SEMIGROUPS OF CENTERED UPFAMILIES ON FINITE MONOGENIC SEMIGROUPS

VOLODYMYR GAVRYLKIV

Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk Ukraine e-mail: vgavrylkiv@yahoo.com

Abstract

Given a finite monogenic semigroup S, we study the minimal ideal, the center, left cancelable, and right cancelable elements of the extension $N_{<\omega}(S)$ consisting of centered upfamilies on S and characterize monogenic semigroups whose extensions are commutative.

1. Introduction

This paper is devoted to describing the structure of extensions $N_{<\omega}(S)$ of monogenic semigroups S. The thorough study of various extensions of semigroups was started in [11] and continued in [1]-[8], [12]-[15]. The largest among these extensions is the semigroup v(S) of all upfamilies on S. A family \mathcal{M} of nonempty subsets of a set X is called an *upfamily* if for each set $A \in \mathcal{M}$ any subset $B \supset A$ of X belongs to \mathcal{M} . Each family \mathcal{B} of nonempty subsets of X generates the upfamily

Received September 19, 2016; Revised November 12, 2016

© 2016 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 20M10, 20M14, 20M17, 20M18, 54B20.

Keywords and phrases: monogenic semigroup, centered upfamily, zero, minimal ideal, commutative.

 $\langle B \subset X : B \in B \rangle = \{A \subset X : \exists B \in \mathcal{B}(B \subset A)\}$. An upfamily \mathcal{F} that is closed under taking finite intersections is called a *filter*. A filter \mathcal{U} is called an *ultrafilter* if $\mathcal{U} = \mathcal{F}$ for any filter \mathcal{F} containing \mathcal{U} . The family $\beta(X)$ of all ultrafilters on a set X is called the *Stone-Čech compactification* of X (see [16], [19]). An ultrafilter $\langle \{x\} \rangle$, generated by a singleton $\{x\}$, $x \in X$, is called *principal*. Identifying each point $x \in X$ with the principal ultrafilter $\langle \{x\} \rangle$ we obtain the inclusions $X \subset \beta(X) \subset v(X)$. It was shown in [11] that any associative binary operation $*: S \times S \to S$ can be extended to an associative binary operation $\circ: v(S) \times v(S) \to v(S)$ by the formula

$$\mathcal{L} \circ \mathcal{M} = \left\langle \bigcup_{a \in L} a \ast M_a : L \in \mathcal{L}, \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle,$$

for upfamilies $\mathcal{L}, \mathcal{M} \in v(S)$. In this case, the Stone-Čech compactification $\beta(S)$ is a subsemigroup of the semigroup v(S). The semigroup v(S)contains many other important extensions of S. In particular, it contains the semigroup $N_{<\omega}(S)$ of centered upfamilies. An upfamily $\mathcal{L} \in v(S)$ is called *centered* if $\bigcap \mathcal{F} \neq \emptyset$ for any finite subfamily $\mathcal{F} \subset \mathcal{L}$.

Each map $f : X \to Y$ induces the map

$$N_{<\omega}f:N_{<\omega}(X)\to N_{<\omega}(Y),\quad N_{<\omega}f:\mathcal{M}\mapsto \langle f(M)\subset Y:M\in\mathcal{M}\rangle,$$

see [10].

A nonempty subset I of a semigroup (S, *) is called an *ideal* (resp., a *right ideal*, a *left ideal*) if $I * S \cup S * I \subset I$ (resp., $I * S \subset I$, $S * I \subset I$). An element z of a semigroup (S, *) is called a zero (resp., a *left zero*, a *right zero*) in S if a * z = z * a = z (resp., z * a = z, a * z = z) for any $a \in S$. It is clear that $z \in S$ is a zero (resp., a left zero, a right zero) in Sif and only if the singleton $\{z\}$ is an ideal (resp., a right ideal, a left ideal) in S. An ideal $I \subset S$ is called *minimal* if any ideal of S that lies in Icoincides with I. By analogy, we define minimal left and minimal right ideals of S. The union K(S) of all minimal left (right) ideals of S coincides with the minimal ideal of S, see [16, Theorem 2.8]. A semigroup (S, *) is said to be a right zero semigroup if a * b = b for any $a, b \in S$. A map $\varphi: S \to T$ between semigroups (S, *) and (T, \circ) is called a if $\varphi(a * b) = \varphi(a) \circ \varphi(b)$ for any $a, b \in S$. homomorphism Α homomorphism $\varphi: S \to I$ from a semigroup S onto an ideal $I \subset S$ is called a *retraction* if $\varphi(a) = a$ for any element $a \in I$. An element a of a semigroup S is called left cancelable (resp., right cancelable) if for any elements $x, y \in S$ the equality ax = ay (resp., xa = ya) implies x = y. This is equivalent to saying that the left (resp., right) shift $l_a: S \to S$, $l_a: x \mapsto a \ast x \text{ (resp., } r_a: S \rightarrow S, r_a: x \mapsto x \ast a)$ is injective. A semigroup S is called *left* (right) cancellative if all elements of S are left (right) cancelable. A semigroup that is both left and right cancellative is said to be cancellative. By definition, the center of a semigroup S is the set $C(S) = \{a \in S : \forall s \in S \ (sa = as)\}.$

A semigroup $\langle a \rangle = \{a^n\}_{n \in \mathbb{N}}$ generated by a single element a is called monogenic or cyclic. If a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup \mathbb{N} . A finite monogenic semigroup $S = \langle a \rangle$ also has very simple structure (see [9]). There are positive integer numbers r and m called the *index* and the *period* of S such that

• $S = \{a, a^2, \dots, a^{m+r-1}\}$ and m + r - 1 = |S|;

• for any $i, j \in \omega$ the equality $a^{r+i} = a^{r+j}$ holds if and only if $i \equiv j \mod m$;

• $C_m = \{a^r, a^{r+1}, ..., a^{m+r-1}\}$ is the minimal ideal, a cyclic and maximal subgroup of S with the neutral element $e = a^n \in C_m$, where m divides n.

From now on we denote by $C_{r,m}$ a finite monogenic semigroup of index r and period m, and maximal subgroup of $C_{r,m}$ is denoted by C_m .

2. Homomorphisms, Zeros and Minimal Ideals

Proposition 2.1. For any homomorphism $\varphi: S \to T$ between semigroups $(S, *_1)$ and $(T, *_2)$ the induced map $N_{<\omega}\varphi: N_{<\omega}(S) \to$ $N_{<\omega}(T)$ is a homomorphism of the semigroups $(N_{<\omega}(S), \circ_1)$ and $(N_{<\omega}(T), \circ_2)$.

Proof. Given two centered upfamilies $\mathcal{L}, \mathcal{M} \in N_{<\omega}(S)$ observe that

$$\begin{split} N_{<\omega}\varphi(\mathcal{L}\circ_{1}\mathcal{M}) &= N_{<\omega}\varphi(\langle \bigcup_{x\in L} x \ast_{1} M_{x} : L \in \mathcal{L}, \{M_{x}\}_{x\in L} \subset \mathcal{M} \rangle) \\ &= \langle \varphi(\bigcup_{x\in L} x \ast_{1} M_{x}) : L \in \mathcal{L}, \{M_{x}\}_{x\in L} \subset \mathcal{M} \rangle \\ &= \langle \bigcup_{x\in L} \varphi(x) \ast_{2} \varphi(M_{x}) : L \in \mathcal{L}, \{M_{x}\}_{x\in L} \subset \mathcal{M} \rangle \\ &= \langle \bigcup_{x\in\varphi(L)} x \ast_{2} \varphi(M_{x}) : L \in \mathcal{L}, \{\varphi(M_{x})\}_{x\in\varphi(L)} \subset N_{<\omega}\varphi(\mathcal{M}) \rangle \\ &= \langle \varphi(L) : L \in \mathcal{L} \rangle \circ_{2} \langle \varphi(M) : M \in \mathcal{M} \rangle = N_{<\omega}\varphi(\mathcal{L}) \circ_{2} N_{<\omega}\varphi(\mathcal{M}). \end{split}$$

Let us note that for a subsemigroup T of a semigroup S the homomorphism $i: N_{<\omega}(T) \to N_{<\omega}(S), i: \mathcal{A} \to \langle \mathcal{A} \rangle_S$ is injective, and thus we can identify the semigroup $N_{<\omega}(T)$ with the subsemigroup $i(N_{<\omega}(T)) \subset N_{<\omega}(S)$. Therefore, for each family \mathcal{B} of nonempty subsets of T, we identify the upfamilies

$$\langle \mathcal{B} \rangle_T = \{ A \in T \mid \exists B \in \mathcal{B}(B \subset A) \} \in N_{<\omega}(T),$$

and

$$\big< \mathcal{B} \big>_S = \{ A \in S \mid \exists B \in \mathcal{B}(B \subset A) \} \in N_{<\omega}(S).$$

Lemma 2.2. Let I be an ideal of a semigroup S. If a map $\varphi : S \to I$ is a retraction, then the map $N_{<\omega}\varphi : N_{<\omega}(S) \to N_{<\omega}(I)$ is a retraction too.

Proof. Indeed, let $\mathcal{A} \in N_{<\omega}(I)$, $\mathcal{M} \in N_{<\omega}(S)$, then $\mathcal{A} \circ \mathcal{M} = \langle \bigcup_{a \in A} a * M_a : A \in \mathcal{A}, A \subset I, \{M_a\}_{a \in A} \subset \mathcal{M} \rangle = \langle \bigcup_{a \in A} a * M_a : A \in \mathcal{A}, \{M_a\}_{a \in A} \subset \mathcal{M}, \bigcup_{a \in A} a * M_a \subset I \rangle \in N_{<\omega}(I)$. By analogy $\mathcal{M} \circ \mathcal{A} \in N_{<\omega}(I)$, and therefore $N_{<\omega}(I)$ is an ideal of the semigroup $N_{<\omega}(S)$. If $\mathcal{A} \in N_{<\omega}(I)$, then $N_{<\omega}\varphi(\mathcal{A}) = \langle \varphi(A) : A \subset I, A \in \mathcal{A} \rangle = \langle A : A \subset I, A \in \mathcal{A} \rangle = \langle A \in \mathcal{A} \subset I \rangle = \mathcal{A}$ and hence $N_{<\omega}\varphi$ is a retraction. \Box

Let e be the neutral element of the maximal subgroup C_m of a monogenic semigroup $C_{r,m}$.

Lemma 2.3. The map $\varphi : C_{r,m} \to C_m$, $\varphi(x) = ex$ is a retraction and $\varphi(x)y = xy$ for any $x \in C_{r,m}$ and $y \in C_m$.

Proof. Since the semigroup C_m is an ideal of the semigroup $C_{r,m}$, $\varphi(x) = ex \in C_m$. Consequently, $\varphi(xy) = exy = eexy = exey = \varphi(x)\varphi(y)$ for any $x, y \in C_{r,m}$ and $\varphi(x) = ex = x$ for $x \in C_m$. Hence the map $\varphi: C_{r,m} \to C_m$ is a retraction. Further for any $x \in C_{r,m}$ and $y \in C_m$, we have that $xy \in C_m$, and therefore $\varphi(xy) = xy$. On the other hand, $\varphi(xy) = \varphi(x)\varphi(y) = \varphi(x)y$, since $y \in C_m$.

Proposition 2.4. For each finite monogenic semigroup $C_{r,m}$, the centered upfamily $\langle C_m \rangle$ is the zero of the semigroup $N_{<\omega}(C_{r,m})$.

Proof. Let $\varphi : C_{r,m} \to C_m$ be the retraction from Lemma 2.3. Since $xF \supset xC_m = \varphi(x)C_m = C_m$ for each $x \in C_{r,m}$ and $F \in \langle C_m \rangle$, then $xF \in \langle C_m \rangle$ and $\langle C_m \rangle$ is a right zero according to Proposition 1 from [15].

We shall show that $\langle C_m \rangle$ is a left zero, that is $\langle C_m \rangle \circ \mathcal{A} = \langle C_m \rangle$ for each $\mathcal{A} \in N_{<\omega}(C_{r,m})$. Since $C_m \mathcal{A} = C_m \varphi(\mathcal{A}) = C_m$ for $\mathcal{A} \in \mathcal{A}$, then $\langle C_m \rangle \subset \langle C_m \rangle \circ \mathcal{A}$. If $M \in \langle C_m \rangle \circ \mathcal{A}$, then $M \supset \bigcup_{g \in C_m} gA_g, \{A_g\}_{g \in C_m} \subset \mathcal{A}$. Since \mathcal{A} is a centered upfamily and C_m is finite, then there exists $a \in \bigcap_{g \in C_m} A_g$. Therefore, $M \supset \bigcup_{g \in C_m} g\{a\} = C_m a = C_m \varphi(a) = C_m$ and $M \in \langle C_m \rangle$.

Since an element z of a semigroup S is a zero in S if and only if the singleton $\{z\}$ is an ideal in S, Proposition 2.4 implies the following:

Proposition 2.5. The minimal ideal of the semigroup $N_{<\omega}(C_{r,m})$ is singleton, that is $K(N_{<\omega}(C_{r,m})) = \{\langle C_m \rangle\}.$

3. Commutativity and the Center

Theorem 3.1. A finite monogenic semigroup $C_{r,m} = \{a, ..., a^r, ..., a^{m+r-1} | a^{r+m} = a^r \}$ of order m + r - 1 has commutative extension $N_{<\omega}(C_{r,m})$ if and only if

$$(r, m) \in \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1)\}.$$

Proof. It was proved in the paper [15] that the extension $N_{<\omega}(G)$ of a group G is commutative if and only if $|G| \le 2$. Since for m > 2, the extension $N_{<\omega}(C_{r,m})$ contains a noncommutative subsemigroup $N_{<\omega}(C_m)$, then $N_{<\omega}(C_{r,m})$ is not commutative. So it is sufficient to consider only finite monogenic semigroups of period $m \le 2$.

If index r = 1, then $C_{r,m}$ is a cyclic group of order m, and thus for r = 1, the semigroup $N_{<\omega}(C_{r,m})$ is commutative if and only if $m \le 2$.

If $r = 2, m \in \{1, 2\}$, then the product xy of any two elements of $C_{r,m}$ is contained in the maximal subgroup $xy \in C_m$, and thus $xy = \varphi(xy) = \varphi(x)\varphi(y)$, where $\varphi: C_{r,m} \to C_m$ is the retraction $\varphi: s \to es$. Since extensions $N_{<\omega}(G)$ of groups G of order 1 and 2 are commutative and the map $N_{<\omega}\varphi: N_{<\omega}(C_{r,m}) \to N_{<\omega}(C_m)$ is a retraction according to Proposition 2.2, then

$$\mathcal{A} \circ \mathcal{B} = N_{<\omega} \varphi(\mathcal{A}) \circ N_{<\omega} \varphi(\mathcal{B}) = N_{<\omega} \varphi(\mathcal{B}) \circ N_{<\omega} \varphi(\mathcal{A}) = \mathcal{B} \circ \mathcal{A},$$

for any $\mathcal{A}, \mathcal{B} \in N_{<\omega}(C_{r,m})$. Consequently, the semigroups $N_{<\omega}(C_{2,1})$ and $N_{<\omega}(C_{2,2})$ are commutative.

Consider the semigroup $C_{3,1} = \{a, a^2, a^3 : a^4 = a^3\}$. The semigroup $N_{<\omega}(C_{3,1})$ contains 10 elements.

Let us introduce the notation

$$|_{y}^{x} = |_{x}^{y} = \langle \{x, y\} \rangle, \quad \forall_{x} = \{F \subset C_{3,1} : |F| \ge 2, x \in F\}.$$

Also the principal ultrafilter $\langle \{e\} \rangle$ and the upfamily $\{C_{3,1}\}$ are identified with e and $C_{3,1}$, respectively.

The following Cayley table implies the commutativity of $N_{<\omega}(C_{3,1})$.

0	a	a^2	a^3	$ _a^{a^2}$	$ _a^{a^3}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	\vee_a	\vee_{a^2}	\vee_{a^3}	C _{3,1}
a	a^2	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$
a^2	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3
a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3
$ _a^{a^2}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$
$ _a^{a^3}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$
$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3
\vee_a	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$
\vee_{a^2}	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3
\vee_{a^3}	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3	a^3
<i>C</i> _{3,1}	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$	a^3	a^3	$\begin{vmatrix} a^3\\a^2 \end{vmatrix}$

Consider the semigroup $C_{3,2} = \{a, a^2, a^3, a^4 : a^5 = a^3\}$ and centered upfamilies $\mathcal{A} = \langle \{a, a^2\} \rangle$, $\mathcal{B} = \langle \{a, a^2\}, \{a, a^3\} \rangle$ of the semigroup $N_{<\omega}(C_{3,2})$. Since

$$\mathcal{A} \circ \mathcal{B} = \langle \{a^2, a^3\} \rangle \neq \langle \{a^2, a^3, a^4\} \rangle = \mathcal{B} \circ \mathcal{A},$$

then the semigroup $N_{<\omega}(C_{3,2})$ is not commutative.

Let $r \ge 4$. Consider centered upfamilies $\mathcal{A} = \langle \{a, a^2\} \rangle$ and $\mathcal{B} = \langle \{a, a^2\}, \{a^2, a^3\} \rangle$. We have that $a^3 \notin a\{a, a^3\} \cup a^2\{a^2, a^3\} \in \mathcal{A} \circ \mathcal{B}$, but $a^3 \in F$ for any $F \in \mathcal{B} \circ \mathcal{A}$. Consequently, $\mathcal{A} \circ \mathcal{B} \neq \mathcal{B} \circ \mathcal{A}$ and for each $r \ge 4$ a semigroup $N_{<\omega}(C_{r,m})$ is not commutative. \Box

79

Let us study the center of the semigroup $N_{<0}(C_{r,m})$. Since monogenic semigroups are commutative, then the formula

$$\mathcal{L} \circ \mathcal{M} = \left\langle \bigcup_{a \in L} a \ast M_a : L \in \mathcal{L}, \left\{ M_a \right\}_{a \in L} \subset \mathcal{M} \right\rangle$$

implies that the center $C(N_{<\omega}(C_{r,m}))$ of a semigroup $N_{<\omega}(C_{r,m})$ contains all principal ultrafilters. It was shown in [15] that $C(N_{<\omega}(G))$ $= \{\langle \{g\} \rangle : g \in G\} \cup \{\langle G \rangle\}$ for a finite Abelian group G, that is the center $C(N_{<\omega}(G))$ of the semigroup $N_{<\omega}(G)$ is isomorphic to G^0 . Therefore, $C(N_{<\omega}(C_m)) \cong (C_m)^0$.

Lemma 3.2. Let $\varphi : S \to I$ be a retraction of a semigroup S on an ideal I. If $a \in C(S)$, then $\varphi(a) \in C(I)$.

Proof. Indeed, for any $x \in I$, we have

$$\varphi(a)x = \varphi(a)\varphi(x) = \varphi(ax) = \varphi(xa) = \varphi(x)\varphi(a) = x\varphi(a).$$

Theorem 3.3. For each finite monogenic semigroup $C_{r,m}$, the center of the semigroup $N_{<\omega}(C_{r,m})$ contains centered upfamilies that are neither principal ultrafilters nor the zero of $N_{<\omega}(C_{r,m})$. The center of the semigroup $N_{<\omega}(C_{2,m})$ contains m + 5 elements.

Proof. Since by Lemmas 2.3 and 2.2 the maps $\varphi : C_{r,m} \to C_m$, $\varphi(x) = ex$ and $N_{<\omega}\varphi : N_{<\omega}(C_{r,m}) \to N_{<\omega}(C_m)$ are retractions and $\langle C_m \rangle$ is the zero of $N_{<\omega}(C_{r,m})$ and $N_{<\omega}(C_m)$, then Lemma 3.2 implies that

$$C(N_{<\omega}(C_{r,m})) \subset (N_{<\omega}\varphi)^{-1}(\{\langle \{g\}\rangle : g \in C_m\} \cup \{\langle C_m\rangle\}).$$

Let a be a generator of a semigroup $C_{r,m}$. Consider elements a^{r-1} and $\varphi(a^{r-1}) = ea^{r-1} \neq a^{r-1}$. We claim that centered upfamilies $\mathcal{A} = \langle \{a^{r-1}, ea^{r-1}\} \rangle$, $\mathcal{B} = \langle \{a^{r-1}\} \cup C_m \rangle$, and $\mathcal{C} = \langle \{a^{r-1}\} \cup C_m \setminus \{ea^{r-1}\} \rangle$ are central elements of the semigroup $N_{<\omega}(C_{r,m})$.

Indeed, since $a^{r-1}x \in C_m = \{a^r, \dots, a^{r+m-1}\}$ for each $x \in C_{r,m}$, then $a^{r-1}x = \varphi(a^{r-1}x) = \varphi(a^{r-1})\varphi(x)$. On the other hand, since C_m is an ideal of $C_{r,m}$, then $\varphi(a^{r-1})x \in C_m$ and

$$\varphi(a^{r-1})x = \varphi(\varphi(a^{r-1})x) = \varphi(\varphi(a^{r-1}))\varphi(x) = \varphi(a^{r-1})\varphi(x)$$

Consequently, $\varphi(a^{r-1})x = a^{r-1}x$ for any $x \in C_{r,m}$. Therefore,

$$\begin{split} \mathcal{A} \circ \mathcal{M} &= \left\langle \{ \varphi(a^{r-1}) \} \right\rangle \circ \mathcal{M} = \mathcal{M} \circ \left\langle \{ \varphi(a^{r-1}) \} \right\rangle = \mathcal{M} \circ \mathcal{A}, \\ \mathcal{B} \circ \mathcal{M} &= \left\langle C_m \right\rangle \circ \mathcal{M} = \mathcal{M} \circ \left\langle C_m \right\rangle = \mathcal{M} \circ \mathcal{B}, \\ \mathcal{C} \circ \mathcal{M} &= \left\langle C_m \right\rangle \circ \mathcal{M} = \mathcal{M} \circ \left\langle C_m \right\rangle = \mathcal{M} \circ \mathcal{C}, \end{split}$$

for any $\mathcal{M} \in N_{<\omega}(C_{r,m})$ and thus $\mathcal{A}, \mathcal{B}, \mathcal{C} \in C(N_{<\omega}(C_{r,m}))$.

Consider the finite monogenic semigroup $C_{2,m} = \{a, a^2, ..., a^{m+1} | a^{m+2} = a^2\}$. In this case, $xy \in C_m$ for any $x, y \in C_{2,m}$ and thus $\mathcal{A} \circ \mathcal{B} = N_{<\omega} \varphi(\mathcal{A}) \circ N_{<\omega} \varphi(\mathcal{B})$ for any $\mathcal{A}, \mathcal{B} \in N_{<\omega}(C_{2,m})$. It is easy to see that $e = a^m$ is the identity element of the maximal subgroup $C_m = C_{2,m} \setminus \{a\}$. Since $\varphi(a) = ea = a^m a = a^{m+1}$, then a^{m+1} is the unique element whose preimage under retraction $\varphi: C_{2,m} \to C_m$ is not a singleton. Therefore,

$$C(N_{<\omega}(C_{2,m}) = \{ \langle \{a, a^{m+1}\} \rangle, \langle C_m \rangle, \langle C_{2,m} \rangle, \langle C_{2,m} \setminus \{a^{m+1}\} \rangle, \langle \{g\} \rangle : g \in C_{2,m} \} \}.$$

Problem 3.4. Given a monogenic semigroup $C_{r,m}$, r > 2, describe the center of the semigroup $N_{<\omega}(C_{r,m})$.

4. Right and Left Cancelable Elements

In this section, we shall detect right and left cancelable elements of extensions $N_{<\omega}(C_{r,m})$ of finite monogenic semigroups $C_{r,m}$.

Proposition 4.1. The extension $N_{<\omega}(C_{r,m})$ has (left, right) cancelable elements if and only if the index r of a monogenic semigroup $C_{r,m}$ is equal to 1.

Proof. Let r > 1 and a be the generator of a semigroup $C_{r,m}$. Consider the map $\varphi: C_{r,m} \to C_m, \varphi: x \to ex$, where e is the neutral element of the cyclic group C_m . As we showed in the proof of Theorem 3.3, $\varphi(a^{r-1})x = a^{r-1}x$ for any $x \in C_{r,m}$.

Let
$$\mathcal{M}$$
 be a centered upfamily on a semigroup $C_{r,m}$. Then we obtain
 $\langle \{a^{r-1}\}\rangle \circ \mathcal{M} = \left\langle \bigcup_{a \in \{a^{r-1}\}} a * M_a : \{M_a\}_{a \in \{a^{r-1}\}} \subset \mathcal{M} \right\rangle = \left\langle a^{r-1}M : M \in \mathcal{M} \right\rangle$
 $= \left\langle \varphi(a^{r-1})M : M \in \mathcal{M} \right\rangle = \{\varphi(a^{r-1})\}\rangle \circ \mathcal{M} \quad \text{and} \quad \mathcal{M} \circ \langle \{a^{r-1}\}\rangle =$
 $\left\langle \bigcup_{a \in M} a * \{a^{r-1}\} : M \in \mathcal{M} \right\rangle = \left\langle Ma^{r-1} : M \in \mathcal{M} \right\rangle = \left\langle M\varphi(a^{r-1}) : M \in \mathcal{M} \right\rangle$
 $= \mathcal{M} \circ \left\langle \{\varphi(a^{r-1})\} \right\rangle.$ Since $a^{r-1} \neq \varphi(a^{r-1})$, the centered upfamily \mathcal{M} is
neither left nor right cancelable.

If r = 1, then a monogenic semigroup $C_{1,m} = C_m$ is a group. Let e be the neutral element of the group C_m . Then $\langle \{e\} \rangle \circ \mathcal{M} = \mathcal{M} = \mathcal{M} \circ \langle \{e\} \rangle$ for any $\mathcal{M} \in N_{<\omega}(C_m)$, and equalities $\chi \circ \langle \{e\} \rangle = \mathcal{Y} \circ \langle \{e\} \rangle, \langle \{e\} \rangle \circ \chi = \langle \{e\} \rangle \circ \mathcal{Y}$ imply that $\chi = \mathcal{Y}$. Consequently, the principal ultrafilter $\langle \{e\} \rangle$ is a cancelable element of the semigroup $N_{<\omega}(C_{1,m})$. If G is a group, then the formula

$$\mathcal{L} \circ \mathcal{M} = \left\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle$$

implies that the product $\mathcal{L} \circ \mathcal{M}$ of any two centered upfamilies \mathcal{L} and \mathcal{M} is a principal ultrafilter if and only if both \mathcal{L} and \mathcal{M} are principal ultrafilters. Therefore, we deduce the following proposition:

Proposition 4.2. For a group G, the set $N_{<\omega}(G) \setminus \{\langle \{g\} \rangle : g \in G\}$ is an ideal in $N_{<\omega}(G)$.

Lemma 4.3. A semigroup S is a left (right) cancellative semigroup if and only if all principal ultrafilters are left (right) cancelable elements in the extension $N_{<\omega}(S)$.

Proof. If an element $a \in S$ is not left (right) cancelable in the semigroup S, then it is clear that the principal ultrafilter generated by the element a is not left (right) cancelable in $N_{<\omega}(S)$.

Let S be a left (right) cancellative semigroup, $a \in S$ and $\chi, \mathcal{Y} \in N_{<\omega}(S), \chi \neq \mathcal{Y}$, then without loss of generality we can assume that $X \in \chi \setminus \mathcal{Y}$ for some $X \in \chi$. Therefore, $(S \setminus X) \cap Y \neq \emptyset$ for any $Y \in \mathcal{Y}$. Since each element of S is left (right) cancelable, then $(S \setminus aX) \cap aY \neq \emptyset$ $((S \setminus Xa) \cap Ya \neq \emptyset)$, and thus $\langle \{a\} \rangle \circ \chi \neq \langle \{a\} \rangle \circ \mathcal{Y}(\chi \circ \langle \{a\} \rangle \neq \mathcal{Y} \circ \langle \{a\} \rangle)$. Consequently, the left $l_{\langle \{a\} \rangle}$ (right $r_{\langle \{a\} \rangle}$) shift is injective and the principal ultrafilter $\langle \{a\} \rangle$ is left (right) cancelable.

Proposition 4.4. An element $\mathcal{M} \in N_{<\omega}(C_{1,m})$ is left (right) cancelable if and only if \mathcal{M} is a principal ultrafilter.

Proof. Since in any group, in particular in the cyclic group $C_{1,m}$, all elements are cancelable, then all principal ultrafilters are cancelable in the extension $N_{<\omega}(C_{1,m})$ according to Lemma 4.3.

Assume that some centered upfamily $\mathcal{M} \in N_{<\omega}(C_{1,m}) \setminus \{\langle \{g\} \rangle : g \in C_{1,m}\}$ is left cancelable. This means that the left shift $l_{\mathcal{M}} : N_{<\omega}(C_{1,m}) \to N_{<\omega}(C_{1,m}), l_{\mathcal{M}} : \mathcal{A} \mapsto \mathcal{M} \circ \mathcal{A}$, is injective. According to Proposition 4.2, the set $N_{<\omega}(C_{1,m}) \setminus \{\langle \{g\} \rangle : g \in C_{1,m}\}$ is an ideal in $N_{<\omega}(C_{1,m})$. Consequently, $l_{\mathcal{M}}(N_{<\omega}(C_{1,m})) = \mathcal{M} \circ N_{<\omega}(C_{1,m}) \subset N_{<\omega}(C_{1,m}) \setminus \{\langle \{g\} \rangle : g \in C_{1,m}\}$. Since $N_{<\omega}(C_{1,m})$ is finite, $l_{\mathcal{M}}$ cannot be injective.

For the right cancelable elements the proof is analogous.

References

- [1] T. Banakh and V. Gavrylkiv, Algebra in superextension of groups, II: Cancelativity and centers, Algebra Discr. Math. 4 (2008), 1-14.
- [2] T. Banakh and V. Gavrylkiv, Algebra in superextension of groups: Minimal left ideals, Mat. Stud. 31 (2009), 142-148.
- [3] T. Banakh and V. Gavrylkiv, Algebra in the superextensions of twinic groups, Dissert. Math. 473 (2010), 74.
- [4] T. Banakh and V. Gavrylkiv, Algebra in superextensions of semilattices, Algebra Discrete Math. 13(1) (2012), 26-42.
- [5] T. Banakh and V. Gavrylkiv, Algebra in superextensions of inverse semigroups, Algebra Discrete Math. 13(2) (2012), 147-168.
- [6] T. Banakh and V. Gavrylkiv, Characterizing semigroups whose superextensions are commutative, Algebra Discrete Math. 17(2) (2014), 161-192.
- [7] T. Banakh and V. Gavrylkiv, On structure of the semigroups of k-linked upfamilies on groups (submitted).
- [8] T. Banakh, V. Gavrylkiv and O. Nykyforchyn, Algebra in superextensions of groups, I: Zeros and commutativity, Algebra Discr. Math. 3 (2008), 1-29.
- [9] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys, 7, AMS, Providence, RI, 1961.
- [10] V. Gavrylkiv, The spaces of inclusion hyperspaces over noncompact spaces, Mat. Stud. 28(1) (2007), 92-110.
- [11] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces, Mat. Stud. 29(1) (2008), 18-34.
- [12] V. Gavrylkiv, Monotone families on cyclic semigroups, PBShSS 17(1) (2012), 35-45.

VOLODYMYR GAVRYLKIV

- [13] V. Gavrylkiv, Superextensions of cyclic semigroups, Carpathian Mathematical Publication 5(1) (2013), 36-43.
- [14] V. Gavrylkiv, Semigroups of linked upfamilies, PBShSS 29(1) (2015), 104-112.
- [15] V. Gavrylkiv, Semigroups of centered upfamilies on groups, Lobachevskii J. Math. (to appear).
- [16] N. Hindman and D. Strauss, Algebra in the Stone-Čech Compactification, de Gruyter, Berlin, New York, 1998.
- [17] J. M. Howie, Fundamentals of Semigroup Theory, The Clarendon Press, Oxford University Press, New York, 1995.
- [18] J. van Mill, Supercompactness and Wallman Spaces, Math. Centre Tracts, 85, Math. Centrum, Amsterdam, 1977.
- [19] A. Teleiko and M. Zarichnyi, Categorical Topology of Compact Hausdofff Spaces, VNTL, Lviv, 1999.
- [20] A. Verbeek, Superextensions of Topological Spaces, MC Tracts, 41, Amsterdam, 1972.

84