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Introduction
In this paper we investigate the algebraic structure of the extension
N(S) of a semigroup S. The through study of various extensions of
semigroups was started in [10] and continued in [1]-[7]. The largest among
these extensions is the semigroup v(S) of all upfamilies on S. A family M of

non-empty subsets of a set X is called an upfamily if for each set 4 €M
any subset B D A belongs to M. Each family B of non-empty subsets of X
generates the upfamily (Bc X:BeB)={Ac X:d3BeB(Bc A4A)}. A

family F of non-empty subsets of a set X that is closed under taking
supersets and finite intersections is called a filter. A filter U is called an
ultrafilter if U=F for any filter Fcontaining U. The family A(X) of all

ultrafilters on a set X 1is called the Stone-Cech compactification of X, see
[11], [12]. An ultrafilter <{x}>, generated by a singleton {x}, xe X, is
called principal. We consider X < f(X)cou(X)if each point xe X is
identified with the principal ultrafilter ({x}) generated by the singleton {x}.

It was shown in [10] that any associative binary operation
*:8x§ —>8 can be extended to an associative binary operation
o:0(S)xv(S) > v(S) by the formula

LoM=({Ja*M, :Lel, {M},., =M
ael

for upfamilies L,M e 0(S). In this case the Stone-Cech compactification
L(S) is a subsemigroup of the semigroup o(S). The semigroup
v(S) contains many other important extensions of S. In particular, it contains
the semigroup N(S) of linked upfamilies. A upfamily L € o(S)is called
linked if intersection 4 N B is non-empty for any sets 4,B € L.
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A non-empty subset / of a semigroup S is called an ideal (resp. a
right ideal, a left ideal) if IS\ W SI c I (resp. ISc I, SI cI). An element
z of a semigroup S is called a zero (resp. a left zero, a right zero) in S if
az=za=z (resp. za=z, az=z) for any a€S. An element ae S is
called an idempotent if aa =a. Anideal I — S is called minimal if any ideal
of S that lies in / coincides with /. By analogy we define minimal left and
minimal right ideals of S'. The union K(S) of all minimal left (right) ideals

of § coincides with the minimal ideal of S, see [11, Teop. 2.8]. A semigoup
S is said to be a right zeros semigroup if ab=>b for any a,beS. A

semigroup S is called right simple if aS =S for any a € §. An element a of
a semigroup S is called left cancelable (resp. right cancelable) if for any
points x,y € S the equation ax=ay (resp. xa = ya) implies x = y. This is
equivalent to saying that the left (resp. right) shift / :S—> S, [ :x— ax,
(resp. r,: S = S, r, : x = xa) is injective.

1 Zeros and the minimal ideal of the semigroup N(S)

For a semigroup S right zeros in N(S) admit a simple description. We
define a linked upfamily L e N(S) to be shift-invariant if for every

Leland seSthesetssL ands'L={reS|ste L} belongto L.

Proposition 1. A linked upfamily L € N(S) is a right zero in N(S) if
and only if L is shift-invariant.
Proof. Assuming that a linked upfamily L € N(S) is shift-invariant, we

shall show that MoL =L for every Me N(S). Take any set F e MoL and
find a set M €M and a upfamily {L } _,, <L such that UseMSLS cF.

Since L € N(S)is shift-invariant, UseM sL el and thus F L. This proves

the inclusion MoL < L. On the other hand, for every F €L and every s €S
we get s'F el and thus F > Usess(s*IF) €MoL. This shows that Lis a

right zero of the semigroup N(S).

Now assume that L is a right zero of N(S). Observe that for every s €S
the equality <s >oL =L implies sL € L for every L elL.

On the other hand, the equality {S}cL =L implies that for every L el

there is a upfamily {L } _; L such that Uses sL. < L. Then for every s €S
the set s'L={reS |ste L} > L eL belong to L witnessing that L is shift-
invariant.

By N(S) we denote the set of shift-invariant linked upfamilies in N(S).

Proposition 1 implies that MoL =L for every M,L € ﬁ(S). This means that

if N(S ) is not empty, then it is a semigroup of right zeros.
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Proposition 2. If a semigroup S contains a right zero, then the minimal
ideal K(S) of S coincides with the set of all right zeros of S.

Proof. Let Z be the semigroup of all right zeros of S. Then for
everys,t € S and every z € Zwe get t(zs)=(tz)s=zs. Therefore zs € Z that is
ZS c Zand Z is a right ideal. It follows from definition of right zeros that
SZ=Z. This shows that Z is an ideal of S. It suffices to chek that Z lies in
eachideal /of S.Indeed, Z=1Zc IS I.

Now we find conditions on the semigroup S guaranteeing that the set
N(S) is not empty.

Proposition 3. A semigroup S is right simple if and only if {S} is a
right zero of N(S).

Proof. Assuming that {S} is a right zero of N(S) observe that for every
a € S the equation <{a}> o {S} ={S} implies that aS=S.

On the other hand, if aS=S for every a €S, then Mo {S§}={S} for all
M e N(S). This means that {S} is a right zero of N(S).

Since each group G is a right simple semigroup, then G contains a right
zero by Proposition 3. Therefore Propositions 1 and 2 imply that the minimal
ideal K(N(G)) of semigroup N(G) coincides with the set N(G) of all shift-
invariant upfamilies of N(G).

A subset 4 of a group G is called self-linked if A xA is non-empty
for each x € G.For a set 4 of a group G the upfamily {x4|x € G} is orbit of a
set 4 under natural left action of a group G on the set of subsets of G.
Proposition 1 implies that each right zero of the semigroup N(G) is the union
of orbits of self-linked sets of the group G.

Proposition 4. The cardinality of the minimal ideal K(N(G)) of the
semigroup N(G) over a group G of cardinality |G|<8 can be founded from the
following table:

G |glalalalaec]c|c|b]c
KNG)| 1 |1 ]2 ]2 2 5 1117 |45

Proof. a) If a group G has cardinality 1 or 2, then G is the unique self-
Inked subset of G. Therefore K(N(G))={{G}}.
b) In the case |G le {3,4} a group G contains two different orbits of

self-linked sets which generated by the sets G and G\{e}, where e is the
neutral element of G. Thus N(G) contains two right zeros: {G} and

{G,G\{g}|g<G}.
¢) If |G|=5, then G is a cyclic group. In this case G contains C; =10 3-
element sets that generate two different orbits of self-linked sets. Since
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intersaction of any two 3-element sets is non-empty, then these two orbits
(and its union) generate 3 right zeros. Also N(G) contains 2 right zeros {G}
and {G,G \{g}| g € G}. Therefore N(G) contains 5 right zeros.

d) Let |G|=6 and G is isomorphic to a cyclic group Cs={e, a, a’, a’, a’,
a’| a®=e}. In this case G contains two orbits of 3-elements self-linked sets
generated by the sets A4={e, a, a’} and B={e, a’, a’}. Since AN a’B=0,
then these two orbits generate two right zeros <gA |g e G> and < gB|ge G>

that contain all sets F of cardinality |F|>3. The group Cscontains three orbits
of 4-clement subsets generated by the sets {e, a, a°, @'}, {e, a, @’, a’} and {e,
a, & a4}. These orbits generate 23.1=7 different right zeros. Also N(Cy)
contains 2 right zeros {Cs} and {C,,C,\{g}|geC,}. Therefore
|IK(N(Cy))|=2+7+1+1=11.

e) If |G|=6 and G is isomorphic to the diedral group D;={e, q, &, b, ab,
a’b| a’=b’=e, ba= a’b}, then G contains no 3-clement self-linked subsets,
but all 4-element subsets are self-linked. In this case G contains four orbits
of 4-element self-linked sets generated by the sets {e, a, a’,b}, {e, a, b, ab},
{e, az, b, ab} and {e, a2, ab, azb}. These orbits generate 2%.1=15 different
right zeros. Also N(G) contains 2 right zeros {G} and {G,G\{g}|g e G}.
Therefore |K(N(D3))|=15+1+1=17.

f) Let |G|=7. Then G is isomorphic to the cyclic group C;={e, a, @’, a’,
at @, a6| a7=e}. In this case G contains two orbits of 3-element self-linked
sets generated by the sets A={e, ¢, @’} and B={e, a’, a’}. Since AN a’B=Q,
then these two orbits generate two right zeros <gA |g e G> and < gB|ge G> .

The group C; has 5 orbits of 4-clement self-linked subsets that generate 2°-
1=31 different right zeros. Also C; has 3 orbits of 5-element self-linked
subsets that generate 2°-1=7 right zeros. Since the right zero

<g{e,a,a2 ,a't| g e C7> does not contain S-element self-linked set
{e,a,a’,a’,a’}, then the linked upfamily < glea,d’,a’}.glea,a’,a',a’}|ge C7>

also is a right =zero of N(C;). In the same manner
3 4 5

(glead.d'y gled,d\a',a’}|gC) and (gled’,d',a'} glead’,d’,a'} | geC,)
are right zeros of N(C). Adding right zeros {C;} and {C,,C,\{g}|geC,}
we conclude that |K(N(C7))|=2+31+7+3+1+1=45.

Now we describe groups G that have (left) zeros and characterize
groups G whose extensions N(G) are commutative.

Theorem 1. For a group G the following conditions are equivalent:
1) the semigroup N(G) is commutative;

2) the semigroup N(G) has a zero;

3) the semigroup N(G) has a left zero;

ISSN 2304-7399. ITpukapnarcekuii Bicauk HTL. Yucno. —2015. — Ne 1(29)



108 MATEMATHKA TA MEXAHIKA

4) G is a cyclic group of cardinality 1 or 2.
Proof. 1) = 2) It is easy to see that the linked upfamily {G} is shift-

invariant and is a right zero of N(G) according to Proposition 1. Since the
semigroup N(G) is commutative, then {G} is a zero of N(G).
The implication 2) = 3) is trivial.

—4) = —3) If |G|>2, then N(G) contains at least two shift-invariant

linked upfamilies {G} and {G, G\{g} | g€ G}. According to Proposition 1 it
has at least two right zeros and therefore N(G) has no a left zero.
4)=1) If |G|=1, then |IN(G)|=1 and N(G) is commutative. In the case

|G|=2 the group G is cyclic and the semigroup N(G) has three elements: two
principal ultrafilters and shift-invariant linked upfamily {G}. Since principal
ultrafilters commute with {G} and {G} is a right zero, then {G} is the zero
of the semigroup N(G). Therefore N(G) is isomorphic to the semigroup G
and N(G) is commutative.
2 Idempotents of the semigroup N(G)

In this section we describe some upfamilies of idempotents of the

semigroup N(G) over a group G.

Proposition 5. Let G be a group with the neutral element e and
|G [>2. For any nonempty subset 4 G\{e}, such that |An{g,g '} <1
for each geG, the linked upfamily |, =({e,g},{e,g '} | g€ 4) is an

idempotent of the semigroup N(G).
Proof. First we show that I, cl,ol,. If Lel,, then L>{e,g} or

Lo{e,g™" for some geA. Since {e,g} =efe,gt Ugle,g'}el, ol, and
{e,g 't =ele,g ' yug{e,gl el  ol,, then Lel, ol,.

On the other hand, if Lel,°l,, then LDUaezaMa’ where
{I,M,|lael}cl,. Since ecl, then LoeM,=M,cl, and Lel,.

Therefore I, ol, =1, and |, is an idempotent of the semigroup N(G).

Proposition 6. If g is an element of order 2 of a group G and
|G [23,then the linked upfamily I3 =({e,g},G\{e},G\{g}) is an

idempotent of the semigroup N(G).
Proof. First we prove that |, <l ol,. IfLel , then L>G\{e} or

L>G\{g} or Lole,g}. Since G\{e}=e(G\{e})Ug(G\{g}) €l;ely,

G\{gl=e(G\{g}) U g(G\{e}) elyel; and {e,g}={e,g}{e.g} el °ly,
then L e Ig o Ig.
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Let Lelyely, then L:)UuelaMa, where {I,M, |ael}cl, If eel,
then L >eM,=M, el ,and L el;. It remains to concider the case I=Gl/e/.
Then g €I and consider the following three cases:

D)if M, ={e,g}, then L:)UaeIaMa SDgM,=M,el;and Lel;
2)if M, =G \{e}, then LDUaelaMa S>gM,=G\{g}tel, and Lelg;
3)if M, =G \{g}, then L:)UaelaMa >gM,=G\{ejel;and Lel,.

Therefore |, o1, <1, and |, is an idempotent of the semigroup N(G).

Proposition 7. Let G be a group with the neutral element e and
|G|[>3. For any subset 4c G\{e}, such that |4n{g,g '} |<1for each

geGand A#{a} where a’°=e, the linked upfamily
15 =(G\{e},{e,g}.{e,g '} | g € A) is an idempotent of the semigroup N(G).

Proof. First we show that I3 I3 ol5. If Lely, then L > {e,g} or
L>o{e,g™'} or L>G\{e} for some g e A. Consider the case L > G\ {e}.
If each element of the set 4 is of order 2, then fix any two different elements
g,heA. Since g#h,then gh#=h’=e and G\{e}=e(G\{e}) U gle,h}
elfolf. If there exists an element ged, g #e, then
G\{e}=e(G\{e})u gle,g} €lj oly. Therefore in this case L el ol}. Let
Lo{e,gt or Lo{e,g'}. Since {e,g}=ele,glUgle,g”'}elsol; and
fe,g v =ele,g ' VU g e gl elf oI5, then Lelfolf.

To show that I3 oI} I fix any set Lelj ol3. Then L > UaelaMa,
where {I,M |ael}cl,. If ecl, then LoeM,=M, €ly and Lel;. It
remains to concider the case /I=G\{e}. Let a € G \{e}.Lose no generality we
can assume that M, € {G\ {e},{e,g},{e,g '} | g € A}.Consider the following

three cases:
DHIf M,=G\{e}, then aM, =G \{a}. Since |, contains at least two

different  2-element sets, then for some ged4 we have
L DUaeG\{e}aM“ S>G\fa}>o{eg}el; and Lely;

2)If ac Aand M, ={e,a'}, then aM, ={e,a} €l and Lel5;

3)If M, #{e,a'} for any aeG\{e}, then acaM,cG\{e}.
Therefore L o U aM,=G\{e} el and Lelj.

aeG\{e}
Therefore I3 oI} =13 and I} is an idempotent of the semigroup N(G).
Propositions 5-7 imply the following
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Corollary 1. For any infinite group G the semigroup N(G) has 2
idempotents that are not right zeros.

3 Left cancelable and right cancelable elements of the semigroup N(S)
In this section we describe left cancelable and right cancelable
elements of the semigroup N(S).

Theorem 2. Let G be a group. A linked upfamily L e N(G) is left

cancelable in the semigroup N(G) if and only if L is a principal ultrafilter.
Proof. Assume that L is left cancelable in N(G). First we show that
L contains some singleton. Assuming the converse, take any point goe G and
note that L(G\{gy})=G for any L L. To see that this equality holds, take
any point a€ G, choose two distinct points b,c€ L and find solutions x,ye G
of the equations hx=a and cy=a. Since G is right cancellative, then x#y.
Consequently, one of the points x or y is distinct from gy. If x# gy, then
a=bxe L(G\{gp}). If y#gy, then a=cyeL(G\{gyp}). Now for the linked
upfamily {G, G\{gy}}# {G}, we get Lo {G, G\{gy}}={G}=Lo {G}, which
contradicts the choice of Las a left canceleble element of N(G). Thus
L contains some singleton {c}. Since L is a linked upfamily, then L= {c})

is a principal ultrafilter, which proves the “only if” part of the theorem.

To prove the “if” part, take any principal ultrafilter ( {g}) generated
by a singleton {g} — G. We claim that two linked upfamilies M,L € N(G) are
equal provided ( {g}) cL=({g}) oM. Indeed, given any set L €L observe
that gL e ( {g}) cL=({g}) oM and hence gL=gM for some M e M. The left

cancelativity of G implies that L=M e M, which yields L — M. By the same
argument we can also check that Mc L.

By the same arguments as in “if”” part of Theorem 2 one can prove that
principal ultrafilters are right cancelable elements in the semigroup N(G).

If G is a group, then the formula

LoM=(Ja*M, :LeL, {M,},, =M
acl

implies that the product LoM of any two linked upfamilies L and M is a
principal ultrafilter if and only if both L and M are principal ultrafilters.
Therefore we deduce the following proposition.

Proposition 8. For a group G the set N(G)\{{({g}): g G} is an
ideal in N(G).

Proposition 9. Let G be a finite group. A linked upfamily L € N(G) is

right cancelable in the semigroup N(G) if and only if L is a principal
ultrafilter.
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Proof. Assume that some linked upfamily Me N(G)\{{{g}): g € G}
is right cancelable. This means that the right shift #,: N(G) »> N(G),
ny:Ar AoM, 1is injective. According to Proposition 8, the set
NG)\{({g}):geG} is an ideal in N(G). Consequently,
M(N(G)=N(G)ocMc N(G)\{({g}): g €G}. Since N(G) is finite, 5,
cannot be injective.

Proposition 10. Let S be a semigroup. A linked upfamily L € N(S) is
right cancelable in N(S)provided for every s € S there is a set LyeL such
that sL; NtL, is emptyset for any distinct s,/ € §S'.

Proof. Assume that A oL =B oL for two linked upfamilies A,B € N(S).
First we show that A cB. Take any set A€ A and observe that the set
UueAaLa belongs to AoL =BoL. Consequently, there is a set BeBand a

upfamily of sets {M,},_, < L such that

UbeBbe < UaeA aL” '
It follows from L, L that M, N L, is not empty for every b € B.

Since the sets aL, and bL, are disjoint for different a,b € S, the
inclusion

UIJEBb(Mb a Lb) - UbeBbe - UaeAaLa

implies B < Aand hence 4 € B.
By analogy we can prove that B A..
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