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Abstracts
Jawad Abuhlail

Department of Mathematics and Statistics
King Fahd University of Petroleum & Minerals
Box 5046, 31261 Dhahran, KSA

e-mail: abuhlail@kfupm.edu.sa

On Zariski-like Topologies for Modules
Mathematics Subject Classification (MSC): 16N20;
16N80; 54H13 (13C05, 13C13, 54B99)

Abstract. Given a non-zero duo left module M over an
associative (not necessarily commutative) ring R, Zariski-
like topologies are defined on the spectrum SpecP(M) of
the R-submodules of M which are prime in M and the
spectrum Spec®(M) of the R-submodules of M which are
coprime in M. We study these topological spaces and, in
particular, investigate the interplay between the topologi-
cal properties of such spaces and the algebraic properties
of the module under consideration.
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Bashir Ahmad and Sabir Hussain
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On Locally vy-s-closed Spaces
Mathematics Subject Classification (MSC): 54A05,
54A10, 54D10, 54D99

Abstract. In this paper, we continue studying the ap-
plications of v-s-closed spaces introduced and discussed in
[5] and [9]. The concept of locally v-s-closed space has
been introduced. Certain important characterizations and
properties of locally y-s-closed spaces have also been estab-
lished.
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An Algebraic characterization of PS-spaces
Mathematics Subject Classification (MSC):
Primary 54B05, 54C08; Secondary: 54D05

Abstract. Ring of all continuous real-valued functions on
a topological space X is denoted by C(X)(see [9] for more
information). DO(X) denotes the set of all dense open
subsets of X. Recall that a commutative ring R is called
(von Neumann) regular if for each r € R, there exists an
s € R such that r = r%s. We denote the ring of all real-
valued functions on a nonempty set X by F(X, R) which
is obviously a (von Neumann) regular ring. In [2], the first
author introduced a subring 7' (X) and a subset T(X) of
F(X, R) for any arbitrary topological space. T'(X) denotes
all functions f of F(X, R) for which there exists a dense
subset D of X such that f | D € C(D). But T'(X) de-
notes all functions f of F(X, R) for which there exists a
dense open set D of X such that f | D € C(D). Some-
times we use the symbol (X, 7) (resp. T' (X, 7)) for T(X)
(resp. T'(X)). For any topological space it is true (see [1])
that R C C*(X) C C(X) C T'(X) C T(X) C F(X,R),
where C*(X) denotes the ring of all continuous bounded
real-valued functions on X and R is the set of constant
real-valued functions on X.

Let X be a topological space, and let X be the union of
two disjoint dense subsets, then X is called resolvable ,
otherwise it is called irresolvable. A subset A of a space X
is called semi-open (resp. preopen, c-open [12] and semi-
preopen [6]) if A C Cl(Int(A)) (resp. A C Int(CIl(A)),
A C Int(Cl(Int(A))) and A C Cl(Int(CIl(A)))), where
Int(A) and CI(A) denote the interior and closure of A,
respectively. Their complements are called semi-closed,
preclosed, a-closed and semi-preclosed, respectively. We
denote the families of semi-open (resp. preopen, a-open
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and semi-preopen ) subsets of a topological space (X,7)
by SO(X) (resp. PO(X), 7® and SPO(X)).

Ahmadi Zand in [1] and [2] introduced and investigated
some subrings of the ring of real-valued functions which
contain C(X). In this talk, we will generalized some results
of [1] to spaces with isolated points and we will show that
some of the results in [1] is related to PS-spaces [3| and
[4]. Moreover, we answer to the question that whether
in the digital n-spaces (Z", k"), the equality T'(Z" k") =
T(Z™ k™) is true or not in the positive.
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Characterizing Continuous Functions on the Ratio-
nal World

Mathematics Subject Classification (MSC): 37B99,
54A10, 54B99, 54C05, 54H20
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Abstract. We will consider the following problem: given a
countable set X and a function 7" : X — X, when can one
endow X with a topology such that X is homeomorphic
with the rational space Q and with respect to which 71" is
continuous. Mekler, Nuemann and Truss characterize the
situation when 7' is a bijection. We give characterization of
the general case when 7' is considered to be any function.
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On the category of L-fuzzy neighborhood groups
and its connections with categories of L-convergence
groups

Mathematics Subject Classification (MSC): 54A40,
54A20, 54B30, 54H11

Abstract. Motivated by the notion of L-fuzzy neighbor-
hood system attributed to U. Hohle and A. P. Sostak [1],
we introduce for a frame L, categories SL-FNeighGrp, of
stratified L-fuzzy neighborhood groups, and SL-FIntGrp,
of stratified L-fuzzy interior groups. We show that these
two categories are isomorphic; some basic facts along with
some characterization theorems are presented. Consider-
ing the notion of stratified L-pre-topological space due to
H. Boustique, R. N. Mohapatra and G. Richardson [2]|,
we show that the category SL-P-TopConvGrp, of strat-
ified L-pre-topological convergence groups, is isomorphic
to the category SL-FNeighGrp. Also, considering a full
subcategory SL-FNeigh', of the category of stratified L-
fuzzy neighborhood spaces SL-FNeigh, we prove that the
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category of stratified L-fuzzy neighborhood groups SL-
FNeighGrp/', is isomorphic to a subcategory of the cat-
egory SL-GConvGrp, of stratified L-generalized conver-
gence groups [3|; the key item of this category is the no-
tion of stratified L-generalized convergence structure initi-
ated by G. Jager [4]. Finally, we propose two more cate-
gories HS-SL-FFil, of Hohle-Sostak stratified L-fuzzy fil-
ter spaces, and HS-SL-FFilGrp, of stratified L-fuzzy filter
groups, and discuss some of their features.
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Making holes in hyperspaces of subcontinua of some
continua
Mathematics Subject Classification (MSC):

Abstract. Let Z be a unicoherent topological space and
let z be an element of 7. We say that z makes a hole in
Z it Z \ {z} is not unicoherent. Let X be a continuum
(no degenerate compact connected metric space). We are
interested in working out the following problem.
Problem. Let #(X) be a hyperspace of X. For which
elements, A € H(X), does A make a hole in H (X)?

In this talk, we are going to present the solution to
such problem when X is a continuum that has an Elsa
continuum (compactification of half-open interval with an
arc as remainder), ¥, and C1(X \ Y) is a simple n-od and
H(X) is the hyperspace of subcontinua of X.
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A characterization of compactness through the
Schwartz set

Mathematics Subject Classification (MSC): CO02,
C60

Abstract. Compactness is an important topological prop-
erty as it enables us to apply minimax theorems in mathe-
matical economics. The Schwartz set is a general solution
concept of choice problems when the set of best alternatives
does not exist (this problem occurs when the preferences
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yielded by an aggregation process are cyclic). In this pa-
per, we show that the feasible set is compact if and only if
every generalized upper tc-semicontinuous preference has
non empty Schwartz set. Here “preference”means arbitrary
binary relation.
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The 3-sphere as a Heegaard splitting of infinite
genus with ergodic 3-hyperbolic group action
Mathematics Subject Classification (MSC):

Abstract. Here we construct a Heegaard splitting of the
3-sphere S? into two handlebodies Q; and € of infinite
genus with their common boundary A. This boundary “sur-
face" A has a natural conformal ergodic action of a Gromov
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hyperbolic group G C M&b(S?). The group G is a homo-
morphic image ¢(T') of a uniform lattice I' in the isometry
group of the real hyperbolic 3-dimensional space H? where
the homomorphism ¢ has an infinite kernel. This also gives
a new view on Andreev’s hyperbolic polyhedron theorem.
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On L-Fuzzy 7-Open Sets
Mathematics Subject Classification (MSC): 54A40

Abstract. The aim of this paper is to develop a general
structure characterizing the families of sets weaker than
the open sets of L-topological space. In order to establish
such a generalization, we define L-fuzzy v-open sets where
v is a monotonic function on the family of all L-fuzzy sets
on a set X and investigate some fundamental properties of
L-fuzzy ~-open sets.
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The Hyperspace of Ordered Arcs of Continual Ex-
ponenta from Metric Peano Continua is Homeo-
morphic to the Hilbert Cube
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Mathematics Subject Classification (MSC):

Abstract. In [1| T have proved that the hyperspace of or-
dered arcs of Continual Exponenta from connected and lo-
cally connected nowhere nonlocal compact spaces is home-
omorphic to the Hilbert space I (designed). In this pa-
per we consider the compact metric case and more exactly
for metric Peano continua X we conclude that the hyper-
space of ordered arcs from such space is homeomorphic to
the Hilbert Cube Q. To prove it we remember than the
condition of belonging hyperspace of ordered arcs to the
class of AR was proved by Eberhart, Nadler and Nowell
in [2] and the condition of discrete approximation I have
proved in [1]. We only must to verify the DACP - property
(discrete approximation cell property) for the hyperspaces
['*(X) from metric Peano continua X, which is formulated
as: for each natural number n and for each continuous map
f:I"x[0,1] — I'(X) and for each € > 0 exists the con-
tinuous map ¢ : I" x [0,1] — ['“(X)such that is satisfied
following two conditions: (1) d(f,g) < € or (f,9) < w
for each beforehand given covering w € Cov(T'“(X)), (2)
the sets g(I"™ x {0}) and ¢g(I™ x {1}) is not intersects.
To prove it we construct the map g by eight stages as it
made in [1]. Stage 1. We construct the map a which will
be realized the a-proximity of the maps f, ¢ and conse-
quently w-proximity of the maps f and g. Stage 2. We
construct the map v : IT'(X) — (0,00) and we must to
verify that it is lower-semi-continuous. Together with ~
exists the special function 3 : T'%(X) — (0,00) which is
continuous. Stage 3. Instead polyhedron K; we triangu-
lates each cube I™ x {t} for each ¢t € [0, 1] such way, that
the map f: I" x [0, 1] — I'°(X) will be satisfies the (1) - (3)
conditions by [1] for each simplex A. Stage 4. We selects
finite arbitrary small (in the sense that diameter of his ele-
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ments is less than % covering U of the space exp®(x) which
we can take finite because it space is compact. After that
we selects finite discrete subset €y in each element U of
selected covering U and design Z(n) = U{Qy C U € U,}.
This set will be finite and discrete subset of exp®(X). Stage
5. We defines the function ¢g : I"™ x [0,1] — I'°(X) at the
first in the each vertex p of the triangulated cube I™ x {0}
instead polyhedron K in [1]. After that we extends the
map ¢ on the segment [pg] where p and ¢ is vertexes with
the help of Borsuk and Mazurkevich theorem as I have
made it in [1]. Stage 6. With the help of founded con-
ditions we proved that constructed maps f and g on the
segment [p,q] are o - proximity as in [1]. Stage 7. We
extended the map g onto whole cube I"™ = I" x {0}with
the help of following lemma: if B**! is the k + 1 - di-
mensional ball, which bounded by sphere S*, k > 1, than
follow if f : B¥! — T¢(X) and g : S¥ — TI'%(X) such
two maps, that for each s € S* we have f(s) C g(s)
than exists such extension G of map g onto whole ball
Bl that G : BF*! — T'“(X) and for each b € BFflwe
have f(b) C G(b). To prove of this lemma were used the
continuum-imaging retraction and Morse parametrization
as in [1]. At such ways we may to construct any map G
which is defined on the cube I" x {t} for each t € [0, 1].
So, we choice finite division of compact segment [0,1] as
to=0<1, <ty <...<t,=1with arbitrary small diam-
eter and we consider cubes I" x {0}, I x {t1}, I" x {t2},...,
I" x {t,}. Let Z, € Z(n,p) \ U{G(y) : y € I"™ x {s}} for
s € [0,55). Thus the images G(I" x {5 }) will be dis-
united under the construction. Specifically we obtained
that the sets G(I™ x {0}) and G(I™ x {1}) are not inter-
sected. Stage 8. We verifyes the proximity of maps G and
f. After that I'°(X) is homeomorphic to the Hilbert cube
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The optimization of Topology and CTL of Big Inte-
grated Circuits on the Nano-Level by Mathematical
Methods

Mathematics Subject Classification (MSC):

Abstract. For optimization of topology BIC I proposed
to replace the Manhetten metric onto the Euclidean metric
during the proecting of topology BIC. On the nano-level we
needed to calculate the distance between difference points
as the length along hypotenuse of ortogonal triangle but not
as the sum of katets as it was maked in Manhetten geom-
etry. It means that the Stainer points will be obtained by
another way as a half past of sum of coordinates but they
will be obtained as a result of strong exactly construction
of Stainer points in triangles with Euclidean metric. I pro-
posed to optimize not only the topology of BIC, but also to
optimize constructor technological limitations which leads
to the nano-sizes and may be realized by using high-K-
dielectrics. The constructor limitations are realized in a
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system of unequalityes in the optimization tasks. We may
to use the duality task. The goal of duality task is follow-
ing. We can to obtained the new constructor limitations
and new aim function after the replacing old aim function
and old constructor limitations but we also must to change
the unequal- signs onto the antipodal and to replace min
onto max or reverse. The next we shall to optimize the new
aim function under the new constructor limitations. That
is why it is possible to minimize as the topology of BIC as
the CTL- constructor technological limitations. But cus-
tomary it is possible on the such level which it is permitted
by the projecting norms for the given kind of BIC.
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On a new type of convergence of sequences of func-
tions
Mathematics Subject Classification (MSC):

Abstract. Let X,Y be two topological spaces. We in-
troduce a new type of convergence for a sequence (f,)n,
fn: X = Y, and we obtain a characterization of a feeble
Ti-continuous function which is p.w. limit of this sequence

(fn)-
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One-dimensional minimal attractors
Mathematics Subject Classification (MSC): 54H20

Abstract. We are concerned with one-dimensional com-
pact minimal sets of continuous flows on locally compact
metric spaces in the spirit of Poincaré-Bendixson theory.
The main result is that if A is an asymptotically stable,
one-dimensional, compact minimal set of a continuous flow
on a locally compact metric space X and X is locally con-
nected at every point of A, then A is a periodic orbit. This
implies that if A is an isolated, one-dimensional, compact
minimal set and the intrinsic topology of its region of at-
traction is locally connected at the points of A, then A is
a periodic orbit.
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More about indicator sequence and indicator topol-
ogy of a transformation semigroup
Mathematics Subject Classification (MSC): 54H15

Abstract. In the (topological) transformation semigroup
(X, S) (for more details on transformation semigroups see
[2] and [4]) define, height of (X, S), h(X,S) =sup{n >0:
there exists a chain My C M; C --- M, of distinct closed
invariant subsets of X'} [3]. For any transformation semi-
group (X,S) with h(X,S) = m < oo the indicator se-
quence of (X, S), (ng, ..., n,) of non negative integers with
n; <i(0<i<m)and ny <ny <--- < ny, has been



36 Abstracts

introduced firstly in [1]. Moreover Z := {zS : 2 € X} can
be considered under topology generated by basis {{yS :
y € S} : v € X}, which introduces indicator topology of
(X,S) [1]. Any two transformation semigroup with home-
omorph indicator topology and finite height have the same
indicator sequence but not vice versa [1]. In this talk af-
ter a short review on properties of indicator sequences and
indicator topologies in finite height case, we will introduce
and see indicator sequences in general case, discuss on their
properties and their interactions with indicator topologies.
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Lattice Valued Double Fuzzy Preproximity Spaces
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Mathematics Subject Classification (MSC): 54A40,
54E05, 54A05

Abstract. In this study, the concept of lattice valued
double fuzzy preproximity is introduced. Moreover, the
relationships among the double fuzzy preproximity, double
fuzzy topology and double fuzzy interior (closure) opera-
tors are studied.
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On one extension of Lebesgue covering dimension
Mathematics Subject Classification (MSC): 91A44,
16K40
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Abstract. For separable metric spaces we define game di-
mension using a game motivated by selective screenability
property. Then we obtain upper bounds on the game di-
mension using several natural classical selection principles
and their associated games.
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The topology induced by a horistology
Mathematics Subject Classification (MSC): 54A20

Abstract. In this paper we consider the concept of horis-
tological structures introduced by T. Bélan in [1] as a gen-
eralization of worlds of events endowed with super-additive
norms and metrics and we show how we can attach a topol-
ogy at any horistology.

It is well known that in Topology, the topological struc-
tures can be defined by filters of neighbourhoods; similarly,
in Horistology, the horistological structures will be defined
by ideals of perspectives as follows:

Definition 1 The function y : X — P(P(X)) is said to
be a horistology on X if for each x € X | x(z) is an ideal
in P(X) such that:

(h1) If P € x(x) then x ¢ P;

(hg) For each P € x(x) there exists L € x(z) such that
for every y € P and Q € x(y) we have Q C L.

The pair (X, x) is called horistological space.

If P € x(x), then P is called a perspective of = and x
is said to be a premise of P.

The set

K={(z,y) e XxX:az=yor{y} € x(x)} (1)
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is an order relation on X, called the proper order on X.
The function p : P(X) — P(X), defined by

p(A)={re X:Aecx(x)}, foreach ACX (2

is called premise operator induced by the horistology x.
The simplest case of real horistological spaces is the
relativist space-times (see [1] ):

Example 2 If X = R? is gifted with the causal order
K= {((tl,sl), (t2,82)) EX XX :ity—1t; > |32 — 81|
or (tl,Sl) = (tQ,SQ)}

and with the super-additive metric 0 : K — R, defined
by

o [(t1,51), (2, 52)] = V/(to — t1)? = (52 — 51)%,

then the ideal of perspectives of the point (¢,s) € X is
the set

x(t,s) ={P € P(X):3r > 0such that P C H ((t,s),7))},
where
H((t,5),7) ={(t's) € K[(t,s)] : o [(£, 5), (', )] > 7}

are the hyperbolic (perspectives) of center (t,s) and radius
r > 0.

Theorem 3 Let (X, x) be a horistological space and let p
the premise operator induced by the horistology y. Then
the function V: X — P(P(X)), expressed by

V(z)={VCX:3PC X suchasz € p(P) CV},

for each r € X (3)
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is a neighbourhoods function for any topology on X. More-
over, if K is the proper order of x, then V, (z) C [K ![z]]

Definition 4 We call 7, the topology induced by the ho-
ristology .

The equivalent notion in horistology of convergence of
filters in topology is the emergence of ideals, defined as
follows (see, [3] and [4]):

Definition 5 If (X, x) is a horistological space and J is
an ideal in P(X), we say that J emerge from = € X iff

J C x(x).

Theorem 6 Let (X, x) be a horistological space and let
pythe premise operator induced by the horistology x. If
J is an emergent ideal from x € X then p,(J) is a con-
vergent filter to x relative to the topology induced by the
horistology .
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Extending binary operations to funtor-spaces
Mathematics Subject Classification (MSC): 18B30;
18B40; 20N02; 20M50; 22A22; 54B30; 54H10

Abstract. One of powerful tools in the modern Combi-
natorics of Numbers is the method of ultrafilters based on
the fact that each binary operation ¢ : X x X — X de-
fined on a discrete topological space X can be extended
to a right-topological operation ® : X x X — (X on
the Stone-Cech compactification SX of X. The extension
of ¢ is constructed in two step. First, for every z € X
extend the left shift ¢, : X — X, ¢, : y — ¢(x,y), to a
continuous map @, : X — BX. Next, for every b € X,
extend the right shift @° : X — X, ¢*: 2 — @,(b), to a
continuous map ®’ : FX — BX and put ®(a,b) = d°(a)
for every a € $X. The Stone-Cech extension BX is the
space of ultrafilters on X. In [6] it was observed that the
binary operation ¢ extends not only to X but also to the
superextension AX of X and to the space GX of all inclu-
sion hyperspaces on X. If X is a semigroup, then GX is a
compact Hausdorff right-topological semigroup containing
AX and X as closed subsemigroups.

We show that an (associative) binary operation ¢ : X X
X — X on a discrete topological space X can be extended
to an (associative) right-topological operation ® : TSX X
TBX — TEX for any monadic functor T' in the category
Comp of compact Hausdorff spaces. So, for the functors
B, A or G, we get the extensions of the operation ¢ discussed
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above.
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Paths and arcs through Knaster continua
Mathematics Subject Classification (MSC): 54C60,
54B10
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Abstract. Let f,4 : [0,1] = [0,1] be a tent map with the
top vertex (a,b) and the graph, which is the union of the
straight line segments from (0,0) to (a,b) and from (a,b)
to (1,0) for any a,b € [0,1]. Let K, be the tent map
inverse limit obtained from the inverse sequence with f(, )
being the only bonding map. We will describe paths and
arcs from a tent map inverse limit to another tent map

inverse limit that go only trough tent map inverse limits in
9l0,1]
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Towards the complete classification of tent maps
inverse limits

Mathematics Subject Classification (MSC): 54C60,
54B10

Abstract. Let fip : [0,1] = [0,1] be a tent map with
the top vertex (a,b) and the graph, which is the union of
the straight line segments from (0,0) to (a,b) and from
(a,b) to (1,0) for any a,b € [0,1]. Let K44 be the inverse
limit obtained from the inverse sequence with f(, ;) being
the only bonding map. We will present results about clas-
sification of such inverse limits K, depending on (a,b) €
[0, 1] x [0, 1].
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Remainders in compactifications of homogeneous
spaces

Mathematics Subject Classification (MSC): 54D35,
54D40, 54E52

Abstract. Arhangel’skii has recently proved two dichotomy
theorems about remainders of topological groups:

e Every remainder of a topological group is either Lin-
del6f or pseudocompact.

e Every remainder of a topological group is either o-
compact or Baire.

We prove the following dichotomy theorem about re-
mainders of homogeneous spaces:

e Every remainder of a homogeneous space is either
realcompact and meager or Baire.
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We also show that none of the Arhangel’skii’s theorems
can be generalized to the case of homogeneous spaces.
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Comactifications of N as Stone spaces of some
Boolean algebras

Mathematics Subject Classification (MSC): 54D35,
54D80

Abstract. We consider compactifications of a countable
discrete space, which are Stone spaces of some Boolean
algebras and examine their properties.
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Nodec spaces and compactifications
Mathematics Subject Classification (MSC): 06B30,
06F30 and 54F05

Abstract. We describe compact nodec spaces and we
characterize space such that its one point compactification
(resp. Wallman compactification) is nodec.
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The coarse shape groups
Mathematics Subject Classification (MSC): 55P55,
55Q05, 55N99

Abstract. The (pointed) coarse shape category Sh* (Sh%),
having (pointed) topological spaces as objects and having
the (pointed) shape category as a subcategory, was recently
constructed ([1]). Its isomorphisms classify (pointed) topo-
logical spaces strictly coarser than the (pointed) shape type
classification. Coarse shape isomorphisms preserve some
important topological invariants as connectedness, (strong)
movability, shape dimension and stability ([3]). There are
also several new algebraic coarse shape invariants. In this
talk we introduce a new algebraic coarse shape invariant
which is an invariant of shape and homotopy, as well. For
every pointed space (X, %) and for every k € Ny, the coarse
shape group 7} (X, %), having the standard shape group
7. (X, x) for its subgroup, is defined ([2|). Furthermore, a
functor 7} : Sh; — Grp is constructed. The coarse shape
and shape groups already differ on the class of polyhedra.
An explicit formula for computing coarse shape groups of
polyhedra is given. The coarse shape groups give us more
information than the shape groups. Generally, 7, (X, *) =
0 does not imply 7} (X,*) = 0 (e.g. for solenoids), but
from pro-m; (X, x) = 0 follows 7} (X, x) = 0. Moreover, for
pointed metric compacta (X, %), the n-shape connectedness
is characterized by 7} (X, *) = 0, for every k < n.
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Embedding compacta into Eucledean space
Mathematics Subject Classification (MSC): 53A07

Abstract. Theorem. For an infinite n-dimensional com-
pactum X containing n-dimensional simplex A™ and inte-
gersm >1,0<d<m, q>d+2 the following conditions
are equivalent:

(1) (nm,d,q) The inequality

gn+1<(¢g—d—-1)(m—d).

1S true.

(2)(x,m,a,q) The set H of all maps g: X — R™ such that
the preimage g~ '(11%) of every d-dimensional plane 1% C
R™ has cardinality < g — 1 is dense (containes dense G-
set) in the space of all continuous maps of X into R™.

The implication (1) = (2) was proved by Bogatyy and
Valov in a stronger form and there proof is based on a “con-
verse of transversal Tverberg theorem”. The implication
(2) = (1) was proved by Boataya—Bogatyy—Kudryavtseva
in a stronger form and there proof is based on a “topologi-
cally stable transversal Tverberg configuration”.

The case d = 0,q = 2 corresponds to the famous Nobe-
ling-Pontryagin embedding theorem. The case d = 0 cor-
responds to the Hurewicz theorem. The case d = k —
1,q = k + 1 corresponds to the Boltyanski theorem about
k-regular maps.
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The importanse of k-regular maps is seen from the Haar—
Kolmogorof-Rubinstein

Theorem. For functions (continuous) ¢1, ..., om: X —
R and natural k < m the following conditions are equiva-
lent:

1) (Number of roots). Every linearly independent system
of (m — k + 1) equations

ag" " o oy (@) 4+ o (2) = 0
has no more than k roots.

2) (Interpolation property). For any points xq, ..., €
X and reals fy, ..., fr € R there exist a polynomial pg =
oo+ 11 + ... + aypm Such that

p@(xg) = fo, -, pa(fk) = [

3) (Chebyschev’s approzimation). For any function
©: X — R polynomials of the best approzimation constitute
the set of dimension < m — k.

4) (k-regularity). The mapping f: X — R™ given by
the formula

fz) = (p1(@), p2(), - ... om(2)),

is k-regular, i.a. preimage of every (k — 1)-dimensional
plane has cardinality < k.
5)(Matriz rank). For any points g, ...,xy € X
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Homeomorphisms of linear and planar sets of the
first category into microscopic sets

Mathematics Subject Classification (MSC): 28 A05,
54C50

Abstract. A set A C R is said to be microscopic if for
each € > 0 there exists a sequence {1, },en of intervals such
that A C J, ey In and m(I,) < €" for n € N.

The notion of microscopic set on the real line was in-
troduced by J. Appell in 2001. The properties of these
sets were investigated by J. Appell, E. D’Aniello and M.
Vith. They proved among others that the family of all mi-
croscopic sets is a o-ideal, situated between countable sets
and sets of Lebesgue measure zero, which is essentially dif-
ferent from both these families.

J.C. Oxtoby and S. Ulam proved that each set of the
first category in r-dimensional Euclidean space can be trans-
formed into a set of Lebesgue measure zero by some auto-
morphism, and the set of all such homeomorphisms con-
stitute a residual set in the set of all automorphisms. We
have improved this result changing the sets of measure zero
by microscopic sets on the real line and on the plane.

We proved also that for microscopic sets the theorems
analogous to Sierpinski-Erdés Duality Theorem and to Fu-
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bini Theorem on the plane are valid.
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Fubini type products of category densities and lift-
ings

Mathematics Subject Classification (MSC): 54E52,
54B10, 28A51, 60B05

Abstract. Let X and Y be topological spaces such that
X xY is a Baire space. For given category densities p, o on
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X and Y, respectively, two 'Fubini type’ products p©o and
plo on X x Y are introduced. A necessary and sufficient
condition for p ® o to be a category density is presented.

Under the mild condition, that the pairs (X,Y’) and
(Y, X) have the Kuratowski-Ulam property, we prove for
given category liftings p and o on the factors the existence
of a category lifting 7 on the product, which dominates
p o and has the properties

(A x B) = p(A) x o(B) for Baire subsets A of X and B
of Y and

p([r(E))Y) = [7(E)} for all y € Y and Baire subsets E of
X xY.

It is shown, that further properties of consistency with
the product structure can not be expected.
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The topological construction of densities and lift-
ings

Mathematics Subject Classification (MSC): 54B05,
54E52, 54H10, 28A12, 28 A51, 60B05

Abstract. It is well known from an example given by
Erdés, that for finitely additive measures on fields densi-
ties or liftings will not exist in general. But with the help
of a topology in the basic field, we can derive a subfield
for which densities and liftings exist and this process works
more generally for arbitrary ideals in a basic field. As com-
pared to the classical situation these densities and liftings
have unexpected good properties, i.e. they are strong and
with range in the open sets. There exists even a minimal
density of this sort, which is identical with the inner den-
sity of every density on this derived subfield. Perhaps most
surprising, when compared with the situation for topolog-
ical probability spaces, the construction of such densities
can be achieved without an application of the axiom of
choice. The class of derived fields comprises the most clas-
sical fields with finitely additive measures, i.e. the fields of
Jordan measurable sets derived from topological probabil-
ity spaces of full support.
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Topological Methods in Absolute Valued Structures
Mathematics Subject Classification (MSC): 17A80,
55P15

Abstract. An algebra A is called absolute valued if it is
endowed with a space norm || - || such that ||zy|| = ||z y/|
for all x,y € A. Since 1918, there was a series of results on
absolute valued algebras culminating in Albert’s paper [1]
asserting that any finite-dimensional absolute valued real
algebra is of dimension n = 1, 2,4 or 8 and isotopic to one of
the classical absolute valued algebras R, C, H or Q. Since
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then, the study of absolute valued algebras has undergone
an important development with a number of contributions.
The absolute valued structures theory also involves the ab-
solute valued two-graded algebras and the absolute valued
triple systems, [2, 3|. In the present work we introduce the
notion of homotopy of absolute valued algebras, absolute
valued two-graded algebras and absolute valued triple sys-
tems. Roughly speaking two absolute valued algebras are
said to be homotopic if the product of the first algebra can
be continuously deformed through absolute valued prod-
ucts into the product of the second one. We also show how
this concept let us obtain some invariants in any kind of
absolute valued structure in such a way that we can give,
in a sense, a unifying viewpoint of the theory and solve
some problems related to absolute valued theory.
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A note on the cardinality of the #-closed hull
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Mathematics Subject Classification (MSC): 54A25,
54D10

Abstract. In this article we studied some properties about
the cardinality of the #-closed hull [A]y related to cardinal
functions y (X)), bty(X) and t4(X).

In particular, considering the Urysohn cardinal function
U(X), we prove that |[A]] < |A[*X) with finiteness of
U(X) and A C X.

Moreover, some known statements about Urysohn spaces
can be generalized in terms of the Urysohn cardinal func-
tion.
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On several cardinality bounds on power homoge-
neous spaces
Mathematics Subject Classification (MSC): 54A25

Abstract. We show the cardinality of a homogeneous
Hausdorff space X is not necessarily bounded by 24(X)mx(X)
by providing examples of o-compact, countably tight, ho-
mogeneous spaces of countable w-character and arbitrary
cardinality. We also generalize a closing-off argument of
Pytkeev to show the cardinality of any power homoge-
neous Hausdorff space X is at most 2L(X)Pet(N)UX) — Thig
was previously shown to hold if X is also regular by G.J.
Ridderbos. Another consequence of the generalization of
Pytkeev’s closing-off argument is the well-known cardinal-
ity bound 2LCHMX)Y(X) for an arbitrary Hausdorff space X.
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Bornologies and function spaces
Mathematics Subject Classification (MSC): 54C35

Abstract. For a metric space (X, d), we study some closure-
type properties of the space (C(X),75) of all continuous
real-valued functions on X equipped with the recently in-
troduced topology of strong uniform convergence on a bornol-
ogy B on X. Characterizations of several properties (for in-
stance, countable fan tightness, countable strong fan tight-
ness, the (strong) Fréchet-Urysohn property, the A-space
property) of this function space are obtained.
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On the Topological Properties of Residual Classes
of Real Numbers

Mathematics Subject Classification (MSC): 54A05,
54C99, 08A02

Abstract. Let a > 0 be a fixed real number and a,b € R.
Then a = b(moda) if and only if « — b = ka for some
k € Z. This definition is parallel to the concept of residue
classes of integers Z, for fixed n € Z. As a result, this
also constitutes residue classes of real numbers denoted by
R,. The element ra € R, is the set {r + kalk € Z}. In
[2], the algebraic structure and algebraic properties of R,
were described. It is interesting to look at R, in another
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way. Since one can perceived this geometrically, its concept
leads us to extend this to topology.

Consider the mapping v : R — R, which is defined
by 7(z) = ra such that x = r + ka for some k € Z and
0 <r < a. Let € > 0. Define the symmetric open ball in
R center at x € R of radius € by

Ble,z) ={y: |z —y| <€}

Through this, the basis element of R, center at ra € R,
determined by = € ra, can be defined by the set

B (e,ra) = {(y) : y € Be, )}

The set of B.’s generate the topology 7 in R,.

In this talk, we will present the topological properties of
residue classes of real numbers — continuity, covering map,
homeomorphism and connectedness.

[1] Bartle, R.G., Introduction to Real Analysis, John Wiley
and Sons, New York, 2000.

[2] V.P. Cases, On the Residual Classes of Real Numbers,
Graduate thesis, Mindanao State University - Iligan Insti-
tute of Technology, 2006.

[3] Fraleigh, J.B., A First Course in Abstract Algebra, Ad-
dison - Wesley Publishing Company Inc., 1994.

[4] Munkres, J.R., Topology A First Course, Prentice Hall,
Engelwood Cliffs, New Jersey, 1975.
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On Dimensionsgrad, resolutions, and chainable con-
tinua

Mathematics Subject Classification (MSC):
Primary 54F45; secondary 54F15

Abstract. The necessary definitions

Let A, B be disjoint closed subsets of a space X and
C' a closed subset of X disjoint from AU B. C'is called a
(zero) partition between A and B if (C' is a zero subset of
X and) there are disjoint open subsets U, V" of X such that
ACUBCVand X\C=UUV. Cis called a (zero) cut
between A and B if (C' is a zero subset of X and) every
continuum that meets both A and B meets C. Evidently,
every (zero) partition is a (zero) cut.

The definitions of the topological dimension functions
Ind, Indy, Dg, and Dg, are quite similar: Ind X, Indy X,
Dg X, or Dg, X equals —1 iff X = (). For a non-empty nor-
mal space X, Ind X (respectively, Indy X, Dg X, Dg, X) is
the smallest non-negative integer n for which between any
pair of disjoint closed sets A and B of X, there is a par-
tition (respectively, zero partition, cut, zero cut) C' with
Ind C (respectively, Indy C, DgC, Dg,C) < n — 1, if such
an integer exists. If no such integer exists, we set Ind X
(respectively, Indy X, Dg X, Dgy X) = oco. If in the above
definition of Ind, we stipulate that the set A is a singleton,
we obtain the definition of ind. Dg or Dimensionsgrad was
defined by Brouwer in 1913. The definition of ind or small
inductive dimension was formulated by Urysohn in 1922
and, independently, by Menger in 1923. Cech defined Ind
or large inductive dimension in 1931. In a previous paper
of ours, Ind, proved very useful in estimating ind and Ind.
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We introduce Dg, in this paper as a tool for computing
Dimensionsgrad.

Transfinite extensions of the above dimension functions
are obtained in the usual manner. Thus, for example, if
X is a non-empty space, trDg, X is the smallest ordinal «
for which between any pair of disjoint closed sets A and B
of X, there is a zero cut C' with trDg,C' < «, if such an
ordinal exists. If no such ordinal exists, we set trDg, X =
oo. Evidently, trind < trInd < trIndy, Dg < Ind and
trDg < trDg, < trInd,. Hence, if trind X = trInd, X,
then trind X = trInd X = trIndy X.

A continuum is a compact, Hausdorff and connected
space. A continuum is chainable or snake-like if every open
cover of the continuum is refined by an open chain, i.e.
a finite open cover Ui, ..., U such that U; N U; # 0 iff
i~ jl < 1.

Two questions

(1) B.A. Pasynkov, 1985: Does there exist a chainable con-
tinuum S, with trind S, = « for each ordinal number
a?

(2) V.A. Chatyrko and V. V. Fedorchuk, 2005: Is the Di-
mensionsgrad of every non-degenerate chainable con-
tinuum equal to 17

Results

For each natural number n > 1 and each pair of ordinals
a,3 with n < a < 3 < w(ch), where w(c™) is the first
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ordinal of cardinality greater than ¢, there is a continuum
Sh,a,8 Such that

a) dimsS, .3 = n;
( ) o, 8 )
(b) trDg Sy s = trDgy Snas = @;
¢) trind Sn aB = tI‘IHdO Sn a,f — ﬂ;
bl 75 bl 75
(

d) if 3 < w(c™), then S, , 4 is separable and first count-
able;

(e) if n =1, then S, 43 can be made chainable or heredi-
tarily decomposable;

(f) if @ = <w(ch), then S, 45 can be made hereditarily
indecomposable; and

(g) if n=1and a = < w(ch), then S, 44 can be made
chainable and hereditarily indecomposable.

Other results contained in the paper enable us to com-
pute the Dimensionsgrad of a number of spaces constructed
by Charalambous, Chatyrko, and Fedorchuk.

Charalampos Charitos, Ioannis Papadoper-
akis, and Georgios Tsapogas

Department, of Mathematics,
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Samos, Greece

e-mail: get@aegean.gr

A Complex of Incompressible Surfaces for handle-
bodies and the Mapping Class Group
Mathematics Subject Classification (MSC): 57N10,
57N35
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Abstract. For a genus g handlebody H, a simplicial com-
plex, with vertices being isotopy classes of incompressible
surfaces in H,, is constructed and several properties are
established. As in the classical theory, the group of auto-
morphisms of this complex is identified with the mappig
class group of the handlebody.

Vitalij A.Chatyrko and Yasunao Hattori

Department of Mathematics, Shimane University
Matsue, Shimane, 690-8504 Japan
e-mail: hattori@riko.shimane-u.ac.jp

The remainders in extensions and finite unions of
locally compact sets

Mathematics Subject Classification (MSC):
Primary 54D35, 54D40; Secondary 54D45

Abstract. In [1], we studied the spaces which are repre-
sented as finite unions of locally compact subspaces. The
class of such spaces we denote by Py;,. In this talk, we dis-
cuss the relationship between properties of spaces from the
class Py and their remainders in extensions from the same
class Ppin. In particular, we show that a space X € Py,
iff the remainder in each (some) compactification of X is
in Pyi,. Then we study the relationship between the class
of almost locally compact spaces ([3]) and Py, present a
relationship between the remainders of a space from Py,
in compact extensions and give a generalization of the the-
orem of Henriksen-Isbell [2].
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Around a Hurewicz’s formula
Mathematics Subject Classification (MSC): 54D45,
54F45

Abstract. Some relevant questions around the Hurewicz’s
formula for the dimension-lowering mappings are under our
discussion. In particular, we generalize the notion of a fully
closed mapping introduced by V. V. Fedorchuk ([F]) and
find for such new mappings an evaluation formula for the
dimension Indgy (resp. Ind) of preimages via the dimension
Indy (see [C] or [I]) (resp. Ind) of images.
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Cech cohomology with coefficients in a topological
abelian group
Mathematics Subject Classification (MSC): 55N05

Abstract. Unlike the ordinary Cech cohomology where a
group of coefficients is abelian, in this paper a continuous
Cech cohomology with coefficients in a topological abelian
group is defined.

It is proved that for compact spaces and any topological
abelian group the continuous Cech cohomology satisfies all
Eilenberg-Steenrod axioms and continuity axiom, except
the excision axiom.

However, if a group of coefficients is an absolute retract
or Q*G, where G is an AR, then for compact spaces the
continuous Cech cohomology satisfies the excision axiom.

E. Colebunders, B. Lowen, S. De Wachter
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Quantifying domains using approach spaces
Mathematics Subject Classification (MSC): 06, 54,
68

Abstract. Motivated by central problems in theoreti-
cal computer science, mathematical structures, called do-
mains, have been created to model semantics of program-
ming languages. A domain is a partially ordered set in
which all directed sets have a supremum and which sat-
isfies the axiom of approximation: Every element in the
domain is the supremum of a directed set of base elements
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which are finite in nature. Every domain has an intrinsic
topology, called the Scott topology [1], which can be used
to describe convergence of algorithms. However, since the
Scott topology is not a metrizable topology, this theory
cannot be used for a more refined quantitative reasoning.
Because this quantitative information is important for ap-
plicability (One would like to know how fast an algorithm
converges to a solution), domains have been endowed with
a weighted quasi metric structure inducing the Scott topol-
ogy. An important result, independently obtained by M.
Schellekens [3] and by P. Waszkiewicz [2|, states that all
continuous domains having a countable basis are quantifi-
able. The weighted quasi metric involved is constructed
by taking an infinite sum, > 2%, over some subset of the
natural numbers. As observed by M. Schellekens in [3] and
by H.P. Kiinzi in [5], the role of (5%), could be replaced
by any other sequence, so the numerical values computed
through the quasi metric are not canonically determined.
We propose a canonical solution for the problem of
quantifiability. Such a solution is obtained regardless of
cardinality conditions on bases of the domain. We show
that every domain D is quantifiable in the sense that there
exists an approach structure on D [4], inducing the Scott
topology. Moreover in the case of an algebraic domain, a
quantifying approach space can be obtained which allows
to extract the set of maximal elements of the domain, which
are of great importance in applications, since they are the
ideal objects which are approximated during computations.
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On summability of nets through ideals and some
topological observations

Mathematics Subject Classification (MSC):
Primary 54A20; Secondary 40A05, 40A 99

Abstract. The idea of convergence of a real sequence had
been extended to statistical convergence by Fast [2] ( see
also Schoenberg [13] ) as follows: If N denotes the set
of natural numbers and K C N then K, denotes the set
{k € K:k <n} and |K,| stands for the cardinality of the
set K,,. The natural density of the subset K is defined by
d(K) = lim 1]
n—oo N,

provided the limit exists.

A sequence {x,},en of points in a metric space (X, p)
is to be statistically convergent to £ if for arbitrary € > 0,
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the set K(¢) = {k € N : d(x, {) > €} has natural density
zero. A lot of investigations have been done on this con-
vergence and its topological consequences after the initial
works by Fridy [3] and Salat [12]. In particular, Very re-
cently Di maio and Kocinak [8] introduced the concept of
statistical convergence in topological spaces as well as uni-
form spaces and established the topological nature of this
convergence as also offered some applications to selection
principles theory, function spaces and hyper spaces.

However if one considers the concept of nets instead of
sequences ( which undoubtedly play more important and
natural role in topological and uniform spaces ) the above
approach does not seem to be appropriate because of the
absence of any idea of density in arbitrary directed sets. In-
stead it seems more appropriate to follow the more general
approach of [4].

In [4] an interesting generalization of the notion of sta-
tistical convergence was proposed. Namely it is easy to
check that the family I; = {A C N : d(A) = 0} forms a
non-trivial admissible ideal of N ( recall that I C 2V is
called an ideal if (i) ¢ € I, (ii) A, B € I implies AUB € I
and (ili) A € I, B C A implies B € I. I is called non-
trivial if I # {¢} and N ¢ I. I is admissible if it contains
all singletons ). Thus one may consider an arbitrary ideal
I of N and define I-convergence of a sequence as follows.

A sequence {x, ey in (X, p) is said to be I-convergent
to x € X, (in short z = I—nlirgoxn ) if K(e) € I for each

5
€ > 0, where K(¢) = {k € N : d(xg,z) > €}.

The aim of this presentation is to show that the idea
of convergence and Cauchy condition of nets can be broad-
ened in the same way using the concept of ideals. It is ob-
served that two types of convergence namely, I-convergence
and [*-convergence can be considered in line of statisti-
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cal and s*-convergence of [8] as well as the corresponding
Cauchy conditions. But unlike [8], these concepts are not
in general equivalent even in first countable spaces ( which
can be shown by constructing proper examples ) and only
coincide if and only if the ideal satisfies a condition called
condition (DP). The basic topological nature of these con-
vergence are established and most importantly an open
problem posed by Di Maio and Kocinac (Problem 2.16 [8])
is considered and we try to give some answers. This moti-
vates us to consider the idea of completeness of an uniform
space and we also consider the impact of this generalization
on the notion of completeness and make certain interest-
ing observations. Finally a kind of divergence of nets is
considered in uniform spaces and its basic properties are
studied.
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Sequential approach to a problem on Dense Sets
Mathematics Subject Classification (MSC): 40A05,
54A20

Abstract. Here we consider a very fundamental topologi-
cal problem as to what is the condition under which almost
all subsets of a dense set in a topological space X are again
dense in X. As far as our knowledge is concerned, we could
not find any answer to this question in the existing litera-
ture. It is well known that in a first countable 77 topolog-
ical space X, 3 is a limit of B C X if and only if there is a
sequence of elements in B which is convergent to 3. Since
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a countable dense set can be written as a sequence , so in
a first countable T} space, every limit point of a countable
dense set B( and so of that sequence ) can be thought of
as a subsequential limit of that sequence and consequently
B becomes the cluster set of all subsequential limit points
of this sequence .

With this in mind we start with the well known cor-
respondence between the numbers of (0,1] and the subse-
quences of a given sequence a = (a,)uen in a topological
space X (cf. [1], |2] ). If t € (0,1], then ¢ has a unique
non-terminating dyadic expansion

o
t=> c(t)27% ... (1)
k=1
cp(t) =0o0r 1 (k=1,2,...) and ¢(t) = 1 for infinitely
many k’s.
If we put {k:cx(t) =1} = {k1 < kg < k3 < ...} then

(1) has the form t = 22*’“". Put
n=1
a(t) = (agy, Qpyy ey Qpeyy - - )-

So we get a one-to-one correspondence between the
numbers of (0,1] and the subsequences of a. Thus cor-
responding to a class of subsequences A of a, there exists
a subset A* C (0.1] of all those t’s from (0, 1] that cor-
respond to the subsequences from A. This unique corre-
spondence enables us "to measure" the magnitude or "to
find" the category position of a class A of subsequences of
a by calculating the measure of the set A* or by finding
the category position of the set A*. Using the above men-
tioned facts and intrinsic properties of dyadic expansion of
we prove the following.
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Theorem A. In a completely separable topological
space X, A C X is the cluster set of a given sequence
a = (an)nen if and only if almost all it’s subsequences also
have A as their cluster set in the sense of measure and
category.

The following theorem then immediately follows which
gives a partial answer to the open problem stated above.

Theorem B. In a separable, first countable, 77 and
perfect topological space X ( which is infinite ), almost all
infinite subsets of a countable dense set are again dense in
X in the sense of measure and category.
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The Pinsker subgroup of an algebraic flow
Mathematics Subject Classification (MSC): 22D40,
28D20
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Abstract. Let GG be an abelian group and let ¢ : G — G
be an endomorphism. For a finite subset F' of G and for
n €N, let

T, F)=F + ¢(F)+ ...+ ¢" 1(F).

Obviously, 74 p(n) = |T.(¢, F)| < |F|". We show that
74,7 has either a polynomial or an exponential growth as a
function of n. Hence, the limit

H($,F) = lim 087er (")

n—00 n

exists. Moreover, h(¢) = suppeig<w H(®, F) (the algebraic
entropy of @) coincides with the algebralc entropy of ¢!
defined in [5].

Extending a result from [3] we prove that there exists a
maximum ¢-invariant subgroup P(G, ¢) of G (the Pinsker
subgroup of ¢), such that h(¢ [p(q,4)) = 0. This subgroup is
also the maximum ¢-invariant subgroup N of GG such that
the induced endomorphism ¢ of G/N has no non-trivial
quasi-periodic points. It coincides also with the maximum
¢-invariant subgroup N of G' such that 74, r has polyno-
mial growth for every finite subsets F' of V.

The counterpart of Pinsker subgroup in the case of the
topological entropy (in the sense of [1]) is the Pinsker factor
(see [2, 4]).

Extending a theorem of Peters [5] one can prove that
if G is an abelian group and ¢ is an endomorphism of G,
then the topologlcal entropy htop(¢) of the Pontryagin dual
d) G — G coincides with the algebraic entropy of ¢.

It follows from the above results that if ¢ is a con-
tinuous endomorphism a compact abelian group K, then
the annihiulator (G, ¥) of P(G, 1/)) is a closed t-invariant
subgroup of K having the following properties:
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(a) the restriction 1 [¢(q ) is ergodic;

(b) £(G,1) is the greatest closed t-invariant subgroup
of K with the property (a).

Item (a) justifies the term greatest domain of ergodicity of
Y for £(G,1)). Tt coincides also with the greatest closed
y-invariant subgroup N of K such that the induced en-
domorphism ¢ of G/N has zero topological entropy (i.e.,
G/E(G, 1) coincides with the Pinsker factor of ).
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Vedenissoff groups
Mathematics Subject Classification (MSC):

Abstract. A (Hausdorff) space X is hereditarily discon-
nected if its connected components are singletons, and X
is zero-dimensional if its clopen sets form a base for the
topology of X. Every zero-dimensional space is heredi-
tarily disconnected, and if X is locally compact, then the
reverse implication

hereditarily disconnected = zero-dimensional (%)

also holds. In particular, hereditarily disconnected locally
compact groups are zero-dimensional.

For a topological group G, let Gy denote the component
of the identity in G. It is well known that G/G is hered-
itarily disconnected, but it need not be zero-dimensional.
We say that the group G is Vedenissoffif the quotient G/G
is zero-dimensional. We are interested in classes of topolog-
ical groups where (x) holds, that is, classes of Vedenissoff
groups.

A space X is pseudocompact if every continuous real-
valued map on X is bounded. In the class of topological
groups, pseudocompact groups can be characterized as the
Gs-dense subgroups of compact groups (cf. [2, 1.1]). A
dense subgroup G of a locally compact group L is locally
pseudocompact if G is Gs-dense in L (cf. [3]), and G is
hereditarily locally pseudocompact if every closed subgroup
S of GG is Gs-dense in its closure cl;, S in L.

There are many known examples of pseudocompact gr-
oups that fail to be Vedenissoff (cf. [4, Theorem 11] and
[6, 1.4.10]). Nevertheless, we show that every hereditar-
ily locally pseudocompact group is Vedenissoff, a result
that generalizes [5, 1.2], and provides a positive answer
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to [1, 4.13]. We also show the existence of pseudocom-
pact abelian groups with strong compactness-like proper-
ties that fail to be Vedenissoff.
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Abstract. Some aspects of the theory of order and (D)-
convergence in lattice groups with respect to ideals are
presented. Moreover new versions of some basic Matrix
theorems are given.
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Versions of properties (a) and (pp), and the Alexan-
droff duplicate
Mathematics Subject Classification (MSC): 54D20

Abstract. We introduce and study selective versions of
properties (a) and (pp). Their applications to the Alexan-
droff duplicate are considered.
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National Technical University '"KhPI’, Kharkov, Ukraine
e-mail: s.dimitrova@mail.ru

On continuity of functions limit
Mathematics Subject Classification (MSC): 43A60

Abstract. In the present paper a new definition of quasi-
uniform convergence of functions with values in the metric
space Y that are not obligatory continuous and are given
in the non-compact topological set GG is introduced. Sev-
eral examples proving that the quasi-uniform convergence
proposed does not result in the convergence by P.S. Alek-
sandrov are found.

Definition. A pointwise convergent sequence of func-
tions {fn(t)}22, is called quasi-uniform convergent to the
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function f(t) : G — Y if for any e >0, N and any subse-
quence {t'ﬁ}g‘;l C G there ezists index ng > N and subse-
quence {tg}zl, C {t's}z2, such that p(f(ts), fuy(ts)) < €
forvp =1,2,3, ...

Partially continuous functions at a point are considered.
The function is called partially continuous if there exists a
sequence {t,}°°, lim, , t, = t such that lim,_, f(t,) =
f(t). Tt is proven that a limit of the partially continuous
functions is partially continuous if and only if the conver-
gence of the functions is quasi-uniform.

The convergence mentioned above changes its proper-
ties depending on the definition domain and the type of
the functions. If the definition domain is a compact set
then the classical quasi-uniform convergence by P.S. Alek-
sandrov is stronger than the introduced one. Otherwise,
the quasi-uniform convergence proposed is stronger than
the convergence by P.S. Aleksandrov in the case of contin-
uous functions. Finally, if the functions are simultaneously
continuous and defined on a compact set then the both con-
vergences are coinciding. Moreover, it is proven that the
definition domain of functions is a compact set if and only
if the functions are continuous and the both quasi-uniform
convergences are coinciding.

D. Djurci¢, Lj. D.R. Koc¢inac, and
Malisa R. Zizovié

Technical Faculty, éaéak, Serbia

e-mail: zizovic@tfc.kg.ac.rs

Rates of divergence of real sequences
Mathematics Subject Classification (MSC): 54A20,
26A12, 40A05
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Abstract. We consider different classes of divergent se-
quences of positive real numbers defined by using the quo-
tient speed of divergence. In particular, we are concen-
trated on connection between classes of sequences defined
in this way and selection principles and games.

Georgi Dimov

Department of Mathematics and Informatics,
Sofia University,

Sofia, Bulgaria

e-mail: gdimov@fmi.uni-sofia.bg

Open and other kinds of map extensions over zero-
dimensional local compactifications

Mathematics Subject Classification (MSC): 54C20,
54D35; secondary 54C10, 54D45, 54E05

Abstract. Generalizing a theorem of Ph. Dwinger [3], we
describe the partially ordered set of all (up to equivalence)
zero-dimensional locally compact Hausdorff extensions of a
zero-dimensional Hausdorff space. Using this description,
we find the necessary and sufficient conditions which has
to satisfy a map between two zero-dimensional Hausdorff
spaces in order to have some kind of extension over arbi-
trary, but fixed, Hausdorff zero-dimensional local compact-
ifications of these spaces; we consider the following kinds of
extensions: continuous, open, quasi-open, skeletal, perfect,
injective, surjective, dense embedding. In this way we gen-
eralize some classical results of B. Banaschewski [1] about
the maximal zero-dimensional Hausdorff compactification.
Extending a recent theorem of G. Bezhanishvili [2], we de-
scribe the Leader’s local proximities [4] corresponding to
the zero-dimensional Hausdorff local compactifications.
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A new duality theorem for locally compact spaces
Mathematics Subject Classification (MSC): 54D45,
18A40; secondary 54E05, 06E10, 06E15

Abstract. In the paper [2]|, de Vries’ Duality Theorem
[1] was extended to the category HLC of locally compact
Hausdorff spaces and continuous maps. The composition
of the morphisms of the obtained there dual category is
not the usual composition of maps. The same fact holds
in the case of de Vries’ Duality Theorem. We now obtain
a new duality theorem for the category HLC such that
the composition of the morphisms of the dual category is a
natural one; however, the morphisms of the dual category
are multi-valued maps.
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On a certain Dichotomy for Metric Linear Spaces
and Consequences
Mathematics Subject Classification (MSC):

Abstract. We state two mapping properties, which may or
may not hold in a given metric linear space. Consequences
for the topological structure of convex subsets of the space
will be discussed. In particular, the negation of the second
property turns out to be equivalent to the existence of a
compact convex subset without the extension property in
the completion of the space.

Maria Dobrynina

Chair of General Topology and Geometry, Mechanics and
Mathematics Faculty,

Moscow State University,

Moscow 119899, Russia.
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On degree spectrums of seminormal functors
Mathematics Subject Classification (MSC): 54F99

Abstract. A covariant functor F : Comp — Comp, act-
ing in the category C'omp of compact Hausdorff spaces and
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their continuous mappings is said to be seminormal if it sat-
isfies all the normality conditions in the sense of Shchepin
[1] except epimorphism and preserving weight and preim-
ages.

In 2008 A.V. Ivanov and E.V. Kashuba proved [2] that
there exists a non-metrizable compact Hausdorff space, such
that for any seminormal functor F preserving one-to-one
points and of a degree spectrum spF = {1, k, ...} the space
Fr(X) is hereditary normal.

In this connection we prove the following propositions.

Proposition 1. Let F be seminormal functor pre-
serving one-to-one points and of a degree spectrum spF =
{1,k,...}. Then k < 3.

Proposition 2. Let F be seminormal functor with a
degree degF < 2. Then F preserves one-to-one points.

Recall that seminormal functor F preserves one-to-one
points, if for any mapping f : X — Y and any point y € Y
such, that |f~'(y)| = 1, the mapping F(f) : F(X) —
F(Y) also satisfies the condition: |(F(f))"'(y)| = 1. The
degree spectrum sp(F) of a functor F is a set of degrees of
points in spaces of the form F, (X).
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A general theory of preservation of properties by
operations
Mathematics Subject Classification (MSC): 54D99

Abstract. Let A, B and C be classes of topologies (more
generally convergences) and let ¢ be a binary operation.
Under what conditions

a€ApfeB= p(af3) € C?

Of course, only certain combinations of A, B and C
and only special operations ¢ define a problem of interest.
Although there is a general pattern enabling one to cope in
theory with the problem, I shall restrict myself here to the
case of ¢ (a, ) = ax 3. In this case, a natural assumption
on the classes A, B and C'is that they are concretely core-
flective. If A = B = C were reflective, then a x § € A for
every a, 3 € A.

Consider some special instances of this general problem:

(i) When is the product of two Fréchet topologies Fréchet?

(ii) When is the product of two strongly Fréchet topolo-
gies strongly Fréchet?

(iii) When is the product of two sequential topologies se-
quential?

It is known that if a x [ is Fréchet and either a or 3
admits a non-stationary convergent sequence, then a x (3 is
strongly Fréchet. This shows that the second example is,
in a sense, more meaningful than the second. It was proved
by Jordan and Mynard that the greatest class of topologies
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B such that « x  is (strongly) Fréchet for each strongly
Fréchet a and § € B, is the class of productively Fréchet
topologies. Solving a problem of Tanaka, Mynard proved
that if the product of a sequential topology 3 is sequential
for each topology of countable character o is sequential,
then [ is strongly sequential. By the bye, both produc-
tively Fréchet and strongly sequential were introduced as
the solutions to these problems.

To solve the Tanaka problem, Mynard used his theorem
on coreflectively modified duality, while for the problem on
strongly Fréchet products, Jordan and Mynard proceeded
indirectly through polarities of classes of filters.

In this talk I will show that there is a common method
for the both these problems (and for many others),which
is based on the mentioned Mynard theorem. Its corollary
says that the M-modified L-bidual convergence Epil & of
¢ is the coarsest convergence # that fulfills

O x Mt > L (& x 1) for each convergence T,

where M is a concrete functor and L is a concrete reflector.
On applying the theorem above for M = JV, L = J & > V¢
and 7 > V7 where .J is an idempotent reflector and V'
a coreflector commuting with finite products, we obtain a
variety of classical and new results for appropriately chosen
J and V. A calculation of Epi%, for particular L and M
enables one to draw some meaningful conclusions.

For instance, Fréchet, strongly Fréchet, sequential and
other topologies 7 can be characterized with the the aid of
functorial inequalities of the type

T>JVr,

where .J is a suitable reflector and V' a suitable coreflec-
tor. By the way, the class of 7 that fulfill 7 > M7 for an
arbitrary functor is always coreflective.
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Consonance versus infraconsonance
Mathematics Subject Classification (MSC):

Abstract. A family A of open subsets of a topological
space X is compact if it is closed under open supersets
and has the property that whenever a union of open sets
belongs to A, finitely many of these open sets have a union
in A. Compact families are exactly the open sets for the
Scott topology x on the lattice Ox of open subsets of X
ordered by inclusion.

A topological space is consonant if k coincides with the
topology 7, on Oy with a basis formed by sets O(K) :=
{O € Ox : K C O} where K ranges over compact subsets
of X. The topologies 7, and x induce topologies on the
set C'(X) of real-valued continuous functions on X whose
subbases are formed by sets of the form

AUl :={feC(X):qJAec A: f(A) CU},

where A ranges among 7,-open and k-open sets respec-
tively, and U ranges over R-open sets. The former is the
compact-open topology, while the latter is known as Isbell
topology. Since these two topologies coincide if X is con-
sonant, and the compact-open topology is a vector space
topology on C'(X), consonance of X provides an obvious
sufficient condition for the Isbell topology to be a group
topology. It is not known however, if this condition is nec-
essary, even though the fact that the Isbell topology is a
group topology is characterized in terms of the formally
weaker following condition:
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A topological space is infraconsonant if for every com-
pact family A there is another compact family B such that
the (non necesarily compact) family B Vv B of pairwise in-
tersections of elements of B is included in A. Combining
results of [3], [2] and [1] and more recent results we have:

Theorem 1.Let X be a completely reqular topological space.
The following are equivalent:

(i) X is infraconsonant;

(i1) Addition is jointly continuous at the zero-function of
C(X) for the Isbell topology;

(111) The Isbell topology on C'(X) is a group topology;

(iv) The Isbell topology on C(X) is a vector-space topol-
09Y;

(v) N:Ok(X) X Ox(X) = Ok(X) defined by N(A, B) =
AN B s jointly continuous;

(vi) The Scott topology of Ox x Ox coincides with the
product of the Scott topologies on Ox at (X, X).

There is however no example to date of a completely regular
space that is infraconsonant but not consonant. Avenues
to obtain such an example are discussed.
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Ordinal Remainders of )-spaces
Mathematics Subject Classification (MSC): 54D35,
54D40, 54D80, 54F05, 03E05

Abstract. Let k be an infinite cardinal and let [k]* denote
the set of all countably infinite subsets of k. A family
A C [k]¥ is called an almost disjoint family (ADF) provided
for every A, A" € Aif A # A’ then AN A’ is finite. An
almost disjoint family A is called mazimal (MADF) if A is
not properly contained in any other almost disjoint family.
For any ADF A C [k]“, let 9(k,.A) denote the space with
underlying set kU.A and with the topology having as a base
all singletons {a} for & < k and all sets of the form {4} U
(A\ F) where A € A and F' is finite. It is known and easy
to prove that 1-spaces are locally compact, Hausdorff, and
that 4 is maximal if and only if ¢/(k, .A) is pseudocompact.
Let ¢ denote the cardinality of the continuum. In this talk
we discuss our theorem that states: ¢* is the first cardinal
that satisfies the following statement: if £ > ¢** then there
is no A C [k]* MADF such that the Stone-Cech remainder
B (k, A) \ ¥(k, A) is homeomorphic to an ordinal § > ¢t
with the order topology.

Othman Echi

King Fahd University of Petroleum and Minerals,
Department of Mathematics and Statistics
PO Box 5046, Dhahran 31261, Saudi Arabia
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Discrete-Time Dynamical Spaces
Mathematics Subject Classification (MSC):
Primary: 54H20, 54B30 Secondary: 18A40

Abstract. Let X be a set and f : X — X be a map-
ping. The graph of f is the binary relation {(z, f(z)) : x €
X}. The transitive closure of this graph defines a principal
topology on X which may be given by

P(f)={O0C X |f'(0)CO}.

A topological space (X, 7) will be called a discrete-time
dynamical space if there is some mapping f : X — X such
that 7 = P(f).

The main result of this talk provides an intrinsic topo-
logical characterization of discrete-time dynamical spaces.

Some illustrative examples are also given.

Shchepin Evgeny

Steklov Mathematical Institute,
Gubkina 8, Moscow, 119991, Russia
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On mean value of neighbors in plane partitions
Mathematics Subject Classification (MSC):

Abstract. The main result presented solves the follow-
ing problem posed by V.Serdukov: what is the maximum
possible mean number of neighbors in plane partition? Un-
der "plane partition" we mean decomposition of plane into
union of connected closed sets with disjoint interiors. Two
elements of the partition are called neighbors if they bound-
aries meets more than in one point. It is proved that mean
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number of neighbors in any finite plane partition is less
than 6.

Vitaly V. Fedorchuk

Moscow State University
e-mail: vvfedorchuk@gmail.com

Finite dimensions via finite simplicial complexes
Mathematics Subject Classification (MSC):

Abstract. The following two theorems give us main char-
acterizations of the Lebesgue dimension.

THEOREM A. A normal space X satisfies the inequality
dimX <n >0 if and only if for every sequence

(FL, Fy), (FEFS), ..., (FH Fyth

of n + 1 pairs of disjoint closed subsets of X there esist
partitions P; between Fi and Fi such that (5, P = 0.

THEOREM B. A normal space X satisfies the inequality
dimX < n > 0 if and only if every continuous mapping
f: F — S" where F is a closed subset of X, can be
extended over X .

Pairs (F}, Fi) from Theorem A are families ®; of sets
such that their nerves N(®;) coincide with the two point set
{0, 1} which is zero-dimensional simplicial complex. Chang-
ing the two point set by a finite simplicial complex K we
get a definition of a dimension function K-dim.

The sphere S™ from Theorem B is homeomerphic to
the join o, Changing the sphere S° by an arbitrary
compact polyhedron L we get a definition of a dimension
function L-dim.

Dimensions K-dim and L-dim were introduced in [2].
Theory of dimension L-dim is a part of extension theory
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introduced by A.Dranishikov in [1]. In [3] inductive dimen-
sions K-Ind and L-Ind where introduced and investigated.
Their definition are based on general notions of partitions.
We investigate also complexes K and polyhedra L with the
following properties:

1) L-dimX < oo = dimX < oo;

2) K-IndX < co = IndX < o0;

3) L-IndX < 0o = IndX < oc.
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Some properties of Professor Jones’ set function IC
on irreducible continua

Mathematics Subject Classification (MSC): 54C60,
54B20

Abstract. A continuum is a nonempty compact connected
metric space. Given a continuum X, Professor Jones’ set
function K is defined as follows: for each subset A C X,

K(A) ={W | W is a subcontinuum of X
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such that A C Int(W)}.

A continuum X is irreducible if there exist two points of
X such that no proper subcontinuum of X contains both
points. A continuum X is K-symmetric if for each pair of
nonempty closed subsets A and B of X, AN K(B) # 0 if
and only if K£(A) N B # 0.

Some properties of the set function K will be presented.
Also, we are going to give a characterization of irreducible
K-symmetric continua.

Manuel Fernandez-Martnnez and
M.A. Sanchez-Granero

Area de Geometrna y Topologna
Universidad de Almerna (UAL)
04071 Almerna (Spain)

e-mail: fmm124@ual.es

Fractal Dimension on GF-spaces: a Hausdorff Ap-
proach

Mathematics Subject Classification (MSC):
Primary 28 A80; Secondary 54E35

Abstract. Fractals are a kind of sets which have received
attention from different fields because of its many appli-
cations. Accordingly, they have been studied from differ-
ent points of view, and in particular, topology provides
some interesting tools in order to model them, like frac-
tal structures. A fractal structure is a countable family
of coverings of the whole space which approaches it by a
discrete sequence of levels. Likewise, one of the main tools
used in the study of such sets is the fractal dimension,
through the so called box-counting and Hausdorff dimen-
sions, which can be defined over a metrizable space. Never-
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theless, fractals structures constitute a perfect place where
a definition of fractal dimension can be given. On [2]| we
gave two approaches for a definition of fractal dimension
on the context of generalized-fractal spaces, following the
box-counting scheme. Indeed, we generalized box-counting
dimension and classified a larger volume of spaces than by
using the classical definition of fractal dimension.

In this talk, we are going to present a new model based
on the Hausdorff scheme, in order to get a more accurate
definition of fractal dimension on a GF-space. In this way,
we find some interesting properties on the elements of a
fractal structure in order to be able to calculate the new
fractal dimension from those gave on [2|. We show that
this model generalizes also the box-counting dimension as
well as the fractal dimension models studied on [2]|, and we
realize that though the new definition is inspired on the
Hausdorff dimension, it equals to the box-counting dimen-
sion under certain conditions. On the other hand, another
interesting question we study consists of determining the
fractal dimension of self-similar sets. Our main theorem al-
lows to calculate this quantity from an easy equation which
only involves the contraction factors on the corresponding
iterated function scheme without the open set condition
hypothesis used in [1, Theorem 9.3].
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Some dynamical properties of certain continuous
functions of the Cantor set

Mathematics Subject Classification (MSC):
Primary 54G20, 54D80, 22A99: secondary 54H11

Abstract. Given a dynamical system (X, f) with X a
compact metric space and a free ultrafilter p on N, we define
fP(z) =p-lim,,_,» f"(x) for all z € X, which is called the p-
iterate of f. It was proved by A. Blass (1993) that z € X is
recurrent iff there is p € N* = $(N)\N such that f?(z) = x.
This suggest to consider those points x € X for which
fP(z) = x for some p € N*, which are called p-recurrent.
We shall give an example of a recurrent point which is not
p-recurrent for several p € N*. Also A. Blass prove that
two points x,y € X are proximal iff there is p € N* such
that fP(x) = fP(y) (we say that x and y are p-proximal).
We study the properties of p-proximal points of certain
continuous functions of the Cantor set.
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Filter convergence on Banach Spaces
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Mathematics Subject Classification (MSC): 46B25,
46B45, 54A20, 03E05

Abstract. Given a free filter F on N and a topologi-
cal space X, we recall that a sequence (z,)neny in X is
F-convergent to z € X if for every neighborhood U of
z, {n € N : x, € U} € F. Using F-convergent se-
quences in Banach spaces with Schauder basis we char-
acterize P-filters™, Q-filters™ and selective® filters. By
using F-convergent sequences in {1, A. Aviles-Lopez, B.
Cascales-Salinas, V. Kadets and A. Leonov characterized
the P-filters™ and the Q-filters™.
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Independent families and resolvability of pseudo-
compact dense subspaces of {0,1}” and [0, 1]”
Mathematics Subject Classification (MSC): 54E52,
54D25, 54A10, 54A35

Abstract. By using independent families, we prove that
every pseudocompact dense subspace X of {0,1}" is c-
resolvable, where ~ is an infinite cardinal number. We
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give an example of a pseudocompact dense subspace X
of {0,1}” which is not maximally resolvable for v = 2.
Moreover, we give some sufficient conditions under which a
dense Baire space of [0, 1]7 is w-resolvable. Finally, we pro-
vide an example of a countable space which is w-resolvable
but it is not extraresolvable.
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On A, condition for density type topologies gener-
ated by functions
Mathematics Subject Classification (MSC): 24A10,

26A10

Abstract. Let f : (0,00) — (0,00) be a nondecreasing
function with lim, ,o+ f(2) = 0 and lim inf, o+ @ < 00.
The family 7; of all measurable sets £ C R such that for

ecach z € B
m((z,z + h)\ E)

i, ) =0
wnd (z —h,z)\ E)
. m((x — h,x B
Jm, ) =0

is a topology. If limsup, ,q+ ];((Zf))

fulfills (As) condition, similar to the condition considered
in the theory of Orlicz spaces.

If f fulfills (Ay) then the topology 7; is invariant under
multiplication by nonzero numbers. Such topologies are

< oo, we say that f
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more convenient for examination and comparising. If 7T
is included in the density topology 7; and invariant under
multiplication, then f fulfills (Ay). For topologies bigger
than 7, connections are a bit more difficult, but (As) con-
dition is still a useful device.
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Singularities and bifurcations of integrable Hamil-
tonian systems
Mathematics Subject Classification (MSC): 37J35

Abstract. The talk is devoted to a new results in singu-
larity and bifurcation theory of the integrable Hamiltonian
systems. In case of two degrees of freedom the topology of a
system and its solutions is determined by so called “atoms”
which represent the transformations of 2-dimensional Liou-
ville tori when they cross the critical values of momentum
mapping.

The first part of the talk considers “atoms” as the reg-
ular (i.e. maximally symmetric) cell decompositions of
closed oriented 2-dimensional surfaces. These objects are
also known as maximally symmetric oriented atoms. An
atom is called reducible if it is a branched covering over
another atom, with branchings at the vertices and (or)
side centres of the decomposition. The following two prob-
lems arose in the theory of integrable Hamiltonian sys-
tems: 1) describe irreducible maximally symmetric atoms;
2) describe all maximally symmetric atoms which cover a
given irreducible maximally symmetric atom. The work by
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A.T.Fomenko, E.A.Kudryavtseva and [.M.Nikonov solves
these problems in important cases. As an application, all
maximally symmetric oriented atoms of the following types
are listed: 1) atoms having at most 30 edges; 2) having at
most 6 sides; 3) having p or 2p edges, where p is a prime.

The second part of the talk is devoted to the topol-
ogy of integrable systems on Lie algebras. Two objects
mainly determine the properties of such a systems: bifur-
cation diagram S (for momentum mapping) and discrim-
inant D of a spectral curve, which appears for the sys-
tems of L-A-pair type, in particular, whose integrals are
obtained by an arguments shift method, introduced and
developed by A.S.Mischenko and A.T.Fomenko. Recently
A.Yu.Konyaev discovered, that for important series of a
systems on semisimple Lie algebras, the sets S and D coin-
cide. This important result explains many topological and
algebraic effects connected with such systems.

Fomenko T.N.

oscow State University (M.V.Lomonosov),
Department of Computer Sciences and Cybernetics,
Leninskie Gory, Moscow, 119991, Russia

e-mail: tn-fomenko@yandex.ru

The stability of Cascade Search Principle
Mathematics Subject Classification (MSC): 54C60

Abstract. A non-negative real set-valued functional ¢
defined on a metric space (X, p) is called («, §)-search if
0 < f < «a and for the one-valued functional ¢, (z) =

inf {v},x € X, the following conditions are fulfilled.
yEp(x)

Vi, z € X,32" € X such that p(z,2') < ‘p*osm), and ¢, (2') <
g - 0u().
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In recent author’s papers (see, for example, [2|) the Cas-
cade Search Principle (below CSP) was suggested. CSP
states that for any search functional there exists a mul-
ticascade (=set-valued discrete dynamic system) with its
limit set being equal to the nil-subspace of that functional,
and gives an upper estimation for the distance between any
initial point and the correspondent limit points.

New search methods for coincidence points, common
fixed points, common roots, common preimages of a closed
subspace of a finite set of n > 2 set-valued mappings of
metric spaces are based on the CSP.

In the report several results will be discussed concerning
the stability of the CSP (see also [3, 4]). Two target settings
are considered: weak and strong stability problems.

The target settings and the obtained results represent
an essential development of some known results concerning
the stability of approximation methods (Banach fixed point
principle and some results of [1]).

References

[1] Arutyunov A.V. "The stability of coincidence points
and properties of covering mappings". Matematicheskie
Zametki, 2009, vol.86, No 2, p.163-169.

[2] T.N.Fomenko. "Cascade search principle and its ap-
plications to the coincidence problem of n one-valued or
multi-valued mappings". Topology and its Appl., 2009,
157. p.760-773.

[3] Fomenko T.N. "Cascade seach stability", Izvestiya RAN,
2010, No 5.

[4] Fomenko T.N. "Cascade search: the stability of reach-
able limit points". Vestnik MGU, 2010, No 5.



Nafpaktos Conference on Topology 101

U.C. Gairola and A.S. Rawat

Pauri Campus of H.N.B.Garhwal University,
Pauri 246001, India
e-mail: ucgairola@rediffmail.com

Common fixed points of mappings satisfying trian-
gle inequality of integral type

Mathematics Subject Classification (MSC): 54H25,
47TH10

Abstract. The main purpose of this paper/talk is to con-
sider a new approach for obtaining common fixed point
theorems in metric spaces by subjecting the triangle in-
equality to a contractive condition of integral type. We
use the concept of property (E.A) and R-weak commuta-
tivity there, without the assumption of completeness of the
space and the continuity of the maps. Our results gener-
alize and extend the results of Pant et.al. [1], Rhoades [2]
and others.
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Sets of links of vertices of simplicial and cubic man-
ifolds

Mathematics Subject Classification (MSC): 52B70,
57R95

Abstract. To each oriented (simplicial or cubic) closed
combinatorial manifold one may assign the set (with repe-
titions) of isomorphism classes of links of its vertices. The
obtained transformation £ is the main object of the talk.
We pose a problem on the inversion of the transforma-
tion L. Thus the problem considered is the following. For
a given set Y7,Ys,..., Y, of oriented (n — 1)-dimensional
combinatorial spheres, does there exist an oriented (sim-
plicial or cubic) n-dimensional combinatorial manifold K
whose set of links of vertices coincides up to isomorphism
with the given set Yi,Ys, ..., Y. It is easy to obtain a con-
dition of balancing which is a necessary condition for the
existence of such manifold K, that is, a necessary condition
for a set of isomorphism classes of combinatorial spheres to
belong to the image of the transformation £. We shall give
an explicit construction providing that each balanced set of
isomorphism classes of combinatorial spheres gets into the
image of L after passing to a multiple set and adding sev-
eral pairs of the form (7, —7), where —Z is the sphere 7
with the orientation reversed. We shall also discuss the
relationship of the problem considered with N. Steenrod’s
problem on realization of cycles and the problem of finding
local combinatorial formulae for the rational Pontryagin
classes of triangulated manifolds.
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English transl., Izvestiya: Mathematics 72:5 (2008), 845
899; preprint, arXiv: 0801.4741.
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Precompact Fréchet topologies on countable abelian
groups
Mathematics Subject Classification (MSC): 22A05

Abstract. We give a characterization of Fréchet property
among precompact topologies on countable Abelian groups
in terms of a y-set type property. Using this characteriza-
tion we present the results of a systematic study of these
topologies.

Constancio Hernandez Garcia
e-mail: chg@xanum.uam.mx

Concepts similar to realcompactness and Dieudonne

completeness in topological groups
Mathematics Subject Classification (MSC):

Abstract. We show that a topological group G is topo-
logically isomorphic to a a closed subgroup of a topological
product of metrizable groups if and only if G is w-balanced
and Gjs-closed in pG, the Raikov completion of G. Then
we deduce that a topological group G is topologically iso-
morphic to a closed subgroup of a topological product of
second countable groups if and only if G is w-narrow and
Gs-closed in pG. This allow us to shift the concepts of
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Hewitt-Nachbin and Dieudonné completeness to the realm
of topological groups

Some applications of these results to PT-groups and
factorizable groups are also given.

S. Sajjad. Gashti and H. Sahleh

Islamic Azad University,
Branch Rasht, Iran
e-mail: sgashti@iaurasht.ac.ir

On the proper exact sequences of locally compact
groups
Mathematics Subject Classification (MSC): 54H11,
54H15

Abstract. Let £ be the category of locally compact groups,
with continuous homomorphisms as morphisms. Groups
will be written additively. A morphism is called proper if
it is open onto its image. A sequence

E: 0—ASF LG —0

of objects and morphisms in £ is said to be proper ezact
at E if and only if Im(p) = ker(q) and both p and ¢ are
proper morphism.

A topological Abelian group G is Pontryagin reflexive,
or P-reflexive for short, if the natural homomorphism of G
to its bidual group is a topological isomorphism. An inten-
sive study has been done to find the class of locally com-
pact Abelian groups which are P-reflexive. Let Hom/(G, A)
be the set of all continuous homomorphism from G to A
respect to E. Then by [6] Hom(G, A) is an abelian topo-
logical group with respect to the compact-open topology
under pointwise addition.
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All groups discussed in this paper are metrizable lo-
cally compact groups. We will show that Hom(G, A) is a
connected, compactly generated, locally compact, injective
G-module. On the other hand, we can conclude that by
Pontryagin-van Kampan theorem, Hom(G, A) is Pontrya-
gin reflexive. Furthermore, we prove that there is an open
continuous homomorphism between Hom(G, A) and the
Pontryagin dual of Hom(G, A), that is, the group of all
continuous homomorphisms of Hom(G, A) into the com-
pact group T = {2z € C : |z|] = 1} equipped with the
compact- open topology.
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On some dimension invariants of spaces
Mathematics Subject Classification (MSC): 54B99,
54C25

Abstract. Using the dimensions I and d of spaces by
normal bases it is possible to introduce dimenion invari-
ants of spaces. In [1] two such dimension invariants which
are called space dimension-like functions and which are de-
noted by s-b”-Ind and s-b”-dim, were introduced. How-
ever, in [1]| these dimension invariants actually are not in-
vesigated. The invariant s-b"-Ind (under the notation I
an other invariant denoted by I§ were studied in [2|. In
the present talk, the dimension invariant s-b"-dim denoted
here by dpnin, will be investigated and two new dimension
invariants, denoted by d2. and d%. , will be introduced
and studied.

Work supported by the Caratheodory Programme
of the University of Patras.
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Borel structures for the set of Borel mappings
Mathematics Subject Classification (MSC): 54C35

Abstract. In [2| and [3] the authors tryied to generalize
the results of R. Arens and J. Dugundji (see [1]) for Borel
spaces. Unfortunately as R. J. Aumann observed in [2]
the results of [1| are not true for Borel spaces, for example
for some of the simplest Borel spaces it is impossible to
defined a Borel structure on the set B(Y,Z) of all Borel
maps of a Borel space Y into a Borel space Z such that
the map e : B(Y, Z) xY — Z with e(f,y) = f(y) for every
f € B(Y,Z)and y € Y to be Borel. Even if we consider
the discrete structure on B(Y, Z), then e will in general not
be Borel. For this reason in [2] and [3| the authors studied
subsets I of B(Y, Z) and Borel structures on F' such that
the restriction of the map e on F' X Y to be Borel.

In this paper we study the above problem and we try
to generalize the results of [1] for Borel spaces. Specially in
Section 1 we give the preliminaries. In Sections 2 and 3 we
give and study Borel A-splitting and A-admissible struc-
tures on B(Y, Z), where A is an arbitrary family of Borel
spaces, and prove that there exists at most one Borel struc-
ture on B(Y, Z) which is both Borel splitting and admissi-
ble. When this structure exists, it coincides with the great-
est Borel splitting structure, which always exists. Also, we
give and study some special Borel structures on B(Y, 7).
In Section 4 we give some remarks for Borel structures on
B(Y,Z). In Section 5 we define and study some relations
between the Borel structures of the set B(Y,Z) and the
Borel structures of the set Bz(Y') consisting of all subsets
fYB) of Y, where f € B(Y,Z) and B is an element of
the Borel structure of Z, concerning the notions of Borel
A-splitting and Borel A-admissible Borel structures. Fi-
nally, we give some open questions for Borel structures on
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the set of Borel mappings.

Work supported by the Caratheodory Programme
of the University of Patras.
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On equivariant movability of topological groups
Mathematics Subject Classification (MSC): 55P55,
54C56

Abstract. In the classical shape theory it is proven that
for a compact connected abelian group a movability is equiv-
alent to a local connectivity (J. Keesling, [2]). In this report
we consider an equivariant shape theory and investigate a
property of equivariant movability of an acting group G.
The following main result is established.

Theorem 1. A compact topological group G with a count-
able base is equivariant movable if and only if it is a Lie
group.

In [1] we produced an example of a movable but not equiv-
ariant movable space. Theorem 1, in particular, gives new
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examples of a movable but not equivariant movable spaces.
Indeed, as was shown by J. Keesling [3|, there are exam-
ples of compact connected abelian topological groups which
are movable but not uniformly movable, and hence not Lie
group. All these groups are not equivariant movable by
Theorem 1.
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Topological Characterizations of Ordinals
Mathematics Subject Classification (MSC): 54

Abstract. Van Dalen and Wattel show that a space is a
LOTS (linearly ordered topoogical space), if and only if it
has a T)-separating subbase consisting of two interlocking
nested collections of open sets.

Given a collection of subsets, A/, of a set X, van Dalen
and Wattel define an order <y be declaring x <,r y if and
only if there is some N € N such that z € N but y ¢ N.
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We examine <,/ in light of van Dalen and Watel’s the-
orem.

We go on to give a topological characterization of ordi-
nal spaces, including w; in these terms nested collections.

Chris Good, Sina Greenwood, Brian Raines,
and Casey Sherman

University of Auckland,

Private Bag 92019,
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Homeomorphisms on continua
Mathematics Subject Classification (MSC): 54A10,
54C05, 54D05, 54D30, 54F15, 54H20

Abstract. Given a set X and a bijection T : X — X, we
examine what restrictions on the action of 7" will allow X
to be a continuum and 7' continuous.

Sina Greenwood and Judy Kennedy
Department, of Mathematics

PO Box 10047

Lamar University
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Pseudoarcs and generalized inverse limits
Mathematics Subject Classification (MSC): 54B10,
54C60, 54D05, 54H20
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Abstract. Suppose that for each ¢ > 0, I; is an inter-
val, and for each ¢+ > 1, P, is a pseudoarc contained in
I; x I;_y such that m; P, = [,_; and mP;, = I; (m;1
and m; denote the respective projections of P; to the in-
tervals I; ; and I;). Then for each i > 1, there is a sur-
jective upper semicontinuous map f; : I; — 2~ such that
G(f;) = P,. We prove that the generalized inverse limit
space @(Ii,fi)::{(xo,xl,...) € II°,1; :for each i > 1,
zi—1 € fi(z;)} is totally disconnected. It may, however,
contain isolated points.

Valentin Gregori, Samuel Morillas, and Al-
manzor Sapena

Instituto Universitario de Matematica Pura y Aplicada,
Universidad Politécnica de Valencia, Spain

e-mail: vgregori@mat.upv.es

A class of completable fuzzy metric spacess
Mathematics Subject Classification (MSC): 54A40;
54D35; 54E50

Abstract. In this talk we study some aspects of the com-
pletion of a class of fuzzy metric spaces (in the sense of
George and Veeramani) called strong. Then, we give a class
of completable stationary fuzzy metrics which includes the
class of stationary fuzzy ultrametrics.

Valentin Gregori and Almanzor Sapena
Instituto Universitario de Matematica Pura y Aplicada,
Universidad Politécnica de Valencia, Spain
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Metrics deduced from strong fuzzy metrics
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Mathematics Subject Classification (MSC): 54A40;
54D35; 54E50

Abstract. In this talk we study some properties of a class
of fuzzy metric spaces, in the sense of George and Veera-
mani, called strong, which includes the class of stationary
fuzzy metrics. If a strong fuzzy metric M is also principal
then we obtain a family of metrics which are compatible
with the topology induced by M.

A. Gutek, S. Moshokoa, and
M. Rajagopalan

e-mail: Moshosp@unisa.ac.za

Primitive shifts, Shifts and Compact Zero-Dimensi-
onal spaces

Mathematics Subject Classification (MSC): 54C35,
47B38

Abstract. The presentation focuses on primitive and prim-
itive shifts on metrizable and non-metrizable spaces. In
particular, we present results concerning shifts on scattered
compact metric spaces, real shifts on compact metric spaces
and zero-dimensional spaces. Finally, primitive shifts on
non-metrizable spaces are discussed.
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|GJ| L. Gillman and M. Jerison, Rings of continuous func-
tions, D. Van Nostrand Co., inc., Princetown-Toronto-Lo-
ndon-New York, 1960

Gongalo Gutierres

CMUC, Department of Mathematics, University of Coim-
bra, 3001-454 Coimbra, Portugal

e-mail: ggutc@mat.uc.pt

Pre-Lindel6f metric spaces in ZF
Mathematics Subject Classification (MSC): 54D20,
54E35, 03E25

Abstract. A metric space is totally bounded (also called
pre-compact sometimes) if it has a finite e-net for every
e > 0 and it is pre-Lindeldf it has a countable e-net for
every € > 0. Using the Aziom of Countable Choice, one
can prove that a metric space is topologically equivalent to
a totally bounded metric space if and only if it is a pre-
Lindel6f space if and only if it is a Lindel6f space.

In [1] it is studied the status of the Pre-Lindel6f prop-
erty in the absence of the Axiom of Choice. In this talk,
we follow that study and we also discuss what should be
the right definition of pre-Lindel6fness in the choice-free
environment,.
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Topology of Continuous Best Approximations
Mathematics Subject Classification (MSC):

Abstract. The existence of a continuous best approxi-
mation of a strictly convex space by a subset is shown to
imply uniqueness of the best approximation under various
assumptions on the approximating subset. For more gen-
eral spaces, when continuous best exist, the set of best
approximants to any given element is shown to satisfy con-
nectivity and radius constraints.
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A-isomorphism and Its Applications in Digital
Topology

Mathematics Subject Classification (MSC): 54A10,
54C05, 55R 15, 54C08, 54F65, 68U05, 68U10

Abstract. In this talk, we expand the notion of Khalimsky
homeomorphism in the study of the Khalimsky 2D space.
Further, we suggest its application in digital topology.
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On the abstract density topologies
Mathematics Subject Classification (MSC):

Abstract. Let X be a nonempty set and A be a family
of sets in 2% and suppose that @ : A — 2% is an arbitrary
operator.

If the family 75 = {A € A: A C ®(A)} is a topol-
ogy then we say that the topology T is generated by the
operator ®.

Let (X,S,Z) be a space with an algebra S in 2% and
proper ideal Z C S§. Let us assume that an operator @ :
S — 2% satisfies following conditions:

1 o0)=0, @X)=X,

2° — V®(ANB)=d(A)Nd(B),

A,BES

3¢ A?SVAABGI — ®(A) = ¢(B),
,be

4° = VP(A)\ AeT.
Aes

This operator is "almost" lower density operator (X, S, 7).

Theorem. Let ® : S — 2% satisfies conditions 1° — 4°. If
the pair (X,S) has the hull property then the family T =
{AeS:AC P(A)} is a topology on X.
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Some properties of such topologies are the subject of the
talk.
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The problem of unique hyperspaces for Peano con-
tinua

Mathematics Subject Classification (MSC):
Primary: 54B20. Secondary: 54F15, 54F50

Abstract. A Peano continuum is a locally connected met-
ric continuum. A continuum X is said to have unique hy-
perspace C,(X) if every time Y is a continuum with C,,(X)
homeomorphic to C,,(Y'), then X and Y are homeomorphic.
In this talk, we will be concerned with the problem of de-
termining which Peano continua X have unique hyperspace
Cn(X) forn € N.

Previous work has been done in this direction. In gen-
eral terms, almost all finite graphs and a class D of den-
drites have been shown to have unique n-fold hyperspaces
(see [2], [3], [4], [5], [6], [7], [8])- On the other hand, Acosta
and Herrera-Carrasco showed in [1] that dendrites not in
class D do not have unique hyperspace of subcontinua.

Let P(X) be the set of points of a continuum X that do
not have neighborhoods homeomorphic to a finite graph.
A continuum X will be called almost meshed if the set
P(X) is nowhere dense and meshed if it is almost meshed
and has a basis of connected neighborhoods that cannot be
disconnected by P(X).

In this talk, we will show how meshed and not almost
meshed continua are opposite classes in the study of unique
hyperspaces of Peano continua. Due to these results, the
problem of unique hyperspaces of Peano continua remains
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open only for the class of almost meshed but not meshed
continua. Significant examples of this remaining class will
also be presented.
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Subcontinua of n-Fold hyperspace Which are Hilbert
Cubes

Mathematics Subject Classification (MSC):
Primary: 54B20; 54F15, 54F50

Abstract. Let X be a nonempty compact, connected,
metric space (a continuum), p in X, and n be a positive in-
teger. Let Cp(p, X) the hyperspace of the nonempty closed
subset of X with at most n components which contain p.
We consider that C,(p, X) is metrized by the Hausdorff
metric. We show that C,(p, X) is often homeomorphic
with the Hilbert cube. This work “generalize” the paper:
C. Eberhart, Intervals of continua which are Hilbert cubes,
Proc. Amer. Math. Soc., 68 (1978), 220-224.
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Local Dendrites With Unique n-Fold Hyperspace
Mathematics Subject Classification (MSC):
Primary 54B20. Secondary 54F15, 54F50

Abstract. Let Z be a metric continuum and n be a posi-
tive integer. Let C,,(Z) be the hyperspace of the nonempty
closed subsets of Z with at most n components. We talk
about the following result: Let X be a local dendrite such
that every point of X has a neighborhood which is a den-
drite whose set of end points is closed and Z is any contin-
uum such that C,,(X) is homeomorphic to C,(Z) for some
n > 3, then X is homeomorphic to Z.
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On certain problem of geodesic and holomorphi-
cally projective mappings

Mathematics Subject Classification (MSC): 53B05,
53B21, 53B30, 53B35, 53C05

Abstract. The lecture is devoted to certain problems of
geodesic and holomorphically projective mappings.

In the paper [1] it was proved that any manifold with
affine connection is locally projective equiaffine, i.e. this
manifold admits a geodesic mapping onto manifold with a
symmetric Ricci tensor. Moreover, it is shown that these
properties hold globally.

For this reason, the solution of the problem of the pro-
jective metrizability of a manifold A, (or equivalently of
geodesic mappings of A, onto (pseudo-) Riemannian man-
ifolds V,,) can be realized as a geodesic mapping of the
equiaffine manifold A,, which is projectively equivalent to
the given manifold A,. These results was published in [2]
and [3].

The following recent results were proved (cf. [3]):

* Let a manifold V,,(B), B = const, admit a geodesic
mapping f onto a complete manifold. If V,,(B) is pseudo-
Riemannian then f is affine. If B > 0 then f is affine.

 Let a (hyperbolic) Kéhler manifold K,,[B], B = const,
admit a holomorphically projective mapping f onto a com-
plete manifold. If K,[B] is pseudo-Riemannian then f is
affine. If B > 0 then f is affine.

* Let an Einstein manifold V;, admit a geodesic (or holo-
morphically projective) mapping f onto a complete Ein-
stein manifold. If V,, is pseudo-Riemannian then f is affine.
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If the scalar curvature R < 0 then f is affine.
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A note on Moore spaces and metrizable spaces
Mathematics Subject Classification (MSC):

Abstract.

Definitions:

(i) A topological space is said to satisfy (*) if every
countable closed discrete subset D in the space ad-
mits a locally finite open collection {G4|d € D} such
that D NG, = {d} for each d € D.

(ii) A topological space X is said to satisfy Cy if for each
open cover £, the space admits a sequence of {&,},
open covers such that for each x € X there is n such

that St(z,&,) C St(x,§).
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(iii) A topological space X is said to satisfy semi-Cy if for
each semi-open cover &, the space admits a sequence
of {&,}, semi-open covers such that for each x € X
there is n such that St(z,&,) C St(x,§).

Following theorems are proved in this note

Theorem 1. A Hausdorff, second countable space is metriz-
able iff it satisfies (*).

Corollary 1.1. A Hausdorff, second countable wM -space is
metrizable.

Corollary 1.2. A Hausdorff, second countable semimetriz-
able space is metrizable iff it satisfies (*).

Theorem 2. A Hausdorff , Lindelof, quasi-developable (-
space that satisfies (*) is second countable and metrizable.

Theorem 3. A Ty second countable space is C-semistratifia-
ble.

Theorem 4. A topological space X is semidevelopable iff
there is a function d : X x X — [0, 00) such that (i)
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Some properties about extremally disconnected to-
pological groups
Mathematics Subject Classification (MSC): 22A05
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Abstract. The first example of an extremally discon-
nected topological group was given by Sirota in 1969 under
the asumption of CH.

Let (G,7) be the group of Sirota. Then for each con-
tinuous function f from G to the Cantor set, there is an
open set A C G such that f[A] is a nowhere dense set.

We will talk about the relevance of this property on the
extremally disconnected topological groups and another
properties related to this kind of topological groups.

Jalal Hatem Hussein
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Weak and strong forms of simply-continuous func-
tions
Mathematics Subject Classification (MSC): 54A05

Abstract. In this paper we introduce three classes of func-
tions called Simply-continuous, Strong simply-continuous
and Weak simply-continuous functions as generalization of
continuous function. We obtain their characterizations,
their basic properties and their relationships with other
forms of generalization continuous functions between topo-
logical spaces.

References

[1] Neubrunnovia, 1975, On transfinite sequences of certain
types of functions, Acta Fac. Rer. Natur. Univ. Com.
Math., 30, 121- 126.

[2] Ganster M., Reilly I.LL. and Vamanmurthy M.K., 1992.
Remarks on Locally closed sets, Mathematical Pannonica,
3,2, 107- 112.



Nafpaktos Conference on Topology 127

[3] Levine N.L., 1963 semi-open sets and semi -continuity
in topological space, Amer. math. Monthly, 70, 36-41.

[4] C. Chattopadhyay and C. Bandyopadhyay, 1991, On
structure of 9-sets, Bull. Cal. Math. Soc. 83, 281-290.

[5] Crossly S.G. and Hildebrand S.K., 1971, Semi-closure,
Texas J. Sic., 22, 99-112.

(6] Crossley, S.G. and Hildebrand, S.K. , 1974, Semi-topo-
logical properties, Fund. Math., 74 (), 233-254.

[7] Miguel Caldas Cueva, 2000, Weak and strong forma of
irresolute maps Internat. J. Math. & Math. Sci.Vol. 23,
No. 4, 253-259 Hindawi Publishing Corp.

18] G. B. Navalagi , 2002, semi-precontinuous functions and
properties of generalized semi-preclosed sets in topological
spaces,IJMMS Internat. J. Math. & Math. Sci. Vol. 29,
no 2, 85-98.

[9] M. K. Singal and A. R. Singal, 1968, Almost-continuous
mappings, Yokohama Math. J. 15, 63-73.

[10] Radhi I.M.Ali and Jalal H. H., 2008, More Results On
Simply -Open Sets, J. Col. Edu. No.3, 315-320.

[11] Maxim R. Burke, Arnold W. Miller, 2005, Models
in which every nonmeager set is nonmeager in a nowhere
dense Cantor set, Canadian Journal of Mathematics, 57,
1129-1144.

[12] M. Ganster, S. Jafari and G. B. Navalagi, 2002, On
semi-g-regular and semi-g-normal spaces, Demonstration
Math., 35, 2, 414-421.

[13] Di Maio and T. Noiri, 1987, On s-closed spaces, Indian
J. Pure Appl. Math., 17, 3, 226-233.

[14] D.E. Cameron, 1978, Properties of S-closed spaces,
Proc. Amer. Math. Soc., 72, 581-586.



128 Abstracts

[15] D. Andrijevic, 1986, Semi-preopen sets, Mat. Vesnik
38 (), no. 1, 24-32.

[16] M. H. Stone, 1937, Applications of the theory of Boolean
rings to general topology, TAMS, 41, 375-381.

[17] P. Bhattacharyya and B. K. Lahiri, 1987, Semi-generali-
zed closed sets in topology, Indian J.of Math. 29, 3, 375-
382.

S.D. Iliadis

Lomonosov Moscow State University
e-mail: iliadis@math.upatras.gr

On hierarchies of Borel type sets
Mathematics Subject Classification (MSC):

Abstract. All considered spaces are assumed to be Ty-
spaces of weight < 7, where 7 is a fixed infinite cardinal. By
D™ we denote the Cantor cub, that is the product TI{ X} :
d € 7}, where X5 = {0, 1} for each ¢ € 7.

By a class of subsets we mean a class P consisting of pairs
(@, X), where @ is a subset of a space X (of weight < 7).
The space-component of a class IP of subsets is the class of all
spaces X such that there exists a subsets () of X for which
(@Q,X) € P. A class P of subsets is said to be hereditary if
for every subspace Z of a space Y a pair (Q7, Z) belongs to
P if and only if there exists an element (QY,Y") of P such
that Q7 = QY N Z.

In [1] the notions of a saturated class of subsets and a com-
plete saturated class of a subsets are given.

Theorem. Let P be a hereditary complete saturated class
of subsets and X an element of the space-component of P
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containing topologically D™. Then, there exists a subset ()
of X such that (Q,X) € P and (X \Q,X) ¢ P.

Let X be a space and o € 7" an ordinal. The multiplica-
tive class a (respectively, the additive class «) of subsets
of X (see [1]), denoted here by II7(X) (respectively, by
Y7 (X)), is defined simillarly to that of the case, where X
is a metrizable space and 7 is the first infinite cardinal
w. Instead of the countable intersections and countable
sums it is considered intersections and sums of 7 many
members. The elements of the set II7(X) U X7 (X) are
called Borel type sets of X of the class «. 1t is easy to
verify that ¢ € II7 (X)) if and only if X \ @ € £](X) and
U{IT(X) USE(X) : B < a} CIL(X)NXEL(X). Note that
the class of subsets consisting of all pairs (@, X), where
Q € II] (X) (respectively, Q € X7 (X)) is a hereditary com-
plete saturated class of subsets.

Corollary. For every o € 7" there exists a subset of the
Cantor cub D™ which is a Borel type set of the class o and
it s not a Borel type set of the class less than .

The proof of the above result, even for the case 7 = w, is
different of the classical one (given for example in the book
Topology v.I by K. Kuratowski)

Work supported by the Caratheodory Programme
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One-dimensional branched minimal fillings of finite
metric spaces

Mathematics Subject Classification (MSC): 51F99,
52C99

Abstract. The Minimal Fillings Problem appeared in
M. Gromov paper [1]. Consider a manifold M endowed
with a metric p. A manifold X with metric d is called a
filling of metric space M = (M, p), if M is the boundary
of X and for any p, ¢ € X we have: p(p,q) < d(p,q). The
problem is to find the least possible value of fillings volumes
for a given M and a special class of (X,d), e.g., when X
is Riemannian manifold.

We consider a generalization of a particular case of this
problem, namely, we suppose that M = (M, p) is a finite
metric space, and X is a branched one-dimensional man-
ifold, i.e., a connected graph. To introduce the metric d,
we endow X with a non-negative weight function w, i.e.,
a non-negative function on the edges of X, and define the
distance d(p, q) between vertices p and ¢ of X as the least
possible weight of paths in X joining p and q. A minimal
filling is defined as a weighted graph (X, w) of the least
possible total weight, such that p(p,q) < d(p,q). In the
presentation we discuss various properties of minimal fill-
ings, demonstrate the connection with Steiner problem [2],
[3], suggest some possible applications to investigation of
Steiner Ratio [4], in particular, to Gilbert—Pollak Conjec-
ture [5] on the Steiner ratio of Euclidean plane.
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Katetov’s property for seminormal functors
Mathematics Subject Classification (MSC): 54B10,
54D15

Abstract. Let F be a siminormal functor in the category
of compact spaces and continuous mappings. We say that
F has a Katetov’s property (K-property) if for any com-
pact space X the hereditary normality of F(X) implies the
metrizability of X. (The classical Katetov’s theorem states
that for any compact spaces X if X3 is hereditarily normal
then X is metrizable, i.e. the functor ()* has K-property.)

In 1989 V.V.Fedorchuk proved [1] that each normal
functor of degree > 3 has the K-property.
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Theorem 1. If F - seminormal functor of finite degree
> 4, then F has the K-property.

In paper [2] a non-metrizable compact space X, with
hereditarily normal A\3(X,) was constructed under CH (A
is the superextension functor). Hence A3 is an example of
seminormal functor of degree 3 without K-property (under
CH).

It turns out that X, is the general testing space for
K-property.

Theorem 2 (CH). Let F be a seminormal functor of
degree 3. F has the K-property iff (X)) is not hereditar-
ily normal.

Theorem 3 (CH).Each seminormal functor of degree
2 has not the K-property.
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Topological quasi invertible elements in topological
algebras
Mathematics Subject Classification (MSC): 46HO05

Abstract. Topological invertible elements of metrizible
algebras is studied in [1] and [5]. Also some results on
quasi square roots is given in [2].
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In this article we introduced the concept of topologically
quasi invertibility of elements of topological algebras and
get some new results. We say a € A is topologically quasi
invertible if there exists a sequence (a,) in A, such that
a, oa — 0 and aoa, — 0. Also we proved that for every
LMC algebra A topologically quasi invertiblity gives quasi
invrtibility in [¢*°(.A)] and vice versa.
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Fixed point and common fixed point in topological
vector spaces
Mathematics Subject Classification (MSC):

Abstract. The purpose of this paper is to introduce and
discuss the concept of fixed point and common fixed point



134 Abstracts

in the topological vector space. In this note, we shall gen-
eralize some results of fixed point theorems and common
fixed point theorems of normed spaces to topological vector
spaces.
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Persistent cohomology and circular coordinates
Mathematics Subject Classification (MSC): 55-04

Abstract. In recently published work [1, 2|, the authors
provide algorithms for the computation of persistent co-
homology, as well as an approach to produce circle-valued
coordinate functions from the topological structure of a
point cloud sampling a manifold.

We demonstrate the persistence approach to topological
data analysis, and give examples from the general approach
and into the specifics of intrinsic coordinate function recov-
ery using cohomology.
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Best Approximation in Topological Spaces
Mathematics Subject Classification (MSC):

Abstract. The purpose of this paper is to introduce and
discuss the concept of best approximation in topology. In
this note, we shall generalize some results of best approxi-
mation of normed spaces to topological spaces.
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Finite-to-one maps into manifolds and spaces with
disjoint disks properties

Mathematics Subject Classification (MSC):
Primary 54F45; Secondary 55M10

Abstract. A finite-dimensional space M has the paramet-
ric regularly m-branched maps property provided for every
perfect surjection f: X — Y between finite-dimensional
metric spaces the set of all f-regularly m-branched maps
g: X — M is dense in C'(X, M). We prove that the para-
metric regularly m-branched maps property is a local prop-
erty. We use this result to show that every manifold has
such property. We also obtain applications for finite-to-one
maps into certain products.
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Some Correlations of Dimension Theory with Anal-
ysis and other Fields
Mathematics Subject Classification (MSC):

Abstract. 1. The term 2n+1 in topology and analysis
The fact that 2n+1 appears both in the embedding theo-
rem of Noebeling and in the superposition theorem of Kol-
mogorov found its explanation in the the dimension theo-
rem of Sternfeld, for compact metric spaces, after Ostrand
had extended Kolmogorov’s theorem to these spaces.

Comments and questions
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No constructive proof of Kolmogorov’'s theorem seem to
exist. Based on ideas of Kurkova, Nees found an approx-
imative, but construc- tive version of this theorem, which
only workes beyond the bound 2n+1. A dualization of the
superposition theorem (for continuous functions) leads to
the superposition of measures. For Lebesgue measures, a
cuba- ture problem occurs. For Kolmogorow’s as well as
for Sternfeld’s theorem, a generalization to non compact
spaces spaces is unknown.

2. Some results on Fourier dimension and Salem sets (i.e.
sets with equal topological and Hausdorff dimension).

a. Bluhm constructed a set with prescribed topological,
Hausdorff and Fourier dimension, starting out from a ran-
dom recursive construction of a Salem set of topological di-
mension 0 and prescribed Hausdorff dimension, and using
Salem’s theorem on the uniqueness of symmetric Cantor
sets.

b. For positive alpha, Kaufmann gave a purely determin-
istic construction of a Salem set S(alpha), contained in the
set E(alpha) of alpha-proximable reals, having the same
Hausdorff dimension as E(alpha). His proof rests on the
prime number theorem. Using this theorem iteratively,
Bluhm echie- ved a Cantor like representation for S(alpha).
c. A lemma, used by Kaufmann for his theorem, was ap-
plied by Bluhm, itera- tively, for the construction of a Ra-
jchman measure on the set of Liouville numbers, so proving
that this is a set of multiplicity.

Questions

ad a. A deterministic construction of a Salem set of topo-
logical dimension 0 and prescribed Hausdorff dimension is
still open.

ad b. The exact dimension problem for E(alpha) and
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S(alpha) is unsettled.

Menachem Kojman, David Milovich, and
Santi Spadaro

Department, of Mathematics

Ben Gurion University of the Negev

Be’er Sheva

84105 Israel

e-mail: santi@cs.bgu.ac.il

Order-theoretic properties of bases in products
Mathematics Subject Classification (MSC): 54A25,
03E04

Abstract. Noetherian type is an ordered variant of weight
that was introduced by Peregudov in the 90s. The Noethe-
rian type of a topological space X is defined as the least
cardinal x such that X has a base B with the property
that every element of B has at most < k many supersets
in B. Spaces with countable Noetherian type were studied
by Balogh, Bennett, Burke, Gruenhage, Lutzer, Malykhin,
Mashburn, Peregudov, Shapirovskii in different contexts
and under different names, since the 70s. This cardinal
function has some analogies with cellularity, especially in
the class of homogeneous compacta.

The Noetherian type of a product of spaces never ex-
ceeds the product of their Noetherian types. Other than
that, the behavior of this cardinal function in products is
quite unpredictable. For example, Malykhin proved that
raising a space to the power of its weight results in a space
of countable Noetherian type.

Among other things, we will show:

e An example of two spaces having uncountable Noethe-
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rian type, whose product has countable Noetherian
type (the construction uses a result of Todorcevic
about Tukey maps between partial orders).

e Some positive evidence to the conjecture that the
Noetherian type of a (compact) space cannot decrease
by taking its square.

e A ZFC bound on the Noetherian type of the count-
ably supported topology on 2% (PCF scales are es-
sential to get this bound. The existence of certain
good PCF scales considerably improves the bound).

The author was partially supported by the Center
for Advanced Studies in Mathematics at Ben Gu-
rion University.

Danuta Kotodziejczyk

Faculty of Mathematics and Information Science,
Warsaw University of Technology,

pl. Politechniki 1, 00-661 Warsaw, Poland
e-mail: dkolodz@Qmimuw.edu.pl

2-polyhedra for which every homotopy domination
over itself is a homotopy equivalence

Mathematics Subject Classification (MSC): 55P55,
55P15

Abstract. We distinguish some classes of 2-dimensional
polyhedra for which every homotopy domination over itself
is a homotopy equivalence. It is was earlier known that all
the polyhedra with polycyclic-by-finite fundamental groups
have this property. Now we show that (among others) for 2-
dimensional polyhedra P with soluble fundamental groups
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G = m(P) satisfying cdG < 2. As another corollary to
our main result, we get the same for 2-dimensional poly-
hedra whose fundamental groups are knot groups. We also
consider some related questions.

Angeliki Kontolatou and John Stabakis
Department of Mathematics,

University of Patras,

Athens, Greece

e-mail: kontolat@math.upatras.gr

Valuation Rings and Topology on a Skew Field by
a Generalized Valuation
Mathematics Subject Classification (MSC):

Abstract. Given a non-commutative ring R which fulfils
the Ore conditions, a skew field K is defined (the field of
fractions of R). On R we define as G-valuation, a homo-
morphism w which fulfils the properties:

If w(z) > v and w(y) > v, then w(z +y) > v, v € G

w(z) = oo iff x = 0 and w(—1) = 0, if the order of

w(—1) is not, 2.
We remark that from the classical definition of a valuation
the symbol > has substituted the symbol >. We also re-
mark that the last property gives that w(z) = w(—=z). On
the other hand, we, always, have that the G-valuation has
a unique extension on the field K.

This G-valuation gives another form to the field, per-
mits to be defined the open sets rather than the closed ones
for a topology and its wvalue group is a partially ordered
group which may have a torsion.

Theorem 1. Let K be a skew field G-valuated by a G-
valuation w, whose the value group G is an abelian po-group



Nafpaktos Conference on Topology 141

which is splitting and
G=GyaT,

where Gq is the torsion subgroup of G and its elements are
parallel one to another and I is a group of representatives
of the quotient group G/Gy. Then, the family

Vi = (V5(0))sear
where
V3(0) = {z € K|w(z) > 8}, B € G}

constitutes a neighborhood system of 0 for a topology. More-
over the same family is a neighborhood system for every
point e of Gy, the set

V = U{V4|8 e GL)

s a topological ring and K is a topological field. Finally
the set
Co={z € K|lw(z) € Gy}

s a topological group and the set
P={re Klw(z) € G' }

15 a mazimal ideal of V.

The afore G-valuation permits for a field K to be expressed
under the form:

where Cj is the set such that w(Cy) = {0}, A* is the family
of sets C, with w(C,) = {e;}, where the elements e;, i € T
are the elements of Gy and the set T is isomorphic to the
set .
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After Szpilrajn every po-set may be extended to a to-
tally ordered set. In the present case we extend the set
G/Gy which leads to the analysis of K according to the
type ().

We prove that in any step of the extension and for any
a € K* = K\ {0}, either « € R or &' € R. Moreover for
any ¢ € K* there holds cRe™! C R, that is the ring R is an
invariant and total ring, which means that it is a valuation
ring.

Eva Kopecka

Institut of Analysis, Kepler University, A-4040 Linz, Aus-
tria

e-mail: eva@bayou.uni-linz.ac.at

Extending Lipschitz mappings continuously
Mathematics Subject Classification (MSC):
Primary: 54C20; Secondary: 46C05

Abstract. Let X be a Euclidean space and B its closed
unit ball. For a closed subset A of B let L(A) be all the
contractions, that is 1-Lipschitz mappings from A to X.
We consider them as a subset of the continuous mappings
from A to X endowed with the supremum norm.

According to Kirszbraun’s theorem, every f € L(A)
admits an extension to B which has the same Lipschitz
constant as f. The extension is, however, in general not
unique.

We construct a continuous mapping from L(A) to L(B)
which assigns to each f € L(A) an extension having the
same Lipschitz constant as f. We also show that the map-
ping assigning each f € L(B) its restriction to A is open.
As a corollary, the Lipschitz isometries which preserve the
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length of the intersection of any curve with A are residual
in L(A).

K. L. Kozlov

Faculty of Mechanics and Mathematics,
Moscow State University,
Moscow 119991, Russia

e-mail: kkozlov@mech.math.msu.su

Rectangularity of products and extensions of ac-
tions
Mathematics Subject Classification (MSC):

Abstract. The extension of action o : G x X — X from
a space X onto a space Y in which X is dense is one of
the central questions in the equivariant topology. Each
Dieudonné complete extension XY of X can be obtained
as the completion of X with respect to some uniformity /.
One of the sufficient conditions in case we want to extend
action on X¥ may be formulated in the following way.
The action o : G x X — X can be extended to the
action & : G x XUx — XUx if there is a uniformity Ug
on G such that the action « is uniformly continuous with
respect to uniformities Ug X Ux on G X X and Ux on X.

For the completions which correspond to the functors
of the Stone-Cech compactification 3, the Hewitt realcom-
pactification v or the Dieudonné completion p the action
can always be extended to the mapping from (G x X)
to X, from v(G x X) to vX or from pu(G x X) to uX.
Thus, the distribution of the functors 3, v or u with the
operation of taking product is sufficient to extend action
on X, vX or uX respectively.

Definition. An open subset U x V of X x Y is a
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cozero-set rectangle if U and V' are cozero-sets in X and YV
respectively.

(Z. Frolik) A mapping f € C*(X x Y) satisfies the
rectangle condition if for any € > 0 there is a finite cover
w of X XY by cozero-set rectangles such that oscy f < €
for any W € w. The product is said to satisty rectangle
condition if every mapping f € C*(X x Y) satisfies the
rectangle condition.

(A. Chigogidze) The product X x Y is strongly rect-
angular if every countable normal open cover of X x Y is
refined by a countable cover consisting of cozero-set rect-
angles.

(B. Pasynkov) The product X xY is rectangular if every
normal cover of X x Y is refined by a o-locally finite cover
consisting of cozero-set rectangles;

The following theorem is due to T. Hoshina and K.
Morita in case of y (T.Proselkova proved it for countable
products), to T.Proselkova in case of v (A. Chigogidze
proved the sufficiency of the strong rectangularity for the
fulfillment of the equality v(X xY) = vX xvY’) and to Z.
Frolik in case of f3.

Theorem. A product space X XY is rectangular (stro-
ngly rectangular, satisfies the rectangle condition) iff (X x
V)= pX x pY and pX x pY is rectangular (v(X xY) =
vX xvY and vX xvY is strongly rectangular, 3(X xY') =
BX x BY and X x BY satisfies the rectangle condition).

Theorem. If the product G'x X is rectangular (strongly
rectangular, satisfies the rectangle condition) then any ac-
tion @ : G x X — X can be extended on uX (vX, gX).

The situation when the product G x X is rectangular
(strongly rectangular, satisfies the rectangle condition) will
be discussed.
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Boris Kruglikov

Department of Mathematics and Statistics,
University of Tromsg, Tromsg, 9037, Norway
e-mail: boris.kruglikov@uit.no

Topology of attractors of dynamical systems
Mathematics Subject Classification (MSC): 37J35,
37B40, 37C45

Abstract. In this talk I refer to the known dichotomy of
integrability vs. chaos in deterministic dynamics |7, 2] and
briefly discuss how it influences topology/dimension of the
phase space.

I start with the question how integrability of Hamilto-
nian systems can restrict topology of the manifold [1, 5,
8]. For instance, our joint result with V.Matveev [3] im-
plies that geodesic flows with "good" quadratic integrals
can exist only on rationally elliptic manifolds.

On the other end I indicate that the chaotic properties
can be influenced by dimensional characteristics of dynam-
ics [6]. Namely presence of negative Lyapunov exponents
can force breakdown of the topological Ruelle-Margulis in-
equality. This is manifested by examples, from our joint
work with M.Rypdal [4], of contracting maps with simple
attractor but positive entropy. I will discuss dimensional
restrictions on attractors provided some information on ex-
pansion and singularities.
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Hyperspaces of separators of Euclidean cubes
Mathematics Subject Classification (MSC): 57IN20

Abstract. Let M7 denote the absolute small Borel class
of all subsets of the Hilbert cube I which are intersections
of Gs-sets with Fj-sets. It turns out that, for n > 3, the hy-
perspace S(I™) of all closed (n — 1)-dimensional separators
of the cube I™ is an M2-absorber in the hyperspace 2" of
all nonempty closed subsets of 1. Similarly, S(I")NC(I")



Nafpaktos Conference on Topology 147

is an M?-absorber in the hyperspace C(I") of all subcon-
tinua of I".

Jan Kubarski

Institute of Mathematics,
Technical University of £.6dz, Poland
e-mail: jan.kubarski@p.lodz.pl

Linear direct connections in Lie groupoids, their
underlying linear connections and characteristic cla-
sses

Mathematics Subject Classification (MSC): 57R20,
58H05, 53C05

Abstract.
1. Teleman’s results

N. Teleman in the papers [T1], [T2], shows how the
Chern character of the tangent bundle of a smooth man-
ifold can be obtained from the geodesic distance function
r: M x M — [0,00) by means of cyclic homology. For this
purpose, we take a cut-off smooth monotone decreasing real
valued function y, equal identically to 1 on a neighbour-
hood of 0, and of sufficiently small support so that y or? is
well defined and smooth. For sufficiently close points z,y €
M the linear mapping A (z,y) : T,M — T, M given by the

formula A (x,y) <Zz 83%1) = Zi,j,k fl%a)ygngk (z) a;zk
is independent of the local coordinates and has the follow-
ing properties: (a) A (y,z) is an isomorphism, i.e. A (y,x)
is an element of the Lie groupoid GL (T'M) of all linear iso-
morphisms between fibres of the tangent bundle TM, (b)
A (x,x) is the identity.
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Then the function &, : Up,y — R, where U, is a
neighbourhood of the diagonal in M**+! is defined by

Oy (2, 21, ..y xx) == Trace A(xg,z1) 0 A(x1,22)0...
...0A (l‘k_l, l‘k) oA (l‘k, 1‘0).

Teleman shows that the function ®, is a cyclic cycle
over the algebra A = C'* (M) and ®; determines (by the
Connes’ isomorphism) a closed differential form € (®y).
The main results is: the top degree component of the cyclic
homology class of @ is equal to [Q (Py)] = ¢ - Chy (M)
where ¢ is a constant and C'hy (M) is the k-component of
the Chern character of the tangent bundle of M.

The mapping A : U — GL(TM), (z,y) — A(z,y),
defined above [for (z,y) from some neighborhood U of the
diagonal A = {(z,x); x € M} is a so-called linear direct
connection (=linear quasi-connection), it is a function de-
fined in an open neighborhood of the diagonal satisfying
two conditions (a) and (b) above.

2. Kubarski-Teleman’s results

In the paper [K-T| we construct the "infinitesimal part"
V of any direct connection A and show that in this way we
obtain a usual linear connection. We next determine the
curvature tensor R of this linear connection and show that
Q (Do) = ¢ Tr RE.

As an application of these results, we present a direct
proof of N. Teleman’s theorem, which had shown that it
was possible to represent the Chern character of smooth
vector bundles as the periodic cyclic homology class of a
specific periodic cyclic cycle, manufactured from a direct
connection, rather than from a smooth linear connection as
the Chern - Weil construction does. In addition, we show
that the image of the cyclic cycle into the de Rham co-
homology (through the A. Connes’ isomorphism) coincides
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with the cycle provided by the Chern - Weil construction
applied to the underlining linear connection.

3. Groupoids’ point of view

N.Teleman in |T2| said: " The arguments discussed here
may be extended to the language of groupoids".

We give here the Lie groupoid’s point of view on linear
direct connections and characteristic classes. We will show
much more, namely that for each principal fibre bundle
(equivalently for a Lie groupoid), the primary characteristic
classes can be recovered from any direct connection in the
Lie groupoid.

Let ® be an arbitrary transitive Lie groupoid with the
anchor o and the target 3. We denote by u, the unit of ® at
y. By a linear direct connection in ® we mean a mapping
A (Mx M), — ® where U C M x M is an open
neighborhood of the diagonal A = {(x,z); = € M}, such
that o (A (z,y)) =y, B[(A(z,y)) =2z, and A (z,2) = u,.
We will show how you can get the Chern homomorphism
of the Lie groupoid ® with the direct connection A. Let
us fix a point y, and let us take the submanifold ®, =
a~!(y) C ® and the mapping A (-, y) : M — &,, = +—
A(x,y). It is a smooth mapping such that fo A (-, y) =
id. Taking the differential A (-,y),, : T,M — T, (®,) we
define the splitting of the Atiyah sequence of @, i.e. a usual
connection in the Lie algebroid A (®) = u* (T*®), V4 :
TM — u* (T°0) = A(®), VA (1,) = A(y),, ().

0—g—u" (T°P) - TM — 0.
—
vA

The connection V4 will be called the underlying linear
connection of the linear direct connection A. Con-
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sider the curvature tensor Q4 € Q2 (M;g) of V4,

The linear direct connection A determines the mapping

U | Mx..xM| —®,

k+1 ‘(f

\If,f (o, X1, oy ) = A (x0, 1) - A (21, 22) - ...
vt A1, zk) - A (2, o)

having the values in the associated Lie group bundle,
U (w9, 21, ..., 1) € 0.
For k = 2, the function
Uy (M x M x M), — @,
U (xg, w1, m9) = A(zg, 1) - Ay, 29) + A (19, 70)

is called the curvature of A. Analogously to the previous
cases we can associate some differential form Q (U})) €
QF (M, g) to the function ¥, by

O )=y X

i1 12 Qg
01,02,0050 Oxy' Oy amk

U (20,1, ...y Tp) dz' A ... A dx'*.

TO=T]=...=TL =X

The fundamental role is played by the following

Theorem 1 For an arbitrary linear direct connection
A (M x M)|U — @ in the Lie groupoid ®, the curva-
ture form of A and the curvature form of the underlying
connection in A (®) differ by a constant

1
Q(qx;‘):Z-Q*‘.
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This theorem is the basis for solving the problem of
describing the characteristic classes of the Lie groupoid &
(equivalently, of the principal fibre bundle) via any direct
connection A on the level of differential forms. We use
a mechanism to designate the characteristic classes of a
Lie groupoid using the Chern-Weil homomorphism of a Lie
algebroid, which is presented in [K].
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Filter pairs on quasi-uniform spaces
Mathematics Subject Classification (MSC): 54E15

Abstract. In the following the set of all filter pairs on a
quasi-uniform space (X,U) will be equipped with its stan-
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dard partial order: A filter pair (Fi,G;) on X is called
coarser than the filter pair (Fy, Go) provided that F; C F
and G; C G,. Over the years many different kinds of fil-
ter pairs on quasi-uniform spaces (X, ) have been studied
by Dedk, Doitchinov, Kopperman, Romaguera and others.
We next recall some of the more important properties: A

pair of filters (F,G) on the set X is called a Cauchy fil-
ter pair on (X,U) provided that for each U € U there are
F € F and G € G such that FF x G C U. A Cauchy filter
pair is said to converge to x € X provided that the neigh-
borhood filter pair (U ~*(z),U(x)) is coarser than (F,G).
A filter pair (F,G) on X is called linked provided that

FNG # () whenever F' € F and G € G. A Cauchy filter pair
on X is called minimal provided that there is no Cauchy
filter pair coarser than it. A Cauchy filter pair on X is

called stable provided that for each U € U, (., U(G) € G
and (\per U ' (F) € F. A Cauchy filter pair (F,G) on X
is called symmetric provided that (F,G) is a Cauchy fil-
ter pair, too. A Cauchy filter pair (F,G) on X is called

weakly concentrated provided that for each U € U there is
V € U such that V(z) € G and V~'(y) € F imply that
(z,y) € U. Numerous properties of quasi-uniform spaces

can be defined in terms of these conditions: For instance
Dedk called a quasi-uniform space (X,U) Cauchy provided
that whenever (Fy, G;) and (F,, Go) are Cauchy filter pairs
on X such that the pairs (Fy, F») and (Gy,Gs) are linked,
then (F; N Fy,Gi N Gy) is a Cauchy filter pair on X, too.
Among other things, he proved that each totally bounded
Cauchy quasi-uniformity is a uniformity. Our talk surveys
the literature on filter pairs and complements work done
by various authors.
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Computer-assisted proofs: Mizar
Mathematics Subject Classification (MSC): 68T15

Abstract. Mizar is a computer system verifying mathe-
matical proofs translated to or written in the Mizar lan-
guage. Andrzej Trybulec, the founder of Mizar, leads the
project http://mizar.uwb.edu.pl/ .

The Mizar Mathematical Library (MML) is the world’s
largest repository of formalized and computer-checked math-
ematics. Over two hundred authors contributed to the
MML, which at the present includes almost ten thousand
definitions and over fifty thousand theorems with complete
proofs. The Nagata-Smirnow metrization theorem (Mizar
proof by Karol Pak, 2004) and the Brouwer fixed point
theorem (Mizar proof by Artur Kornilowicz and Yasunari
Shidama, 2005) serve as examples.

The goal of this talk is to describe Mizar possibilities
and advances towards formalization of dynamical systems.
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Department of Mathematics and Statistics
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On G. A%-Sets, A%-Closure Operator and the As-
sociated Topology 7%

Mathematics Subject Classification (MSC):
Primary: 54D30, 54A05; Secondary: 54H05, 54G99

Abstract. In this talk we introduce the concept of A9P-
sets (resp. V9 -sets) which is the intersection of wgp-open
(resp. union of mgp-closed) sets and investigate the notions
of generalized A%-sets and generalized V-sets in a topo-
logical space (X, 7). Also we define a new closure operator
and thus a new topology 7% on (X,7) by using general-
ized A9P-sets and generalized V¢ -sets and shall examine
some of the properties of this new topology.
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F-Door Spaces And F-Submaximal Spaces
Mathematics Subject Classification (MSC): 54B30,
54D10, 54F65, 46M15

Abstract. Let X be a topological space and F' a covariant
functor from TOP to itself. X is said to be F-door (resp.,
F-submaximal) if its F-reflection is door (resp., submaxi-
mal ).

In this paper Ty-door (resp., Tp-submaximal ) and p-
door (resp., p-submaximal ) are characterized.
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Multidimensional Barycenters in NPC-metric Spaces
Mathematics Subject Classification (MSC): 54E50,
53C70

Abstract. The purpose of this presentation is to consider
a weak metric notion of nonpositive curvature (NPC) in a
complete metric space X, namely

d(z#ty, z) < (1/2)(d(z, z) + d(y, 2))

for all z, y, z, where x#y denotes some distinguished metric
midpoint of z and y, and to derive in this setting a natu-
ral method of defining barycenters of finite subsets. This
leads in turn to the definition of barycenters of probability
measures on X and to a strong law of large numbers for an
i.d.d. sequence of random variables into X.
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On the entropy of discrete dynamical systems in
(generalized) topological spaces

Mathematics Subject Classification (MSC): 54C70;
54C60; 54A05; 54C08; 54H25; 54C05; 54B20

Abstract. In the 1990s A. Cséaszar generalized the notion
open set and therefore it became possible to consider gen-
eralized topology: A family G C expX is called generalized
topology (GT) on X if ) € G and any union of its elements
belongs to G. In 2002 it was shown that every GT in X
can be generated by monotonic map ¢ : expX — expX. In
2007 the Chinese mathematician J. Li pointed out that the



Nafpaktos Conference on Topology 157

above facts are useful in research connected with approxi-
mation spaces widely considered in the theory of computer
science (in the 1980s). Simultaneously, recently a lot of
papers are connected with mutual correspondence between
basic properties of discrete dynamical systems of functions,
suitable multivalued functions and some maps (entropy, or-
bits, fixed points, chaos, transitivity, etc.). In our lecture
we will connect both directions of investigations mentioned
above.

The starting point of our talk will be Li observation,
which will lead us to the considerations connected with
discrete dynamics of some operators in very poor topolog-
ical structure. Consequently, the basic tools for our con-
siderations will be notions connected with suitably defined
matrices. Supported by this base we will consider prob-
lems connected with the entropy of maps, multifunctions
and functions both in generalized topological spaces, as
also compact metric spaces and even unit interval. The
consideration in this lecture will be concentrated on the
properties of (topological) entropy. At this opportunity we
will refer to the (generalization of) Vietoris topology, fixed
points, orbits, properties of conjugate functions (via suit-
able homeomorphism) and variation of functions mapping
unit interval into itself.
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LTE Planning Optimization based on Queueing Mod-
elling and Network Topology Principles
Mathematics Subject Classification (MSC):

Abstract. In LTE networks the allocation of appropriate
resources to handset users is essential for interference re-
duction. Interference is produced by the number of hand-
set users in the same cell and also in surrounding cells.
Admission algorithm is responsible for the teletraffic allo-
cation, looking forward the blocking probability schemes
and also the capacity reservation per user and service. Us-
ing queueing models, several metrices could be calculated,
such as the probability that a call could be blocked, average
number of subcarriers allocated and bandwidth - capacity
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considerations and, a decision could be provided by the
Admission control algorithm. Network topology is also a
critical parameter for the network planners and affects the
Admission decisions and the overall QoS. In this paper a
mathematical analysis is performed by exctracting an an-
alytical model for the decision of Admission control algo-
rithm, in order to be used as an efficient tool for network
planners.
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A convergence-wise look at Lipschitz spaces
Mathematics Subject Classification (MSC): 18B10,
18C15, 18C20, 54A20, 54E99

Abstract. The characterization of the category Ap via
approach systems [3] is well known. Recently this notion
is linked to the convergence of so called (prime) functional
ideals [5].

A Lipschitz space is a set X with a Lipschitz system (£(x))zex
[2]. In this talk we will give another characterization by
introducing (prime) Lipschitz ideals and describing their
convergence.

It is a well-known fact that the category Ap is the category
of lax algebras for the prime functional ideal monad [4]

In [6] Pisani gave a proof that the category Top is the cat-
egory of lax algebras for the ultrafilter monad using the
characterization of the interior of subsets. The category
Ap can be characterized by an interior of functions. Then
we are able to adapt the proof of Pisani and give another
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proof that the category Ap is the category of lax algebras
for the prime functional ideal monad.

In this talk I will give some preliminary results on describ-
ing the category Lip as the category of lax algebras for the
(prime) Lipschitz ideal monad. I will do this by character-
izing a Lipschitz space by an interior of functions as well.
We will finish with adapting the proof of Pisani and state
where the last unsolved problem in this setting occurs.
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On hereditarily decomposable continuum
Mathematics Subject Classification (MSC): 54C60
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Abstract. A continuum is a nonempty, compact, con-
nected, metric space. A continuum X is decomposable pro-
vided that X can be written as the union of tow of its non-
degenerate subcontinua. The continuum X is hereditarily
decomposable if each of its nondegenerate subcontinua is
decomposable.

A continuum X is homogeneous provided that for each
pair of points x and y of X, there exists a homeomorphism
h of X onto X such that h(x)=y.

Professors J. Krasinkiewicz and P. Minc asked, indepen-
dently: Is the simple closed curve the only nondegenerate
hereditarily decomposable homogeneous continuum? We
present some partial answers to this question.
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Rational shape type of 1-shape-connected spaces
Mathematics Subject Classification (MSC):

Abstract. Consider a connected pointed topological space
(X, %) with a polyhedral resolution p = (p,): X — X =
((Xy, %), pan, A) in the sense of S. Mardegi¢. We also sup-
pose that (X, %) is 1-shape-connected, i.e. pro- (m (Xy, *)) =
0.

Using results of S.Ungar we may assume that all X,
are connected and 1-connected CW-complexes.

We consider the functor Fy o Sing from the category
T of topological spaces and continuous maps to the cat-
egory Sy of 2-reduced simplicial sets and simplicial maps.
SingX is a singular complex of X and FE,S is the Eilen-
berg subcomplex of S consisting of those simplices of S
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whose 1-skeleton is at the basepoint. We obtain the in-
verse system X = (X' x> PAN A) of 2-reduced simplicial sets

X, = E,Sing (X,) and corresponding simplicial maps.

The category pro-S, is a closed model category (the
closed model category structure of C can be extended to
pro-C using D. Edwards’ and H. Hastings’ construction).

Using D. Quillen’s results we show that the category
Hog(pro-Ss) is equivalent to both of the categories
Hog(pro-DGLy) and Hog(pro-DGCy) where DGL; and
DG are the categories of reduced differential graded Lie
algebras over Q and 2-reduced differential graded (cocom-
mutative coassociative) coalgebras over Q respectively.
HoqC is obtained from C by formally inverting rational ho-
motopy equivalences. Hence each of the categories
Hog(pro-DGLy) and Hog(pro-DGCs) determine the ra-
tional homotopy type Hog(S) of any S € pro-S; which
is defined to be the class of objects isomorphic to S in
Hog(pro-Ss).

We define a rational shape type of X to be a rational
homotopy type of X: Sho(X) = Hog(X).
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A covering map over a topological group which is
not a covering homomorphism

Mathematics Subject Classification (MSC): 14H30,
22C05, 57M10

Abstract. Let Y be a connected group and let f: X — Y
be a covering map with the connected total space X. We
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consider the following question: Is it possible to define a
topological group structure on X in such a way that f
becomes a homomorphism of topological groups (i.e. a
covering homomorphism). The answer is positive in some
particular cases: if Y is a pathwise connected and locally
pathwise connected group or if f is a finite-sheeted covering
map over a compact connected group Y. However, using
shape-theoretic techniques and Fox’s notion of an overlay
map, we answer the question in the negative. First we show
that an infinite-sheeted covering map f : X — ¥p with the
connected total space X over a solenoid > p does not admit
a topological group structure on X such that f becomes a
homomorphism of topological groups. Then we construct
a connected space X and an infinite-sheeted covering map
f X — X, over the dyadic solenoid ¥,.
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The orthogonality in the topological vector spaces
Mathematics Subject Classification (MSC): 41A65,
46B50, 46B20, 41A50

Abstract. The purpose of this paper is to introduce and
discuss the concept of orthogonality in the topological vec-
tor space. In this note, we shall consider the relation be-
tween this concept and best approximation, and obtain
some results on orthogonality the subsets of normed spaces.
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Products and h-homogeneity
Mathematics Subject Classification (MSC): 54B10

Abstract. A topological space X is h-homogeneous if all
non-empty clopen subsets of X are homeomorphic. The
Cantor set, the rationals, the irrationals or any connected
space are examples of h-homogeneous spaces.

Building on work of Terada, we will show that h-homo-
geneity is productive in the class of zero-dimensional spaces.
Our main tool will be Glicksberg’s classical theorem on the
Stone-Cech compactification of products.

If time permits, we will also discuss the h-homogeneity
of infinite powers of zero-dimensional first-countable spaces.
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Classification of textile links and enumeration of
alternating k-tangles

Mathematics Subject Classification (MSC): 57M99,
57TM27

Abstract. By a textile link we mean a double periodic
link (interlacing). Such a link can be considered as a vir-
tual link of genus 1 (i.e. a link in a thickened torus). But
because of their obvious practical importance textile links
are worth of special studying. Some issues around the clas-
sification problem for textile links are discussed including
the auxiliary problem of k-tangles enumeration.
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On countable dense and strong n-homogeneity
Mathematics Subject Classification (MSC): 54C35,
47B38

Abstract. We prove that if a space X is countable dense
homogeneous and no set of size n—1 separates it, then X is
strongly n-homogeneous. Our main result is the construc-
tion of an example of a Polish space X that is strongly
n-homogeneous for every n, but not countable dense ho-
mogeneous.
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Signature of manifolds with proper action of a dis-
crete group and the Hirzebruch type formula
Mathematics Subject Classification (MSC): 55N22,
55N15, 57R19, 57R22

Abstract. V.A.Roklin was the first ([1]) who has written
the formula for the signature of 4-dimensional manifolds in
the terms of the Pontryagin classes. For manifolds of ar-
bitrary dimension this formula is known as the Hirzebruch
formula. The formula was generalized during throughout
more than 50 years in various directions.

Here we consider a case of manifolds with proper action
of a discrete group G, that is if for any point its isotropy
subgroup is finite and the quotient space is compact. It
is a natural generalization of the category of non simply
connected compact manifolds where a variety of geometric
and topological constructions can be extended.

In particular on the category of manifolds with proper
action one can canonically construct a bordism relation.
For that category in the paper by P.Baum, A.Connes and
N.Higson (|2]) a universal space was constructed to which
any manifold with proper action of discrete group can be
mapped equivariantly up to equivariant homotopy. Due to
papers by S.Illman ([3]) and T.Korppi ([4]) we know that
any smooth proper action is simplicial with respect to a
simplicial structure on the manifold M. Tt allows to extend
for proper actions many combinatorial constructions and to
construct correspondent invariants.

Simplicial structure on the manifold with proper action
of a discrete group G allows to construct so called algebraic
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Poincare complex (APC). In particular the APC has non-
commutative (symmetric) signature as an element of Her-
mitian K-theory of the group G, sign (M) € K*(Q[G]).
sign (M) is both homotopy invariant of the manifold M
and invariant of bordisms.

Hence the problem of search of the Hirzebruch type for-
mula for the signature sign (M) arises in the terms of the
feasible characteristic classes of the quotient space M/G.
The trouble is that the quotient space is manifold with sin-
gularities. But one can show that the space M/G is the
Poincare space for rational homology and the Pontryagin
classes has representations as invariant differential forms
relative to proper action. It allows to express usual signa-
ture of the quotient space M /G by means of the Hirzebruch
type formula.

For noncommutative signature sign (M) € K*(Q[G])
one need to restore a bundle on the quotient space M/G
with structural group GL(n,C*[G]), the analog of canoni-
cal bundle {c-(q] € Ke(q(BG), that is defined by a natu-
ral representation of the group G into the group C*-algebra
C*[G].

To clarify the bordism concept for proper action one
can apply so called the Conner-Floyd construction for fixed
points. Calculation of equivariant bordisms for manifolds
with proper action is reduced to description of the classi-
fying space for equivariant vector bundles for the case of
quasi-free action of the group G on the base ([5]).
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Hierarchies of Chaotic Maps on Continua
Mathematics Subject Classification (MSC):
Primary 54H20; Secondary 54F15

Abstract. Let f : X — X be a onto map of a continuum
X, C(X) be the hyperspace of continua of X and

Er(f) ={Y € C(X)| for every € > 0 there exists
N € N such that dg(f™(Y), X) < € for every n > N}.



170 Abstracts

If Ep(f) is the set of all non-degenerate subcontinua of X,
then f is continuum-wise fully expansive. If Er(f) is dense
in C(X), then f is weakly continuum-wise fully expansive.

A map f: X — X is transitive if for any two open
sets, U,V C X, there exists n € Ny such that f*(U) N
V # 0. Let X" = II" ;X and for f : X — X let
f; : X" — X" be the induced map of f on X™ defined by
(@1, ey xn) = (f(x1), ..., f(z,)). We say that f is topo-
logically n-transitive if ﬁ is transitive. f is w-transitive
if it is n-transitive for all n. f is topological mixing if for
every open sets U,V of X", there exists an M such that
(fo)™U)NV # O for all m > M. 2-transitive is also known
as weak topological mizing.

We say that a function f : X — X has sensitive
dependence on initial conditions if there exists ¢ > 0 such
that for every x € X and open set U that contains z, there
exists n € Ny and y € U such that d(f"(x), f"(y)) > c.

In this talk, we will discuss the following result:

Theorem 1. Suppose f : X — X is a map of any
continuum X. Then

f s continuum-wise fully expansive =

= f s weakly continuum-wise fully expansive

= f topological mizing

= f is w-transitive

= f is n-transitive

= [ is k-transitive(k < n)

= f has sensitive dependence on initial conditions.

Additionally, we will discuss topological conditions on X
that guarantee when reverse implications hold and exam-
ples when reverse implications do not hold.
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Recent trends of metric fixed point theory and ap-
plications

Mathematics Subject Classification (MSC):
Primary: 54H25, Secondary 47H10

Abstract. A remarkable Theorem in the field of Fixed
Point Theory and Applications introduced by Banach (Su-
rles operations dans les ensembles abstraits et leur appli-
cations anx equations integrables, Fund. Math. 3(1922),
131 - 181 ) in the year 1922 and Kannan(Some results on
fixed points, Bull. Cal. Mth. Soc. 60(1968), 71 - 76 )
introduced the concept of non-contraction maps which is
different from Banach, Boyd and Wong( On non-linear
contractins, Proc. Amer. Math. Soc. 20(1969), 458 -
464) introduced a control. In this context we shall discuss
different kind of contraction, non-contraction and weak-
contraction conditions under the arena of Metric Fixed
Point Theorems and its Applications. Also we shall dis-
cuss different kinds of non-commuting and compatible pair
of maps in Metric and their related spaces. T would like to
discuss some TOOLS and their importance for obtaining
fixed points and common fixed points quickly. A few ap-
plications in the field of Dynamic Programming, Integral
Equations and Variational Inequalities, etc. Very recently
the concept of Cone Metric Space introduced by Haung
and Zhang(Cone metric spaces and fixed point theorems
of contractive mappings, J. Math.Anal. Appl. 332(2007),
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1468 - 1476 ) and proved some common fixed point theo-
rems in this space. We shall discuss in detail about this
space and few results in this line by generalizing some re-
sults of Metric Fixed Point Theorems
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On Borsuk-Ulam type theorems for G-manifolds
Mathematics Subject Classification (MSC): 55M30,
55M35

Abstract. We are considered a geometric proof of the
Borsuk-Ulam theorem (see [1]). It can be extended for a
wide class of G-manifolds. Using the equivariant cobordism
theory can be defined obstructions for G-maps in cobor-
disms (see details in [2, Sec. 5]). For the case m = n we
have:

Theorem 1. Let a finite group G acts free on a closed
connected PL-manifold M™. Let G acts linearly on R™.
Then for any continuous equivariant map f : M™ — R" the
zeros set Zy is not empty if and only if there is a continuous
equivariant transversal to zeros h : M™ — R™ with |Z,| =
2k +1)|G|, k € Z.

In particular, for the classical case G = Zsy we have:

Theorem 2. Let M"™ be a closed connected PL-manifold
with a free involution T'. Then the following statements are
equivalent:
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(a) For any continuous map f : M™ — R" there is a point
x € M such that f(T(z)) = f(x).

(b) M admits an antipodal continuous transversal to zeros
map h : M" — R" with |Z,| = 4k + 2, where k > 0 is
integer.

(¢) There exists an equivariant triangulation A of M and

a Tucker’s labeling of vertices of A such that the number of
Tucker’s edges is 4k + 2 with integer k.

(d) [M", T] = [S", Al + [VI][S"~H, Al + ... + [V"][S°, A] in
N, (Z5).

(e) cat(M/T) = cat(RP") = n.

Research supported in part by NSF grant DMS-
0807640 and NSA grant MSPF-08G-201.
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Computation of the centralizers of tori
Mathematics Subject Classification (MSC): 11F23,
53D22, 11F99

Abstract. In this paper we will find the centralizers of
all tori ®,; such that M consist of only one PM-block.
in general, matrices in the centralizer of ®,; won’t be in
G L(n,C) however, we will find conjugates that are.
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Connected Inverse Limits with Set Valued Func-
tions

Mathematics Subject Classification (MSC): 54C60,
54B10, 54D80

Abstract. An inverse limit with n-dimensional connected
factor spaces and continuous single valued bonding maps
is an n-dimensional continuum. On the other hand, there
are very simple set valued interval maps with connected
graphs whose inverse limit is not connected. We present
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several results concerning the connectedness of inverse lim-
its with set valued functions. In particular we concentrate
on the case with one bonding map and where that bonding
map has a graph that is the union of bonding maps with
connected inverse limits.
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Transferring Curved A, -Structures and Simplicial
Chern-Weil Theory

Mathematics Subject Classification (MSC): 18G55,
57R20

Abstract. A curved Ay -algebra is a non-associative gen-
eralization of the notion of a curved differential graded al-
gebra. I will discuss how curved A..-algebras arise as defor-
mations of A,-algebras and how the former structures can
be transferred along chain contractions using homological
perturbation theory. As an example, given a vector bundle
on a Lipschitz manifold M, T shall exhibit a natural curved
Aso-structure on the complex of matrix-valued cochains of
any fine enough triangulation of M. (Recall that every
topological manifold of dimension different than 4 admits
a Lipschitz structure.) I will use this curved Ay -structure
to develop a simplicial version of Chern-Weil theory on tri-
angulated, not necessarily smooth, topological manifolds.
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The preservation of geometric properties by diskrete
nonautonomic inverse dynamical systems under the
topological conjugations

Mathematics Subject Classification (MSC):

Abstract. S.F. Kolyada in [1] put out some questions
about preservation of geometric properties by dynamical
systems under the topological conjugation. We have inves-
tigated the preservation different geometric properties of
projections by dynamical systems. The topological conju-
gation is such homeomorphism which is realized by com-
mutative diagrams for projections as mop, = ¢, om. When
7 is not homeomorphism but it is surjective map and when
it is realized by the commutative diagrams for the projec-
tions wop, = g, ow therefore it named as semiconjugation.

Theorem 1. Such geometrical properties are preserved un-
der the topological conjugation as (1) thin homotopic equa-
lence, (2) Z, — set property, (3) the property of projection
to be almost homeomorphism, (4) semicontinuous from be-
low and semicontinuous from above, (5) the diskrete cell -
approzimation property, (6) the property of uniformly lo-
cal K - connected - (ULC*), (7) soft of projections, (8)
the approzimative soft of projections , (9) the approzima-
tive stratification by Gurevich, (10) Z - approzimation soft
property, (11) strong C' - universality of projections.

Theorem 2. Such geometrical properties as Helder(«) [2]
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for projections is preserved under the nonexpansive semi-
congugation by factor-map.

We remember the definitions which used in theorem 1. Soft
map T means that if for each closed B C A and for each
g, h such that diagram T o g = h o4 is commutative than
exists ¢ : A — X such that will be commutative following
two diagrams 1) g = poi, 2) h =T o p. So T is defined
as approximative soft if for each covering w € Cov(X) and
for each closed B belong to arbitrary A and for each maps
g: B — X;;;and h: A — X, the condition Tog=ho1
follow that exists map ¢ : A — X,,; such that will be
commutative two diagrams (1) Y oi =g, (2) (To,h) <
w. We prove for instance that strong C' - universality for
map is invariant under the topological conjugation between
dynamical systems. The map ¢ : X — Y is defined as
SCU-map (strong C-universality) if for each closed B C
A € C for each enclosing f : B — X and for each map
g: A — Y such that diagram ¢ o f = ¢|p is commutative
or po f = goi follow that exists the enclosing F': A — X
which breaks big diagram onto two commutative triangle
diagrams (1) Foi = f, (2) p o F = g. We note, that
if we change the word "enclosing" onto word "map" we
have obtained the definition of C-soft map. We take each
enclosing ¢ : B — Y and we take any map G : A —
W. Let such diagram S o ¢ = G o is commutative. We
construct the map f: B — X by formula f = 7~!(p) and
we construct ¢ = 7~ '(G). We will to prove commutativity
T(f) = g(i). Really T(f) = T o7 '(p). On the other
hand g(i) = 7! o G(4) and we have equality T o7 !(p) =
7 1o G(i). And so we use of the condition topological
conjugation 7 108 = Toxr L. Put it under the beforehand
equality T o' (¢p) = 771 (S) o or T(f) = 7' o S(¢p).
But S(¢) = G(i) and put it under the beforehand equality
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T(f) = 7" o G(i) = g(i).

We have obtained following equality T'(f) = g¢(i). So
we used the definition that map T have property strong C-
universality t.i. exists enclosing F': A — X which breaks
the diagram T'(f) = g(i) onto two commutative triangle
diagrams (1) Foi = f, (2) T o F = g. So, we construct
the map ® : A — X by the formula ® = 7(F'). So we will
to prove that map ® breaks the diagram S(¢) = G(i) onto
two commutative triangles (1) ®(i) = ¢ and (2) So® = G.
Really ®(i) = 7o F(i) = n(f) = ¢, therefore ®(i) = ¢.
So So® = S on(F) under the condition of topological
conjugation it equal 7 o T'(F) = m(g) = G. It finish the
proof.
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Topological weak mixing and disjointness
Mathematics Subject Classification (MSC): 37B

Abstract. The notion of disjointness was introduced in
the context of topological dynamics by H. Furstenberg in
1967. He proved that weakly mixing system with dense
periodic points is disjoint from any minimal system. Since
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then, the full characterization of systems disjoint from all
minimal systems is an open question.

In this talk we will present some partial answers to the
above question, and relate them to another open problem
of weak product recurrence.

Sergio Alejandro Orjuela Vargas,
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Geometric Local Binary Pattern, a new approach
to analyse texture in images
Mathematics Subject Classification (MSC): 20B30

Abstract. Texture plays an important role in image pro-
cessing analysis. It can be defined as the pattern describing
a surface due to variations of data at scales smaller than
the scale of interest [1]. The study of texture permits to
characterize and discriminate regions in images. In some
cases objects can be masked by texture and removing the
texture facilitates the detection of the object.

One of the most important topics of image analysis
based on texture is to automate the visual inspection of
surface in materials. This type of analysis is commonly
performed by human experts offering subjective results and
being unhealthy for the inspectors. Therefore an auto-
mated inspection system converts traditional subjective in-
spections into objective ones. Several techniques for two-
dimensional texture analysis have been developed, increas-
ing the role of texture analysis in practical industrial appli-
cations [2]. Specifically Local Binary Pattern (LBP) tech-
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niques have proved to be successful for texture classification
and texture characterization in related domains [3].

The basic implementation of the LBP technique consist
in describing with a code the relation of a fixed pixel and
its neighbours using a predefined window size [3]. A rota-
tional variant represents relationships between points on a
circle around a central pixel [3]. Equally spaced points are
considered on the circle and a corresponding pixel value in
each point is interpolated from the four closest pixels to
the point. Each point gets a code bit 0 or 1 assigned de-
pending on whether it has a higher or lower gray value than
the central pixel. These bits are read out clock wise and
placed in a diadic code word named pattern. Rotated ver-
sions of patterns are grouped using a look up table. Other
pattern versions such as mirrored and complemented can
also be grouped making the representation more compact
and invariant to noise [4].

To analyse texture a multiresolution analysis is com-
monly required. This can be achieved by changing the
number of circular neighbours and their distance from the
center pixel or by evaluating images at different scales fac-
tors. However, these methods do not evaluate connec-
tions of the features among the scales scales. To overcome
this, we extend the LBP technique by describing structures
around the given pixel. For this, we propose to evaluate the
relationship between the points on the circles with different
radii around a central pixel. The connections are binarized
and placed into a matrix, which can be evaluated using
symmetry to group similar versions of patterns.

As an initial approach we have grouped GLPB patterns
with specific structures. We have compared this method
to an extension of the LBP technique grouping rotational,
mirrored and complemented variants of patterns computed
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from eight transitional textures using intensity and depth
images. These textures have been obtained by submitting
new carpet samples of the same type to different revolu-
tions in a test device which simulates traffic exposure. The
comparison has been performed evaluating the statistical
discrimination of consecutive degrees of wear offered by the
methods. The results have shown that the GLBP technique
performs better than the LBP technique.

We believe that this approach can be extended by using
the theory of symmetric groups to perform a better group-
ing of similar versions in patterns. Thus, specific geome-
tries can be studied. Research using topologies in image
analysis has been conducted for description, compression
and classifications of images by investigating connection
between components, contour extraction and curves of lev-
els among others [5,6,7].

S. A. Orjuela is supported by a grant of LASPAU,
Academic and Professional Programs for the Amer-
icas in agreement with COLCIENCIAS, the Colom-
bian National Science Development Institution and
Universidad Antonio Narino, Colombia.
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Weakly set-open topology
Mathematics Subject Classification (MSC): 54C35

Abstract. The properties of the weakly set-open topology
on the set C'(X) of all real-valued functions defined on a
Tikhonov space X are studied. The relation between the
R-compact-open topology and the well-known set-open and
uniform topology on the set C'(X) is investigated.
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An alternative approach to decomposition of func-
tions and spaces

Mathematics Subject Classification (MSC):
Primary 54H05, 54C10. Secondary 54C08, 28A20

Abstract. During his research the author has repeatedly
encountered situations where mappings f : X — Y pos-
sessed the following two properties at the same time:

1. f takes open sets U to Gs-sets B.
2. X = U2, Xi, where f|X; is a closed or open map-
ping.

This brought up a hypothesis that 1. often implies 2.
It appears natural to verify the hypothesis for the case of
mappings f where B is a union of clopen and closed sets. In
particular, the author raised a question about the preser-
vation of completeness by the above mentioned class of
mappings. Recently the question was solved affirmatively
by the author and then translated to other cases of B by
other authors.

We will point out some cases of the affirmative answers
to the above hypothesis for any metric spaces X. This
would allow us to strengthen a number of classic results.

For instance, we will point out some natural cases of the
affirmative solution to the old question of Lusin whether
there exists a Borel measurable function which cannot be
decomposed into countably many continuous functions.
(This question was answered negatively by Keldysh, Adjan
and Novikov).
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On ¢-convergence in measure and ¢-density topolo-
gies

Mathematics Subject Classification (MSC):
Abstract. We define for each positive real number ¢, a
convergence for sequences of real valued measurable func-
tions, stronger than the convergence in measure. As a re-
sult in the space M of all sequences of measurable functions
converging in measure to zero we introduced a quasi-norm
under which M/ ~ turns to be a complete metric space.
Also we apply this type of convergence to define density
topologies.

Ch. Papachristodoulos and
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Department of Mathematics,
University of Athens,

Athens, Greece
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On /, statistical convergence in measure of a se-
quence of real-valued measurable functions
Mathematics Subject Classification (MSC):

Abstract. We define a new type of convergence (the
pa—statistical convergence) of a sequence of measurable
functions which is strictly between convergence in measure
and asymptotically convergence.
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Also for each positive real number p the /¢, statisti-
cal convergence is introduced and corresponding density
topologies are studied.
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Spectrum preserving maps between von Neumann
algebras

Mathematics Subject Classification (MSC):
Primary 46HO05, 47B48; Secondary 47A10

Abstract. Let A be a unital von Neumann algebra and B
a unital semi-simple Banach algebra. Let ¢ be a surjective
spectrum preserving additive map from A onto B. Then ¢
is continuous and Jordan isomorphism.

Acknowledgements: This research is partially supported
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Iran.
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Spaces with Lusin 7-bases
Mathematics Subject Classification (MSC): 54E99

Abstract. Recall that a Lusin scheme on a set X is a
family (V5),en<n of subsets of X such that

Ve O Upen Vorns if s € NN
(where N<V is the set of all finite sequences of natural num-
bers, ~ denotes a concatenation and | | denotes a disjoint
union). Consider the special case of Lusin schemes:

Definition. A strict Lusin scheme on a set X is a
family (Vi) en<n of subsets of X such that

(i) Vo = X;

(i) Vi = L, ey Vsns if s € N<I;

(iii) | MNyen Vgl = 1, if 2 € NY
(where @ is the empty sequence and z|n denotes the re-
striction of infinite sequence x to its first n members).
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Definition. A Lusin w-base for a space X is a strict
Lusin scheme (V;),en<v on X which consists of open sets
and satisfies the condition:

for any x € X and any neighborhood U of x there exist
s € N*¥ and ny € N such that z € V; and | Vi C U.

n>no

The examples of spaces with Lusin 7m-bases are the space
of irrational numbers and the Sorgenfrey line. The talk is
devoted to the class of spaces with Lusin m-bases.
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On the bidual of quasinormable Fréchet algebras
Mathematics Subject Classification (MSC): Prim.:
46A20; Sec.: 46A04, 46A13, 46H20, 46K05, 46M18,
46M40

Abstract. We know (due to work of Dierolf, Meise, Vogt
and others) that the bidual of a quasinormable Fréchet
space is, up to a topological isomorphism, the inverse limit
of the biduals of the Banach space steps. By use of the
Arens product and homological methods, we extend this
result to the quasinormable Fréchet m-convex algebra set-
ting. As a consequence, we obtain that the bidual of a
o-C*-algebra A with the Arens product is a unital o-C*-
algebra, which is commutative if A is commutative.
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On a construction of universal hereditarily inde-
composable continua based on the Baire category
Mathematics Subject Classification (MSC):
Primary 54F15, 54F45, 54E52

Abstract. We give a new proof of a theorem of T.Mac¢kowiak
on the existence of universal n-dimensional hereditarily in-
decomposable continua, based on the Baire-category method.
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A note on Unknotting Numbers
Mathematics Subject Classification (MSC):
Primary 57M25

Abstract. In this paper our focus is on finding a bound on
the unknotting number of any given knot. In many cases
the given bound is exactly equal to the unknotting number.
We have utilized quasitoric braid representation for a given
knot in finding the bound.
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Infinite-dimensional spaces of probability measures
Mathematics Subject Classification (MSC):

Abstract. In [1] there were investigated properties of
infinite-dimensionality of spaces of type F(X), where JF :
Tych — Tych is a covariant normal functor and X is a
paracompact space. In particular, it was proved that a
spase Pr(X) of all Radon probability measures on an infi-
nite paracompact p-space X is strongly infinite-dimensional.
Here we prove stronger versions of this theorem.

Given a Tychonoff space X let X be its Cech-Stone
compactification and

Pr(X) C P,(X) C P,(X) C P(BX)
be the following subspaces of P(3X) :

Pr(X) ={p € P(BX) : u(K) = 1 for some o-compact
subset K C X C fX};

P.(X) = {p € P(SX) : u(K) = 0 for every compact
subset K C fX \ X};

P,(X) = {p € P(BX) : p(K) = 0 for any closed
Gs-setK C X with K N X = (}}.

Theorem. Let X be an infinite Tychonoff space. Then
spaces Pr(X), Py, and P,(X) are strongly infinite-dimensi-
onal.
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Ty *-Compactification in the hyperspace
Mathematics Subject Classification (MSC):
Primary 54B20; Secondary 54E15, 54D35

Abstract. A *-compactification of a Ty quasi-uniform
space (X,U) is a compact Ty quasi-uniform space (Y, V)
that has a 7(V V V" !)-dense subspace quasi-isomorphic to
(X, U).

In this paper we study when the hyperspace with the
Hausdorfl-Bourbaki quasi-uniformity is *-compactifiable and
describe some of its *-compactifications. In particular,
we study when the hyperspace of the bicompletion is a
*_compactification of the hyperspace.

Also, we show that *-compactifiableness of the hyper-
space is equilavent to compactifiableness of the stability
space, where the stability space is the bicompletion of the
hyperspace. As a result, we study when the stability space
is compact.
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Ultrafilters without Choice
Mathematics Subject Classification (MSC): 03E55,
03E60, 22A22, 54D35, 54D80

Abstract. We study spaces of ultrafilters in the Zermelo—
Fraenkel set theory, ZF, without the Axiom of Choice, AC,
or with alternative axioms (weaker than, or inconsistent
with AC). Working in ZF alone, we restate a few simple
(well-known under AC) facts, and obtain some new results
concerning algebra of ultrafilters. We consider natural ex-
tensions of given groupoids to the groupoids of ultrafilters
and prove that k-complete ultrafilters form subgroupoids.

Any investigation of ultrafilters in ZF alone has a con-
ditional character since the existence of non-principal ul-
trafilters is unprovable there. Under the assumption that
there exists at least one non-principal ultrafilter, we eval-
uate cardinalities of some spaces of ultrafilters. Further-
more, we show that a stronger assumption that any filter
can be extended to an ultrafilter, known as the Prime Ideal
Theorem, PI, is equivalent to compactness of all spaces of
ultrafilters. Moreover, many spaces of ultrafilters under PI
have cardinalities close to those under AC.

Finally, we consider generalizations of PI to higher car-
dinalities (with extensions preserving k-completeness). With
AC the generalizations specify large cardinals, while with-
out AC the cardinals can be rather small (though still are
large in inner models). A particular emphasis is on the
situation under the Axiom of Determinacy, AD. We show
that under AD, the space of ultrafilters over a well-ordered
cardinal A is Lindel6f whenever the real line can be parti-
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tioned into A parts (the least A for which this fails is a large
cardinal under AD).

Partially supported by an INFTY Network grant
of ESF.
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Paraconvexity as a generalized convexity
Mathematics Subject Classification (MSC):
primary - 54C60, 54C65, 41A65;
secondary: 54C55, 54C20

Abstract. Typically, a creation of "generalized convexi-
ties", is usually related to an extraction of several principal
properties of the classical convexity which are used in one
of the key mathematical theorems or theories and, con-
sequently deals with analysis and generalization of these
properties in maximally possible general settings. Based
on the ingenious idea of Michael who proposed the notion
of a paraconvex set, to each closed subset PB of a Ba-
nach space we have associated a numerical function, say
ap : (0,+00) — [0,2), the so-called function of nonconvex-
ity of P. The identity ap = 0 is equivalent to the convexity
of P and the more ap differs from zero the "less convex"
is the set P. For a function « : (0,+00) — [0,1) with
all right upper limits less than 1 the nonempty closed set
P is said to be a-paraconver, whenever o majorates the
function ap(-) of nonconvexity of the set P.

Such classical results about multivalued mappings as
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the Michael selection theorem, the Cellina approximation
theorem, the Kakutani-Glicksberg fixed point theorem, the
von Neumann - Sion minimax theorem, etc. are valid with
the replacement of the convexity assumption for values
F(z), x € X of a mapping F' by some appropriate con-
trol of their functions of nonconvexity.

So the natural question arises immediately: Does para-
convexity of a set with respect to the classical convexity
structure coincide with converity under some generalized
convexity structure? Corollary 2, based on continuous choice
of a retraction (see Theorem 1), in particular provide an af-
firmative answer. Below, bexp,(B) denotes the hyperspace
of all bounded a—paraconvex subsets of B endowed with
the Hausdorff distance and C,(B, B) is the Banach space
of all bounded continuous selfmappings.

Theorem 1 Let 0 < a < 1 and F' : X — bexp,(B) be
a continuous multivalued mapping of a paracompact space
X into a Banach space B. Then there exists a continuous
singlevalued mapping F : X — C,(B, B) such that for
every r € X the mapping F, : B — B is a continuous
retraction of B onto the value F(z) of F.

Corollary 2 Under the assumptions of Theorem 1 if
in addition all values F'(x), are pairwise disjoint then the
metric subspace Y = | J, .y F'(z)B admits a convex metric
structure o (in the sense of Michael) such that each value
F(z) is convex with respect to o.

Theorem 3 For a Hilbert space H Theorem 1 holds
with the replacement of o < % by a+a?+ a3 < 1.

Joint research with prof. Dusan Repovs, Ljubljana.
The author was supported by the RFBR grant 08-
01-00663.
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Z.N. Silayeva
Belarus, Brest, Mayakovsky str., 20,16
e-mail: szn2006@yandex.ru

Characterizing filtered absolute extensors
Mathematics Subject Classification (MSC): 54C55,
54E35

Abstract. We investigate the problem of topological char-
acterization of filtered absolute extensors. In [1] such a
characterization for finite-dimentional spaces was estab-
lished: the metric filtered space X = |J;2, X;, X; = CLX; C
X1, with dim X < oo is a filtered absolute neighbourhood
extensor for the class of metric filtered spaces (X € N-
ANE) if and only if the family { X };cn of filtration elements
is equi-LC (possesses the property of equilocal contractibil-
ity).

The purpose of this talk is to show that the finite-
dimensional assumption is essential. It turns out, the lo-
cally contractible compactum of K.Borsuk that fails to be
ANE admits a special filtration consisting of ANE-spaces
and having the property of equi-LLC. Because this com-
pactum is not ANE, the corresponding filtered space is not

N-ANE.
References

[1] Z.N.Silayeva, Kuratowski-Dugundji’s theorem for fil-
tered spaces, Vestnik Belorusskogo Universiteta, Ne3, 2009.
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Rational classification of embeddings
Mathematics Subject Classification (MSC):
Primary 57R52, 57TR40; Secondary: 57R65

Abstract. This talk is on classification of embeddings
of manifolds. Given a manifold N and a number m, we
study the following question: is the set of isotopy classes
of embeddings N — S™ finite? In case when the manifold
N is a sphere the answer was given by A. Haefliger in 1966
[1]. The case when N is a disjoint union of spheres was
treated by D. Crowley, S. Ferry and independently by the
author in 2008. In this talk we consider the next natural
case when NV is a product of two spheres.

Theorem. Assume that m > 2p + ¢ + 2 and m <
p+ 3¢/2 + 2. Then the set of isotopy classes of smooth
embeddings SP x S? — S™ is infinite if and only if either
q+ 1 or p+ g+ 1 is divisible by 4, or there exists a point
(x,y) in the set U(m — p — ¢,m — q) such that (m —p —
q—2)z+(m—q—2)y=m—3.

Here U(i,j) C Z* is a concrete subset defined in the
talk, which depends only on the parity of ¢ and j.

Our approach is based on a group structure on the set
of embeddings [2] and a new exact sequence, which in some
sense reduces the classification of embeddings S? x S? —
S™ to the classification of embeddings S? LI S — S™ and
DP x §9 — S™.

References

[1] A. Haefliger, Differentiable embeddings of S™ in S™*4
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Josef Slapal

Department of Mathematics, Brno University of Technol-
ogy, 616 69 Brno, Czech Republic

e-mail: slapal@fme.vutbr.cz

On a generative topology on the digital plane
Mathematics Subject Classification (MSC): 54D05,
54B15, 68U05

Abstract. We introduce a special topology on Z? and dis-
cuss four of its quotients including the Marcus and Khalim-
sky topologies. In particular, for each of the four quotients,
we prove a digital Jordan curve theorem by the help of the
digital Jordan curve theorem proved for the topology in-
troduced in [1].

References

[1] J. Slapal, Digital Jordan curves, Top. Appl. 153 (2006),
3255-3264.
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Groups generated by generic measure preserving
transformations
Mathematics Subject Classification (MSC):

Abstract. Consider the group of all measure preserving
transformations of Lebesgue measure with the canonical
weak topology. We show that for a generic transforma-
tion T in this group, the closed group generated by T is
isomorphic to a subgroup of Ly(measure,S') that is the
image of a closed linear subspace of Ly(measure, R) via the
exponential map. This sharpens and generalizes several
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older results. Using certain factorization theorems, we an-
alyze unitary representations of the group of continuous
functions with values in S!. This analysis together with a
result of del Junco and Lemariczyk allows us to show that
the closed group generated by a generic transformation T
is not isomorphic to the whole group Ly(measure, S').

Fernando Orozco-Zitli, Wlodzimierz J. Cha-
ratonik, José G. Anaya, Enrique Castaneda,
Félix Capulin

Universidad Auténoma del Estado de México, Facultad de
Ciencias.

Instituto Literario 100. Col. Centro, C.P. 50000, Toluca,
Estado de México, México

e-mail: forozcozitliQgmail.com

On representation spaces
Mathematics Subject Classification (MSC):
Primary 54B20; Secondary 54F55

Abstract. Consider C of all continua (up to homeomor-
phism). Let P be a subset of C, and let X € C. Then
we write X € CI(P) to mean that for each £ > 0, there
exist Y. € P and an e-map, f., from X onto Y.. The
operator Cl is a topological operator closure. In this talk
we will present some results about the topological espace
C, for example: the class of locally connected continua
is dense in C, CI({[0,1]}) = {X € C : X is chainable},
Cl({Z € C : Z arcwise connected })=

{X € C: X is continuum chainable}.

Neset Ozkan Tan and Eftal Tan
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Disaster in Topology without choice,
Countable Sums

Abstract. The formation of countable sums is one of the
simplest constructions in topology. In ZFC it preserves
most familiar properties of topological spaces, in particular:

metrizability,
normalitiy,
seperability,

second countability,
the Lindelof property,
dimension zero.

S Ot W=

In this study we show that If CC(Z) fails there exists a se-
quence of separable, metrizable,compact spaces (Yn) with

dimYn = 0, such that ZYn is neither metrizable, nor

n
normal, nor separable, nor second countable, nor Lindel6f,
nor with dimension 0.
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Another form of weakly continuous functions
Mathematics Subject Classification (MSC): 54C08

Abstract. Only in twentieth century, mathematicians de-
fined the concepts of sets and functions to represent prob-
lems. This way of representing problems is more rigid. This
difficulty was overcome by the topological concepts. Kelly,
initiated a systematic study of such topological spaces and
Njasted, Noiri have contributed to the development of the
Modern topological concepts. In this paper, continuous
functions have been introduced. Using these new types
of functions, several characterizations and its properties
have been obtained. Also relationships between continu-
ous functions and other existing continuous functions have
been obtained and some results have been established. Al-
though these concepts classified as pure mathematics, when
converted into Fuzzy and Digital topologies it becomes ap-
plications oriented around. Hence these results turned out
to be highly interesting to go deeper into these power meth-
ods and try to make some further contributions in making
these methods much more applicable.
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On minimal (n,¢) continua
Mathematics Subject Classification (MSC): 57IN99

Abstract. The theory of Cantor Manifolds developed from
an initial effort to give a rigorous description of a degree
of connectedness of some basic objects. A typical example
in this attitude is the n-dimensional cube I"™ (I=[0,1]). By
1925, Urysohn established that the n - dimensional cube
cannot be separated by any (n—2)-dimensional closed sub-
set. In other words, I™ is not a sum of two proper closed
sets whose intersection is no more than (n — 2) - dimen-
sional. In 1957, Alexadroff proved that I™ is even so-called
continuum (V™) . Later various ways in establishing prop-
erties of connectedness of I™ appeared, namely, in 1969
Wilkinson and in 1970 Hadziivanov. They proved that
In is not a union of countable many proper closed sets
whose pair-wise intersections are no more than (n-2) - di-
mensional. At the end of this short survey we should note
that there are various different results in this direction. For
example, using the classical theorem of Sierpinski, Urysohn
have proved that I™ is not cut by (n — 2) - dimensional
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G5 subsets. However, it is worthy of mentioning that at
present, it seems that the best description of a connected-
ness of " appears in the concept of V™ -continua. In this
note, we are developing a simplified approach for the de-
scription of Alexandroff’s manifolds, which allows precision
in the above mentioned results or reduces some of them to
simple terms.

M. Tuncali

Nipissing University, North Bay, Ontario, Canada
e-mail: muratt@nipissingu.ca

Hereditary separability in Hausdorff continua
Mathematics Subject Classification (MSC):
Primary: 54F15; Secondary: 54CO05, 54F05, 54F 50

Abstract. Recent studies on Suslinian continua and per-
fecty normal continua led to the study of hereditarily sep-
arablity in Hausdorff continua. In this talk, we consider a
Hausdorff continuum X such that each separable subspace
is hereditarily separable, and we present some results on the
structure of such continua which are also rim-metrizable or
rim-separable.

A.V. Uglanov

Russia
e-mail: auglanov@yandex.ru

A Space of Vector Measures, Weak Topology and
Prokhorov Theorem

Abstract. The report’s topic is related to analysis on non-
normed and/or nonmetrizable locally convex spaces topo-
logical vector space (LCS). So-called vector integral has
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been defined in [1] (or see [2, 3|). A vector integral is the
integral of the function which takes values in an abstract
LCS with respect the measure which takes values in (gener-
ally speaking, vector) dual LCS, the domain of definition of
the function and measure is an abstract measurable space.
It should be noted the following. 1. The integral said has
all natural properties of integral. 2. The property of con-
tinuty presents in our constraction. Namely, if the measure
considered is real-valued measure then integral introduced
is an ordinary Pettis integral; if in addition a LCS of values
of integrable function is a Banach space then integral in-
troduced is an ordinary Bochner integral. 3. The integral
constructed has found many applications in various math-
ematical domains: functional and stochastic analysis, par-
tial differential equations, optimal control (including con-
trol of stochastic processes), other. In particular integral
has allowed to to receive a criterion of weak compactness
for vector measures (an analog of famous Prokhorov theo-
rem).

Notations: T — a complete separable metric space; X7 —
the Borel g-algebra of the space’s T' subsets; X — an ab-
stract LCS, having the B-property (see [4] for definition; we
do note here that B property is very weak one and practi-
cally all spaces, meeting in analysis - metric, dual-metric,
nuclear, dual-nuclear, other — have this property); U(X) —
the fundamental system of closed absolutely convex neigh-
borhoods of point 0 € X; X* — the space, conjugate to
X considered with strong topology; M = M(T,X) — the
space of all X-valued bounded measures X1 (the definition
is given below); C' = C(T, X*) — the space of continuous
bounded functions from T to X*.

All linear spaces under consideration are assumed to be
real.
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Let 7 be the collection of all countable measurable
partitions of the space T
Definition. A countably additive functions p : ¥ — X
is called bounded measure if for any set U € U(X) the
inequality

el dzef{ sup va(u(Qn))} < oo,

{Qn}Eﬂ'T n

For f € C'and p € M the vector integral I(f, ) = ir%tfdu

is defined. The function 7 : C x M :— R! is bilinear one
and therefore the pair M, C' may be considered as dual one
with this duality.

Theorem 1.Let X be reflexive space, and there exists a
sequence of finite-dimensional projectors X* — X*, con-
vergenting to identical map pointwisely. Then a subset
My C M is relatively compact in the weak topology o(M, C)
if and only if the following conditions are fulfilled:

VU € UX)  sup |plu(T) < oo

e Mo
for any bounded set F' C C' and for any € > 0 there exists
a compact set K C T, such that

sup < €.

“EMO) feF

int fdu
T\K

The work has been supported by Russian Founda-
tion for Basic Research (project 09-01-00677).
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A duality between ultrametrics and monotone fam-
ilies of equivalence relations

Mathematics Subject Classification (MSC): 03E02;
54E35

Abstract. Monotone families (decreasing or increasing) of
equivalence relations on a set and the (pseudo)ultrametrics
on it are the two sides of the same coin.

Vesko Valov
Nipissing University, North Bay, Canada, ON, P1B 5C6
e-mail: veskov@nipissingu.ca

Parametric Bing and Krasinkiewicz maps
Mathematics Subject Classification (MSC): 54F15,
54F 45, 54E40

Abstract. We prove the existence of a residual set of para-
metric Bing (resp., Krasinkiewicz) maps, and apply this re-
sult to establish some theorems for extensional dimension.
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v- Manifolds
Mathematics Subject Classification (MSC): 58 A50,
58C50

Abstract. - manifolds are superspaces which have natu-
rally arisen in course of generalizing the concept of Chern
class in supergeometry. Deducing from common geometry
and classifying spaces one see’s that the generalization re-
lates to Manin’s question[1]. Indeed his question is read as
" In what homology theory there are classes of projective
suerspaces say P™I"?". In [2], it is shown that in a sensible
homology theory all projective superspaces of equal even
dimensions are homologous. This shows that in case of
existing such homology theory this is not satisfactory. In-
deed it does not carry any information on superstructures.
Thus the lack of suitable extension for Chern classes in
supergeometry may be rooted in the lack of a suitable gen-
eralization for projective spaces. In [3] through an analysis
of projective superspaces, it is shown that these construc-
tions are not suitable for studying superstructures. then v-
projective spaces and their canonical line bundles are in-
troduced and their Chern classes are studied. In this talk
v- manifolds are introduced and some basic examples are
discussed.
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Sheaves of Uniform Convergence Spaces: Comple-
tions

Mathematics Subject Classification (MSC): 54A20,
54B40, 54E15, 18F20, 46F05, 46F99

Abstract. In this paper we introduce sheaves of uniform
convergence spaces over a topological space, and the behav-
ior of such sheaves with respect to completions of uniform
convergence spaces. We consider the Weil completion of a
Hausdorff uniform space, as well as the Wyler completion
of a Hausdorff uniform convergence space. It is shown that
structural properties of the sheaf remain invariant under
these completions. Applications of these results are made
to spaces of generalized functions that appear in the anal-
ysis of partial differential equations.
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Generalized continuous convergence
Mathematics Subject Classification (MSC): 40A05,
26A15

Abstract. Let {f,}.en be a sequence of functions trans-
forming a metric space (X, d) into a metric space (Y, p) and
let f: X — Y. A sequence {f,}nen is continuously con-
vergent to f if and only if f,(x,) = — f(x9) whenever

r, — —xg. Let Z C N be an ideal of sets. We say

n—oo
that {f,}nen is continuously Z-convergent to f if and only

if f.(x,) Z-converges to f(xo) whenever x, Z-converges
to xg. Recall that z, Z-converges to xy if and only if
{n € N :d(x,,xy) > €} € T for each € > 0. It is shown
that this kind of convergence is more general than con-
tinuous convergence and that the limit function is always
continuous.

Wiadystaw Wilczyriski and

Wojciech Wojdowski

FACULTY OF MATHEMATICS, UNIVERSITY OF LODZ,
90 - 238 LODZ, Banacha 22, POLAND

e-mail: Wojwoj@gmail.com

A generalization of the Lebesgue density topology
Mathematics Subject Classification (MSC): 28 A05,
54A10

Abstract. Wilczynski’s reformulation of the Lebesgue
density point given in [W] opened the possibility of study-
ing more subtle properties of the notion of the density point
and density topology, their various modifications and most
of all category analogues.

In [W1] we introduced a notion of an A;—density point
of measurable set on the real line as a generalization of the
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Lebesgue density based on the definition given by Wilczyniski.
In [W1]| and [W2| we proved that the A;—density topology
generated by this notion is strictly finer then the Lebesgue
density topology and is completely regular but not normal.

We construct an ascending sequence {ﬂd(n)} of density

topologies which leads to the {ﬂd(u)} —density topology
including all previous topologies. We discuss also the no-
tion in more general settings of o —algebra S and o—ideal I,
with appropriate assumptions. We examine the continuity
with respect to the topology.

[W| W. Wilcezynski, A generalization of the density topol-
ogy, Real. Anal. Exchange 8(1) (1982-83), 16-20.

[W1] W. Wojdowski, A generalization of density topology,
Real. Anal. Exchange,Vol. 32(2), (2006/2007), 1-10.

[W2] W. Wojdowski, On a generalisation of the density
topology, Real. Anal. Exchange,Vol. 33(1), (2007/2008),
201-216.
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Classification of dendrite with a countable set of
end points

Mathematics Subject Classification (MSC): 54C25,
54F50

Abstract. Given a dendrite X we denote by E(X) the
set of end points of X and by R(X) the set of ramification
points of X. For every countable ordinal a. the subcontin-
uum X, of X is defined by induction as follows
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~Jirr(R(X ), if R(X@)#0
Kot = { 0, T R(X(i)3 = 0;

X(a) = Ng<a X(p) for a limit ordinal .

Let X be a dendrite with a countable set of end points.

The ramification degree of X is the smallest ordinal «
such that X,y = 0.

The type of the set E(X) is the smallest ordinal « such
that the a-derivative of F(X) is empty.

We discuss the relationship between the ramification
degree of X and the type of the set F(X) and prove that:

(i) For each countable ordinal a in the family of all den-
drites such that the a-derivative of the set of end
points is empty there is no universal element.

(ii) For each natural number n > 0 in the family of all
dendrites with ramification degree < n there exists a
universal element.
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Department of Mechanics and Mathematics,
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On p-Adic group actions and rings of continuous
functions
Mathematics Subject Classification (MSC): 57S10

Abstract. If p-Adic group G acts on a compact space X
and Y = X/G is the orbit space then general theory of
zero-dimensional mappings shows that the algebraic clo-
sure Z[C(Y),C(X)] of the ring of continuous functions
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C(Y) in the ring C'(X) is dense in C(X). The group G
acts on Z[C(Y),C(X)] and the ring C(Y) is fixed under
this action. The standard filtration of the group G gener-
ates a filtration both in the rings C'(X) and Z[C(Y"), C(X)]
that correspond to the representation of the space X as an
inverse system limit X = l(iLan- in the category of spaces
over Y.

We study homological and homotopical structures of
these spaces using algebraic and analytical structures of
the ring Z[C'(X), C(X)]. An important role plays here the
integration along pre-images of points with respect, mainly,
Haar mesure and the resulting symmetrization of functions
and mappings. The convolution with characters gives rise
to series of nice approximations of functions and mappings
and lead to many relations between sheaf cohomology of
the space X and its orbit space Y. Technically, these re-
lations are obtained by manipulations with some exact se-
quences and spectral sequences of zero-dimensional map-
pings introduced previously by the author. In this way we
obtain new results about connections between cohomolog-
ical dimensions of the space X and its orbit space Y, and
new versions of the famous theorems by C. T. Yang about
the raising of the cohomology dimension when p-Adic group
G acts effectively on a manifold.

V. Zinchenko and E. Yakovlev

Nizhniy Novgorod State University,
23 Prospekt Gagarina, 603950, Nizhniy Novgorod, Russia
e-mail: vera.zinchenko@gmail.com

Classification of the fiber bundles over polyhedron
with a finite group of multivalued automorphisms
Mathematics Subject Classification (MSC): 55R15
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Abstract. According to [1], principal fiber bundles £ =
(E,p, B, T*) with the projection map p : E — B and
structure group T% could be useful when studying the cor-
responding gyroscopic system I' with the configurational
manifold B and a multivalued action functional S. The
existence of finite symmetry group A for I' is equivalent
to & having the structure of almost A-bundle [2]. Systems
of such type can be also considered on manifolds with sin-
gularities. Since such spaces are usually triangulable, we
expanded some results of [2] to the case when the base
space B of the fiber bundle £ is a polyhedron. We define
almost A-bundles over polyhedron and build their classifi-
cation in terms of the cohomology of the base B (Theorem
4).

Let K(B) be a simplicial complex of a polyhedron B.
Given an open U C B and g € Z we define a differential
g-form wy on U as follows: wy = {wyns|o € K(B)}, where
Wyne 18 a smooth ¢-form on non-empty intersection U N o,
o € K(B),and if T € K(B) is a face of a simplex 0 € K(B)
then wyn,|vnr = wunr. For the first time such construc-
tion for U = B was considered by Thom and Whitney [3].
In particular, it allows to define smoothnesses on B and
E that turn them into smooth premanifolds and £ into a
smooth fiber bundle.

Consider a regular simplicial A group action R : B x
A — B on B. Let U be an open covering of B with R-
invariant elements. A(U) is an atlas of £ associated with U,
6 - the canonical 1-form on group T* with values in it’s Lie
algebra t. If all the transition functions &y of the atlas
A(U) are smooth and the transition forms 0déyy are R-
invariant, we call A(U) almost A-atlas and & together with
the equivalence class of the atlas A(U) - smooth almost A-
fiber bundle. Together with the corresponding morphisms
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over B they form category KP(B,T*, A, R). The equiva-
lence classes of the objects of this category KP (B, T*, A, R)
form group BP(B,T*, A, R).

Proposition 1. For every U € U it is possible to
define a smooth t-valued 1-form wy such that the equalities
wy — wy = Od&yy will hold on the intersections U NV # ().

Let wy,...,wk be the expansion coefficients of a forms
wy on the canonical basis of algebra t and Exp : RF —
TF = R*¥/Z* — the quotient map. Consider an arbitrary
chart & € A(U), a piecewise smooth path x : [ — U, an
element g¥ € T* and a point v = &y (gY, x(0)). For every
t € I we define path z; : I — U as follows x;(s) = z(ts)
and let

HU(’U,Z')(t) = fU(l'(t),g(()] - Exp(intlt w%ﬁ ) inth’t wk))'

Proposition 2. For a fibre bundle & there is a T*-
connection (path lifting operation) H such that H|; = Hy
for each U € U.

The formula RY (& (a, t),8) = RY (&r(a,t)) = &r(a-6,t)
defines A group action RV : Ey x A — Ey on Ey =
p~H(U).

Theorem 1. There is a T*-connection H on & =
(E,p, B, T*), which is invariant under the set of actions
R = {RY|U € U}, if and only if £ is an almost A-bundle.

Let’s define a 2-form F on B as follows: F|y = dwy
for each U € U and call it the base curvature form for the
connection H. We denote the group of R-invariant t-valued
smooth ¢-forms on B by A% (B, t), the cohomology group
of the corresponding de Rham complex by H%(B,t), and
its subgroup of cohomology classes of the forms of A, (B, t)
with integer integrals over cycles by HY (B, t|Z*).
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Theorem 2. Let £ be an almost A-bundle, F' — a base
curvature form of some T%- and R - invariant connection
H. Then F € A4 (B,t), cohomology class [F]a € HA(B,t)
lies in the subgroup HX(B,t|Z*) and it is an invariant (a
characteristic class) of the fiber bundle £ in the category
KP(B,T*,A). Formula n([¢]) = [F]a, where [¢] is the
equivalence class of the fiber bundle &, defines homomor-
phism n : BP(B,T*, A, R) — H3(B, t|Z*).

Consider an almost A-bundle £ such that [£] € Kern.
With the help of an invariant connection H on £ we define
the holonomy homomorphism 7 : Hy(B) — T*. Let

Hom” (H,(B),RF) =
{h € Hom(H,(B),R¥)|h([z - 8]) = h([z]) V6 € A}

and ExpZ : Hom” (H,(B), R¥) — Hom(H,(B), T*) be a nat-
ural homomorphism induced by the map Exp : RF — T* =
Rk ZF.

Theorem 3. The formula 7,([¢]) = 75 + im Exp2 de-
fines an isomorphism

no : Kern — Hom(H,(B), T*)/im Exp% .

Let = iony', where i : Kern — BP(B,T*, A, R) is an
inclusion.
Theorem 4. The sequence

0 — Hom(H,(B),T*)/imExp> % BP(B,T*,A, R)
H%(B,RF|ZF) = 0
is exact and splitting. Thus
BP(B,T*, A, R) =
H% (B, R¥|Z*) ® Hom(H,(B),T*)/ im ExpZ.
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Frame embedding modulo compatible ideal: Appli-
cation to generalized topological spaces and gener-
alized spatial locales

Mathematics Subject Classification (MSC): 54A05,
06D22

Abstract. We consider the extension of Frame Embedding
Theorem introduced in ICTA 2009 in Ankara. The ex-
tended theorem provides a better foundation for general-
ized topological spaces (gs-spaces). We discuss why the com-
patibility of the corresponding ideal of gt-space is the es-
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sential property when dealing with interior operator and
continuous mappings. Finally, we remind the notion of gen-
eralized spatial locale (gs-locale) also introduced in ICTA
2009 and show that the extended frame embedding theo-
rem let us define the categories GTop, (Tj gt-spaces) and
GSLoc (gs-locales) and consider the isomorphism of these
categories.

Extended Frame Embedding Theorem. Given a frame
(T, <,V,A) and a complete Boolean lattice (F, <,U,N) such
that T'C F and id: T — F s an order embedding preserv-
ing zero. Then there exists the least ideal I C F such that:

(i) for every U C T there is a € I such that \|U =
Uu)ua;

(ii) for every v,w € T there is b € I such that v N w =
(v w)\b;

(iii) INT = {0};
(iv) for every u,v € T, it holds that u\ v € I iff u < v;

(v) the ideal I is compatible with T, t.i. a € F andU C T
with a < \JU and anwu € I, for all u € U, imply
that a € I (compare with [1]).

Given a nonempty set X and 7 C 2. The pair (X, 7) is
called a generalized topological space provided that: @, X €
7, and (7,C) is a frame. Given a frame T and a family
L C 2T, We call the pair (T, L) a generalized spatial locale
provided that L strongly separates elements of T', t.i. every
element A € L is a lower set and for every u,v € T with
v % u there exists A € L such that u € A and v ¢ A.
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Equations in Groups and Topologizability
Mathematics Subject Classification (MSC): 22A05,
54H11

Abstract. In 1944, Markov proved that any subset of
a countable group which is unconditionally closed (that
is, closed in any Hausdorff group topology on this group)
must be algebraic (that is, representable as a finite union
of solution sets of systems of equations) and asked whether
this is true for any groups. This problem is closely related
to other Markov’s problem on the existence of a nondiscrete
Hausdorff group topology on an arbitrary group, because a
group is nontopologizable (does not admit such a topology)
if and only if the complement of the identity element in this
group is unconditionally closed.

In 1980, Ol’shanskii constructed an example of a count-
able nontopologizable group (in which the comlement to
the identity is algebraic) and Shelah constructed a CH ex-
ample of an uncountable nontopologizable group. In 2006,
this author noticed that Shelah’s group gives a consistent
answer to Markov’s question, namely, the complement to
the identity element in this group is not algebraic. The
author has found out since then that a ZFC example is
contained in Hesse’s 1979 unpublished dissertation.

The current state-of-the-art is delineated. It is proved
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that any group can be embedded in a group with noncoin-
ciding algebraic and unconditionally closed subsets.
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Mechanical normal forms of knots
Mathematics Subject Classification (MSC):

Abstract. Vladimir Arnold once declared that "mathe-
matics is that part of physics in which experiments are
cheap." The talk will be an illustration of this thesis.

The first part will be a description of the "cheap ex-
periments". In them, the behavior of a long, very thin,
flexible, but very resilient cylindrical metallic tube will be
demonstrated; this tube can be intertwined with itself, its
extremities attached to each other, thus forming a knot,
or more precisely, the tubular neighborhood of a knot. It
will be shown that this device, under the action of its re-
silience (internal energy), almost instantly acquires a cer-
tain canonical position, which I call its mechanical normal
form, or in more mathematical terms, the s-normal form
of the knot, where s is the ratio of the length of the tube
to the diameter of its cross section. For s = 0.0005, ex-
periments show that the s-normal form is unique (up to
isometry) for any knot diagram with 7 crossings or less.

These experiments are not models of any of the clas-
sical knot energies (studied by Moffat, Arnold, O'Hara,
Freedman, Karpenkov, and others), because the energy of
the tube (unlike, say, Mobius energy) has no self-repelling
component, so that the tube usually has singularities: dif-
ferent parts of its boundary touch each other (but the the
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s-normal form of the knot is nonsingular, i.e, is a smooth
knot!). The device performs much better than computer
simulations based on Mobius energy: for example, the fig-
ure eight knot has two different energy minima with respect
to Mobius energy, but only one s-normal form.

The second part of the talk will be a mathematical
discussion of the properties of s-normal forms. It will be
shown that our device can perform Reidemeister moves (in
certain situations), it can do both of the decreasing Markov
moves for closed braids, it can carry out the Whitney trick
(eliminate successive little loops provided that they are ap-
propriately twisted). A mathematical description of the
energy of our device will be presented and a few examples
of computer animations (simulations) based on gradient
descent of this energy in the space of tubular knots will be
shown. The relationship between the non flat evolution of
our device and the "jump number" (equal to the Whitney
index of a given knot diagram minus the Whitney index of
its mechanical normal form) will be specified.

It will be explained that the device does not always yield
unique mechanical normal forms and a conjecture describ-
ing the cases when it doesn’t will be formulated. We will
also discuss flat knots which are, roughly speaking, mod-
eled by our device placed between a plane horizontal table
and a glass pane at the distance of 3s above the table. It
turns out that the Kauffman bracket is an invariant of flat
knots and some mechanical normal forms for flat knots will
be presented.
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Application of phasespace reconstruction methods
in system state identification
Mathematics Subject Classification (MSC):

Abstract. Phase space reconstruction methods are often
employed in order to study system dynamics of systems in
cases where the only information we have is time series of
a system physical quantity. The methods recurrence plots
(RP’s) [1] and recurrence quantification analysis (RQA)
[2] has attracted interest as a tool for time-series analysis
through phase space reconstruction. In the present work
we present an analysis of experimental results of laboratory
experiments on a heated jet where temperature time series
were recorded at various positions located on a cross sec-
tion of the flow through RPs and RQA in conjunction with
more conventional methods of analysis as average mutual
information and correlation dimension [3]. The analysis
shows that one can identify the region where the jet axis
is located in accordance with the experimental results [4]
and previous publications [5]. Close to the center of the jet,
where we have fully developed turbulence, increased com-
plexity is detected, while at the edges reduced complexity
is observed.
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Topological formulation of partition theorems in in-
finitary Ramsey theory
Mathematics Subject Classification (MSC):

Abstract. Fundamental results in infinitary Ramsey the-
ory, such as the van der Waerden theorem and the Hind-
man theorem, have received equivalent topological formu-
lations, in the work by Furstenberg and Weiss (J. d‘analyse
Math. 34, 1978), a formulation that proved useful, among
others, in the deep result by Furstenberg and Katznel-
son on the density version of the Hales-Jewett theorem (J.
d‘analyse Math. 57, 1991). In a resent work (to appear)
we have obtained strong combinatorial theorems, (unify-
ing and extending the van der Waerden, Hindman, Carl-
son (Discrete Math. 68, 1988), and Farmaki-Negrepontis
(Trans. Amar. Math. Soc. 358, 2006 and 360, 2008) the-
orems), involving the notion of w-Z*-located words over
a countable (and not only finite) alphabet, and concern-
ing Ramsey-type partition theorems for finite sequences of
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such words over Schreier-type families. As every rational
number can be represented as an w-Z*-located word, cor-
responding partition theorems may be obtained for the ra-
tional numbers. In the present work we obtain equivalent
topological formulations of these combinatorial results, in
the style of Furstenberg-Weiss.
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Uniform Eberlein compactifications of metrizable
spaces
Mathematics Subject Classification (MSC):

Abstract. We prove that each metrizable space X (of size
| X| < ¢) has a (first countable) uniform Eberlein compacti-
fication and each scattered metrizable space has a scattered
hereditarily paracompact compactification. Each compact
scattered hereditarily paracompact space is uniform Eber-
lein and belongs to the smallest class A of compact spaces,
that contain the empty set, the singleton, and is closed
under producing the Aleksandrov compactification of the
topological sum of a family of compacta from the class A.
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M-approximative systems: a unified approach to
Fuzzy Topology and Rough Sets
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Mathematics Subject Classification (MSC): 54A40

Abstract. In 1968, that is only 3 years after L. Zadeh has
published his famous work "Fuzzy Sets” [13|, thus laying
down the principles of what can be called Mathematics of
Fuzzy Sets, his student C.L. Chang [1] introduced the con-
cept of a fuzzy topological space thus marking the begin-
ning of Fuzzy Topology, the conterpart of General Topology
in the context of fuzzy sets. Later essentially different ap-
proaches to the concept of fuzzy topology see e.g. [2], [4],
[7], 8], [6], [11] and now Fuzzy Topology is one of the most
well developed fields of Mathematics of Fuzzy Sets.

In 1982 Z. Pawlak [5] has introduced the concept of a
rough set which can be viewed as a certain alternative for
the concept of a fuzzy set for the study of mathematical
problems of applied nature. Pawlak’s work was followed by
many other publications where rough sets and mathemat-
ical structures on the basis of rough sets were introduced,
studied, and applied.

Although at the first glance it may seem that the con-
cepts of a fuzzy set, of a (fuzzy) topological space and of
a rough set are of an essentially different nature and "have
nothing in common", this is not the case. The works of
different authors were devoted to the study of the relations
between different concepts of this type, see e.g. [3], [11].

In [9] we introduced the category of M-approximative
systems generalizing all categories related to fuzzy sets,
fuzzy topology and rough sets and presenting a unified ap-
proach to their study. This work was followed by [10]. The
aim of this talk is to present introduction into the theory
of M-approximative systems and to discuss some recently
obtained results.

The author gratefully acknowledges a partial financial
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On bornological-type structures in the context of
L-fuzzy sets
Mathematics Subject Classification (MSC): 54A40

Abstract. In [8], [9] S.T. Hu studied the problem of the
possibility to define the concept of boundedness in a topo-
logical space. To do this he introduced a system of axioms
which later gave rise to the concept of a bornology and a
bornological space. In a certain sense a bornological space
can be viewed as a counterpart of a topological space if one
is mainly interested in the property of boundedness of map-
pings and not in their property of continuity. At the first
stage of research bornological structures were mainly con-
sidered on Banach or, more general, on linear topological
spaces, but later the reserach was extended to topological
spaces without any linear structure, see e.g. 6], [2].
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In the paper [1] the concept of a L-bornology (where
L is a complete infinitely distributive lattice, or more gen-
erally a cl-monoid ) on a set X was introduced. An L-
bornology on a set X is a subset of the family LX of its
L-subsets B C L% such that (1) B(§) = co V§ € X, (2)
U<VandV e B=VeBVYUYVecLlY (3)UVEe
B=UVYeBYU,VecL* Amapping f: (X,Bx) —
(¥, By) is called bounded if f(U) € By VV € By. L-
bornological spaces and their bounded mappings form a
category L-BORN whose basic properties were first con-
sidered in [1].

Further, in our talk at the conference "Mathematical
Modelling and Analysis", the concept of a many-valued
bornology on a set X was introduced [10]. Actually, a
many-valued bornology on a set X is a mapping B : 2% —
L satisfying the following properties (1) B(x) =1Vz € X,
(2)U CV = B(U) >B(V)VU,V € 2¥, (3)B(UUV) >
B(U)*B(V) VU,V € 2%, where x is an arbitrary t-norm on
L, in particular, * = A. A mapping f : (X,Bx) — (Y, By)
is called bounded if B(U) < By (f(U)) YU C X. L-valued
bornologies and bounded mappings between them form a
category BORN(L).

While category L-BORN is a certain bornological coun-
terpart of the category of L-topological spaces in the sense
of Chang-Goguen [3], [4], [5] when introducing the cate-
gory BORN(L) we had in mind the category of fuzzifying
topological spaces in the sense of Hohle-Ying [7], [11] as its
topological analogue.

The aim of this talk to go further in the study of L-
bornological and L-valued bornological spaces and the cor-
responding categories. In particular we show that the fam-
ilies of L-bornologies and L-valued bornologies on a set
X ordered in a natural way is a complete infinitely dis-
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tributive lattice and prove that the categories L-BORN and
BORN(L) are topological over the category of sets SET.
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Prime Decompositions and the Diamond Lemma
Mathematics Subject Classification (MSC): 57M

Abstract. We develop a new version of the famous Di-
amond Lemma [1| and describe several results on prime
decompositions of different geometric objects. All results
are obtained by using that version and the standard tech-
nics for removing intersections of surfaces.

(i) The Kneser-Milnor prime decomposition theorem of
3-manifolds into connected sums of prime factors (new
proof).

(ii) The similar theorem of Swarup for decompositions
into boundary connected sums (new proof).

(iii) A prime decomposition theorem for knotted graphs in
3-manifolds containing no non-separating 2-spheres.

(iv) Counterexamples to prime decomposition theorems
for knots in 3-manifolds and for 3-orbifolds.
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(v) A new theorem on annular splittings of 3-manifolds,
which is independent of the JSJ-splitting theorem.

(vi) An existence and uniqueness theorem for prime de-
compositions of homologically trivial knots in direct
products of surfaces and intervals.

(vii) A theorem on the exact structure of the semigroup
of theta-curves in 3-manifolds.

Partially supported by the REFBR grant 08-01-162 and the
Program of Basic Research of RAS, project 09-T-1-1004.
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Weak and strong forms of Smital properties
Mathematics Subject Classification (MSC): Primary
22A30, 28C10; Secondary 28A05, 22A10.

Abstract. Let (X, +) be a group, 7 be a topology on X,
A C P(X) be an algebra and J be an ideal in P(X). We
will say that the set Xy C X is

o (A J)-largeif Y € A\J;
o J-semilarge if Y ¢ J;

e 7J-residual if the complement Y ¢ of Y belongs to J;
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e (A, J)-semiresidual if Y does not contain any (A, J)-
large set.

A triple (A, J,7) has

(i) the Steinhaus Property (SP) if for any (A, J)-large
sets A, B the set —B + A has an interior point;

(ii) the Extended Steinhaus Property (ESP) if, for any
(A, J)-large set A and J-semilarge set B, the set
—B + A has an interior point;

(iii) the Smital Property (SmP) if, for any (A, J)-large
set A and any dense set D, the set A + D is [J-
residual;

(iv) the Extended Smital Property (ESmP) if, for any
J-semilarge set B and any dense set D, B + D is
(A, J)-semiresidual.

It is known that under some natural assumptions on
7, A and J all above properties are equivalent. We will
generalize the Smital properties in two directions.

Weak forms. Assume that 7 is invariant. The triple

(A, T, ) has:

e the Weaker Smital Property (WSmP), if there exists
a dense set D C X such that |D| = d(X) and (A +
D)¢ e J for each A € A\ J;

e the Weaker Extended Smital Property (WESmP), if
there exists a dense set D C X such that |D| = d(X)
and Y + D is (A, J)-semiresidual for each Y ¢ J;
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e the Weak Smital Property (W2SmP), if for each A €
A\ J there exists a dense set D C X such that
|D| =d(X) and (A+ D) € J;

e the Weak Extended Smital property (W?*ESmP), if
for each YV C X, Y & J there exists a dense set
D C X such that |D|=d(X) and Y + D is (A, J)-

semiresidual.

Strong forms. For A, B C X define
A+;B={z€e X:An(z—-B)¢ J}
We say that the triple (A, J,7) has:

e the Strong Smital Property (SSmP) if for every A €
A\ J and each dense set D C X, if D ¢ J then the
set A+ D is J-residual;

e the Strong Extended Smital Property (SESmP) if for
every A ¢ J and dense set D C X, if D ¢ J then
the set A+ D is (A, J)-semiresidual

e the S?’SmP (S?ESmP, respectively) iff for each A €
A\ T (Z ¢ J) and for every J-dense set D, the set
A+ 7D is J-residual (Z+ 7D is (A, J)-semiresidual);

e the S3SmP (S?ESmP) iff for each A € A\ J (Z ¢
J) and for every (A, J)-semiresidual set D, the set
A+ 7D is J-residual (Z+ 7D is (A, J)-semiresidual).

We consider relationships between those properties. Some
examples are constructed, some open question will be posed.

References [1| A. Bartoszewicz, M. Filipczak, T. Natkaniec,
On Smital properties, a manuscript.
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Topological properties of the Markov-Zariski topol-
ogy of an abelian group

Mathematics Subject Classification (MSC): 20A99
(Primary), 20A45, 22A05, 54H11 (Secondary)

Abstract. In 1944, Markov [Mar| introduced four special
families of subsets of a group GG. A subset X of a group GG
is called:

(a) elementary algebraic if there exist an integer n > 0,
elements ay,...,a, € G and ¢y,...,6, € {—1,1},
such that

X ={zeG:2a12%%ay...0a, 127"a, =1},

(b) algebraic if X is an intersection of finite unions of
elementary algebraic subsets of GG,

(c) unconditionally closed if X is closed in every Haus-
dorff group topology on G,

(d) potentially dense if G admits some Hausdorff group
topology 7T such that X is dense in (G, T).

The family of all unconditionally closed subsets of G
coincides with the family of closed sets of a 77 topology
M on G, namely the infimum (taken in the lattice of all
topologies on () of all Hausdorff group topologies on G.
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This topology has been introduced in [DS|, [OPIT] [DS]
[JGT] as the Markouv topology of G.

Recall that a Hausdorff group topology 7 on a group
G is called precompact (or totally bounded) provided that
(G, T) is (isomorphic to) a subgroup of some compact Haus-
dorff group or, equivalently, if the completion of (G, T)
with respect to the two-sided uniformity is compact. Let
Pe be the infimum of all precompact Hausdorff group
topologies on G. Clearly, B¢ is a T topology on GG, which
we call the precompact Markov topology of G [DS| [OPIT].

One can easily see that the family of all algebraic sub-
sets of (G is closed under finite unions and arbitrary inter-
sections, and contains G and all finite subsets of G; thus,
it can be taken as the family of closed sets of a unique T}
topology 3¢ on G. Markov [Marl|, [Mar| defined the alge-
braic closure of a subset X of a group G as the intersection
of all algebraic subsets of GG containing X, i.e., the smallest
algebraic set that contains X. This definition satisfies the
conditions necessary for introducing a topological closure
operator on (G. Since a topology on a set is uniquely deter-
mined by its closure operator, it is fair to say that Markov
was the first to (implicitly) define the topology 3¢, though
he did not name it. To the best of our knowledge, the first
name for this topology appeared explicitly in print in a
1977 paper by Bryant [Bryant|, who called it a verbal topol-
ogy of G. In a more recent series of papers beginning with
[BMR], Baumslag, Myasnikov and Remeslennikov have de-
veloped algebraic geometry over an abstract group G. In
an analogy with the celebrated Zariski topology from alge-
braic geometry, they introduced the Zariski topology on the
finite powers G™ of a group GG. In the particular case when
n = 1, this topology coincides with the verbal topology of
Bryant. For this reason, the topology 34 is also called the
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Zariski topology of G in [DS] [OPIT], [DS| [JGT].

Note that (G,3¢q), (G,Me) and (G,Pe) are quasi-
topological groups, i.e., their inversion and shifts are con-
tinuous. The inclusion 3¢ C Mg C P holds for every
group G.

In 1944, Markov [Marl| (see also [Mar|) posed his cele-
brated problem: is every unconditionally closed subset of a
group algebraic? Using the language of Markov and Zariski
topologies, this question can be naturally reformulated as
the problem of coincidence of these topologies: does the
equality 3 = Mq hold for every group G?7 Markov himself
obtained a positive answer in the case when G is countable
[Mar|. The authors proved that 3¢ = Mg = P for every
abelian group G; see [JA|. (The proof of the first equality
has appeared already in [DS] [JGT].)

In this talk, we overview topological properties of the
Markov-Zariski topology of an abelian group. This topol-
ogy is known to be Noetherian [Bryant|, so hereditarily
compact (=every subset is compact), and thus, notori-
ously non-Hausdorff. Among other things, we show that
the Markov-Zariski topology of an abelian group is always
hereditarily separable and Fréchet-Urysohn.
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The Lusternik-Schnirelmann-category and the fun-

damental group
Mathematics Subject Classification (MSC): 55M30

Abstract. Whitehead’s theorem states that the Lusternik-
Schnirelmann category cat X of a simply connected com-
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plex X does not exceed dim X/2. We show that basi-
cally the same holds true for complexes whose fundamen-
tal group has small cohomological dimension. Precisely, we
prove that

dim X — 1
cat X < cd(m (X)) + [lmf—‘
where cd(m1(X)) denotes the cohomological dimension of
the fundamental group of X. The proof uses a trick from

dimension theory which goes back to Kolmogorov.
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Strongly Semi Open Sets, 0 -Sets and More about
0-Sets in Topological Spaces
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Mathematics Subject Classification (MSC): 54A05,
54C10

Abstract. The aim of this paper is to define two types
of generalized open sets in topological spaces with our ac-
knowledgment, one of them called strongly semi open set
and the other called §d-set. By using these sets, we may
add some implications and finding some relations between
the sets which given in it, also we investigated some prop-
erties of strongly pre open sets and dd-sets, some more
properties of -continuous functions have been investigated.
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On topology of the arrangement of balls on a sphere
and Stoker’s problem
Mathematics Subject Classification (MSC):

Abstract. Arbitrary topology of the arrangement of equal
balls on the central sphere was considered. New examples
of topology complyting with the Coxeter’s definition of any
conditionally steady topology are found.

Under the requirement of stability of topology some
conditionally steady topologies become steady as a whole.

Examples of such topologies are given. The existence of
topology steady as a whole results in the statement of va-
lidity of Stoker’s hypothesis for polyhedra of corresponding
topology.
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What is a non-metrizable analog of metrizable
compacta?
Mathematics Subject Classification (MSC):

Abstract. The metrizable compacta is a model class of
spaces in general topology. It would be very interesting
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to find a class C of non-metrizable compacta, properties
of which are closed to ones of metrizable compacta. In
particular, 1) every metrizable space X must have a com-
pactification ¢X € C with w(cX) = w(X) and 2) basic
dimensional properties of C must be similar to ones of the
class of metrizable compacta.

Below a space is a topological space. The Alexandroff
sequence A, of weight 7 is the one-point compactification
of the discrete space D, of weight 7.

Definition 1. A family A of subsets of a space X will be
called jointly functionally open if there exists a continuous
function f: X — [0,1] such that

() UN = f71(0,1] and for any O € A, the function fo
with folo = flo and fo(z) =0, 2 € X \ O, is continuous.

Definition 2. A family A of open subsets of a space
X will be called weakly discrete in entourage Oy if Oy € A,
UA =0y, all O € A= = A\ {O,} are closed in O, and A~
is disjoint. If, additionally, A~ is dense in O, (i.e. Oy C
clUX™), then X is called dense weakly discrete in entourage
O/\.

Definition 3. We shall say that a compactum X has
property (IM) if

(xx) there exists an open family A in X that Ty-separates
X and is the union of jointly functionally open and dense
weakly discrete families A(¢) in entourages Oy, i € N,

and X has weak property (M) if in (xx) families A(7)
are not necessary dense in entourages O;).

Below, Q [[{l; = [0,1] : i € N}, pr; is the projection of
the product @ onto the factor I;, B = {Q; = pr;'(0,1] :
i € N}; A, is a copy of A, and D,; consists of all isolated
points of A;.
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Theorem 1. For a compactum X the following condi-
tions are equivalent:

1. X has weak property (has property) (9M) ;

2. there exists a topological embedding e of X 1in the
partial topological product ¥™ = P(Q, B, {A,; : i € N} (and
the intersection of eX with the subproduct ™ = P(Q, B,{D,; :
i € N}) of the partial product ¥ is dense in eX ).

Note that ®" is metrizable.

Addition to Theorem 1. If X has property (IN),
then we have (xx) so that (see Definition 2) for Ry =
O/\(z) \ (U)\(Z))_ and M, = X \ U{R)\(Z) 11 E N}, )\(Zﬂ) =
My N (A7)~ is discrete in My, U{A(iN) : i € N} is a
base for My and M)y is a dense Gg-set in X (and so M)y
s completely metrizable and d-posed in X and dim M), <
dim X ).

Corollary 2. U7 has property (IM) and it is a universal
element in the class of all compacta of weight < T having
week property (IN).

Theorem 2. Fvery metrizable space X of weight T has
an (9M)-compactification c¢X (i.e., ¢X has property (9N))
of weight 7. Besides, if dim X = n, then we can suppose
that dim ¢cX =n, n=0,1,...

Every metrizable compactum has (90t), every compactum
X having weak 90U is an Eberlein compactum and so it is
a Fréchet-Urysohn space; w(X) = d(X); if X has weak
(90%), then all subcompacta of X also have weak (90); the
class of compacta having (weak) (90t) is countably pro-
ductive. Every compactum X having weak (9) has a
0-dimensional map to a metrizable compactum. It fol-
lows from this that the following properties are equivalent:
dim X <n,ind X <n, Ind X < n, there exists a com-
pactum X with dim X° < 0 and onto map f : X — X
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such that [f~'z| <n+1forany x € X, n € N,
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Characterizing the Cantor bi-cube in various cate-
gories
Mathematics Subject Classification (MSC): 54E35,
54E40

Abstract. In the talk we shall present characterizations
of the extended Cantor set

EC:{Z%:TLEN, (:)iez € {0,1}"} CR

i=—n

in categories having topological, uniform or asymptotic na-
ture.

All these categories have metric spaces as their objects.
Morphisms of these categories are multi-maps. A multi-
map from a set X to a set Y is a subset ® C X x Y which
can be thought as the map ® : X = Y assigning to each
point & € X the subset ®(z) = {y € Y : (z,y) € ®} of V
and to each subset A C X the subset ®(A) = J,., ®(a) C
Y. The inverse to ® C X x Y is the multi-map ® ! =
{(y,x) : (z,y) € ®} C Y x X. It assigns to each point
y € X the subset & !(y) = {v € X : y € ®(x)}.

By the oscillation of a multi-map ® : X = Y between
two metric spaces X,Y we understand the function wg :
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[0,00) — [0, 00] defined by
we(0) = sup{diam P(A4) : A C X, diam A < §}.

A multi-map ® : X = Y between metric spaces is
called

e micro-uniform (= uniformly continuous) if for each
£ > 0 there is § > 0 with we(0) < ¢

e macro-uniform (= large scale uniform) if for each § <
oo there is ¢ < oo with we(0) < &;

e bi-uniform if ® is both micro- and macro-uniform.

A multi-map ® : X = Y between metric spaces X,Y
is called micro-uniform (resp. macro-uniform, bi-uniform)
equivalence if ®(X) =Y, ®(Y) = X and both & and
@1 are micro-uniform (resp. macro-uniform, bi-uniform).
In this case metric spaces X, Y are called micro-uniformly
(resp. macro-uniformly, bi-uniformly) equivalent.

Our aim is to present characterization of metric spaces
that are micro-, macro, or bi-uniformly equivalent to the
extended Cantor set EC. The space EC is bi-uniformly
equivalent to the space

2<% = {(2;)icz € {0,1}? : I e NVi > n z; =0}
endowed with the metric
d((fﬂi)a (?Jz)) = I?EaZX2 |z — il

and called the Cantor bi-cube.
It is easy to see that the map

fi:27 S BC, f:(zi)iez > 22$i3i,

1EZ
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is a bi-uniform equivalence between the Cantor bi-cube 2<%
and the extended Cantor set EC.

The Cantor bi-cube can be written as the product 2<% =
29 % 2<N of

e the Cantor micro-cube 2° = {(2;)iez € 2<% : Vi >
0 z; =0} C 2<% and

e the Cantor macro-cube 2<N = {(2;);ez € 2<% : Vi <
0z, = 0} C 2<7,

It is easy to see that the projection pr : 2<% = 2 x
2<% — 2<N of the Cantor bi-cube onto the Cantor macro-
cube is a macro-uniform equivalence. So, 2<” is macro-
uniformly equivalent to 2<. It is also clear that the Cantor
micro-cube 2¥ is homeomorphic to the standard Cantor set
EC N[0, 1].

The space 2¢, 2<N and 2<% are universal in the respec-
tive classes of zero-dimensional spaces, defined as follows.

For a real number £ > 0 by the e-connected component
of a point x of a metric space X we understand the set
C.(z) of all points 2’ that can be linked with z by an &-
chain = = xg,x1,...,2, = 2’ with dist(z;_,2;) < ¢ for all

i <n. Let C.(X)={C.(z) : 2 € X} and
mesh C.(X) = sup diam C.(z).

zeX

For two real numbers 6 < ¢ let

05(X) = min|C-(2)/C5(X)| and ©5(X) = sup |C.(x)/C5(X)|

zeX

where C.(x)/Cs(X) = {Cs(y) : y € C(2)}.
A metric space X has

e topological dimension zero if each open cover of X
has a disjoint open refinement;
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e micro-uniform dimension zero if for each € > 0 there
is 0 > 0 with mesh Cs(X) < ¢;

e macro-uniform dimension zero if for each § < oo
there is € < oo with mesh Cs(X) < ¢

e bi-uniform dimension zero if X has both micro- and
macro-uniform dimensions zero.

Theorem 1. A metric space X has topological (resp. micro-
uniform, macro-uniform, bi-uniform) dimension zero if and
only if X is topologically (resp. micro-uniformly, macro-
uniformly, bi-uniformly) equivalent to an ultrametric space.

We recall that a metric space X is caled an ultrametric
space if its metric d satisfies the strong triangle inequality
d(z, z) < max{d(x,y),d(y, z)} for all z,y,z € X.

The following theorems present universal properties of
the Cantor micro-, macro, and bi-cubes.

Theorem 2 (Classics). A metric space X is topologically
equivalent to a subspace of the Cantor bi-cube 2<% if and
only if X is separable and has topological dimension zero.

Theorem 3. A metric space X is micro-equivalent to a
subspace of the Cantor bi-cube 2<7 if and only if X is sepa-
rable, has micro-uniform dimension zero and there is e > 0
such that ©5(X) is finite for all 0 < § < e.

Theorem 4 (Dranishnikov-Zarichnyi). A metric space
X is macro-equivalent to a subspace of the Cantor bi-cube
2<% if and only if X has macro-uniform dimension zero and
there is 6 > 0 such that ©5(X) is finite for all 6 < e < 0.

Theorem 5. A metric space X is bi-equivalent to a sub-
space of the Cantor bi-cube 2<% if and only if X has bi-
uniform dimension zero and ©5(X) is finite for all 0 <
0 <e<oo.
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Next, we present characterizations of the Cantor bi-
cube 2<% in various categories. We start with the following
classical result of Brouwer:

Theorem 6 (Brouwer). For a metric space X the fol-
lowing conditions are equivalent:

(i) X is topologically equivalent to the Cantor micro-cube
2LU .
(1) X is micro-uniformly equivalent to 2%;

(111) X is bi-uniformly equivalent to 2¥;

(iv) X is a zero-dimensional metric compact space with-
out 1solated points.

This theorem of Brouwer implies the following (well-
known) topological characterization of the Cantor bi-cube:

Theorem 7 (Topological Characterization of 2<7).

A metric space X is topologically equivalent to the Cantor
bi-cube 2<% if and only if

(i) X has topological dimension zero;
(i) X is separable, locally compact and non-compact;
(111) X has no isolated points.

In the next three theorems we present characterizations
of the extended Cantor set in the micro-, macro-, and bi-
uniform categories.

Theorem 8 (Micro-Uniform Characterization of 2<7%).
A metric space X is micro-uniformly equivalent to the Can-
tor bi-cube 2<” if and only if
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(i) X is a non-compact complete metric space of micro-
uniform dimension zero;

(ii) there ise > 0 such that O5(X) is finite for all positive
0 <e;

(1i1) 61_1&1095(X) = 00.

Theorem 9 (Macro-Uniform Characterization of 2<%).

A metric space X is macro-uniformly equivalent to the
Cantor bi-cube 2<% if and only if

(i) X has macro-uniform dimension zero;

(ii) there is § > 0 such that ©5(X) is finite for all positive
£>0;

(ii1) lim 05(X) = oc.
E—00

Theorem 10 (Bi-Uniform Characterization of 2<%).

A metric space X is bi-uniformly equivalent to the Cantor
bi-cube 2<7 if and only if

(i) X is a complete metric space of bi-uniform dimension
zero;

(i1) ©5(X) is finite for all 0 < 6 <& < o0;
(ii1) lim 05(X) = oo for all § < oo;
E— 00
(iv) lim 65(X) = o0 for all e > 0.
0—+0
We shall apply these characterization theorem to clas-

sification of isometrically homeogeneous metric spaces. A
metric space X is called
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e isometrically homogeneous if for any points x,y € X
there is a bijective isometry f : X — X such that

f(z) =y;

e proper if X is unbounded and each closed ball in X
is compact.

Corollary 1. A proper isometrically homogeneous space
X s

(i) topologically equivalent to 2<7 iff X is uncountable
and has topological dimension zero;

(i) micro-uniformly equivalent to 2<% iff X is uncount-
able and has micro-uniform dimension zero;

(iii) bi-uniformly equivalent to 2<% iff X is uncountable

and has bi-uniform dimension zero;

(iv) macro-uniformly equivalent to 2<% iff X has macro-
uniform dimension zero.
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