algebra Discrete Math. 2012. **13:2**. P. 147-168.

- 7. Banakh T. Characterizing semigroups with commutative superextensions / T. Banakh, V. Gavrylkiv // Algebra Discrete Math. 2014. 17:2. P. 161-192.
- 8. Clifford A.H. The algebraic theory of semigroups / A.H. Clifford, G.B. Preston // Mathematical Surveys. 7. AMS, Providence, RI. 1961. Vol.I.
- 9. Gavrylkiv V. The spaces of inclusion hyperspaces over noncompact spaces / V. Gavrylkiv // Mat. Stud. 2007. 28:1. P. 92-110.
- 10. Gavrylkiv V. Right-topological semigroup operations on inclusion hyperspaces / V. Gavrylkiv // Mat. Stud. 2008. **29**:1. P. 18-34.
- 11. Hindman N. Algebra in the Stone-C ech compactification, de Gruyter / N. Hindman, D. Strauss. Berlin, New York, 1998.
- 12. Teleiko A. Categorical Topology of Compact Hausdorff Spaces / A. Teleiko, M. Zarichnyi // VNTL. Lviv, 1999.

Стаття надійшла до редакційної колегії 14.05.2015 р. Рекомендовано до друку д.ф.-м.н., професором Заторським Р.А., д.ф.-м.н., професором Никифорчиним О.Р.

НАПІВГРУПИ ЗЧЕПЛЕНИХ СІМЕЙ

В. М. Гаврилків

Прикарпатський національний університет імені Василя Стефаника; 76025, Івано-Франківськ, вул. Шевченка, 57; e-mail: vgavrylkiv@gmail.com

У статті вивчаються праві і ліві нулі, ідемпотенти, мінімальний ідеал, скоротні зліва і скоротні справа елементи напівгрупи N(S) зчеплених сімей, а також характеризуються групи G, розширення N(G) яких ϵ комутативним.

Ключові слова: напівгрупа, зчеплена сім'я, ідемпотент, нуль, мінімальний ідеал.