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A. Laurinčikas. Limit theorems for L-functions with an increasing modulus . . . . . . . . . . 83

Yu. Leonov. On pro-2-completion of first Grigorchuk group . . . . . . . . . . . . . . . . . . . . 84

D. Limanskii. On weakly coercive differential polynomials in two variables in the L∞ norm . 85

V. Limanskii. On isomorphisms of nilpotent decompositions of finitely generated nilpotent
groups of class 3 without torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

I. I. Lishchynsky. Differentially finite and endomorphically finite rings . . . . . . . . . . . . . 86

V. S. Luchko. On action of derivations on nilpotent ideals of associative algebras . . . . . . . 87

T. D. Lukashova, M. G. Drushlyak. Norm of cyclic subgroups of non-prime order in p-groups
(p 6= 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

M. Lvov. Algebraic Approach to Problem Solving of Linear Inequalities System . . . . . . . . 88

F. M. Lyman, M. G. Drushlyak. On non-periodic groups with non-Dedekind norm of Abelian
non-cyclic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V. Lyubashenko. A∞-categories via operads and multicategories . . . . . . . . . . . . . . . . . 90

R. Mahjoob, R. Ameri. Spectrum of Prime Fuzzy Subhypermodules . . . . . . . . . . . . . . . 90

D. V. Maksimenko. On action of outer derivations on nilpotent ideals of Lie algebras . . . . . 91

M. Yu. Maksimovski. On multiacts over right zero semigroups . . . . . . . . . . . . . . . . . . 92

F. Marko. Decomposition numbers for Schur superalgebras S(m|n) for m+ n ≤ 4 . . . . . . . 93

Yu. P. Maturin. On certain collections of submodules . . . . . . . . . . . . . . . . . . . . . . . 93

I. Melnyk, M. Komarnytskyi.On quasi-prime differential modules and rings . . . . . . . . . . . 94

I. A. Mikhailova. Homogeneous Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . 95

S. P. Mishchenko, A. V. Popov. An example of the Jordan algebras variety with the almost
polynomial growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



6 7th International Algebraic Conference in Ukraine

V. S. Monakhov, A. A. Trofimuk. On a finite group having a normal series with restriction on
its factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

D. Morozov, Yu. Bodnarchuk. Finite state conjugation of linear functions on the ring of n-adic
integer numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

M. Myronyuk. On a Heyde characterization theorem for discrete Abelian groups . . . . . . . . 98

M. I. Naumik. About Sets of Congruences on Some Subsemigroups of the Semigroup of Linear
Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

V. Nesteruk. On nondegeneracy of Tate pairing for curves over complete discrete valuation
fields with pseudofinite residue fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

M. Nikitchenko. Composition Nominative Algebras as Computer Program Formalism . . . . . 100

B. V. Novikov. Groupoid of idempotents of a finite semigroup . . . . . . . . . . . . . . . . . . 101

O. Odintsova. On groups with separating subgroups relative systems of indecomposable cyclic
subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A. Oliynyk. Actions of inverse semigroups on rooted trees . . . . . . . . . . . . . . . . . . . . 103

B. Oliynyk, V. Sushchansky. Doubling of metric spaces . . . . . . . . . . . . . . . . . . . . . . 103

R. Oliynyk, M. Komarnytskyi. On the Monoids over which all quasi-filters are trivial . . . . . 104

Z. D. Pashchenko. On number of generators of ideals of prime SPSD-rings . . . . . . . . . . 105

V. M. Petrogradsky, A. A. Smirnov. On asymptotic properties of modular Lie algebras . . . . 106

V. M. Petrychkovych. Matrix polynomial equations and its solutions . . . . . . . . . . . . . . 106

V. M. Petrychkovych, B. V. Zabavsky. On the stable range of rings of matrices . . . . . . . . 107

L. Yu. Polyakova. On 0-homology of categorical at zero semigroups . . . . . . . . . . . . . . . 108

V. Popa. On tensor product of locally compact modules . . . . . . . . . . . . . . . . . . . . . 109

V. M. Prokip. On semiscalar equivalence of polynomial matrices . . . . . . . . . . . . . . . . . 109

D. Pushkashu, V. Shcherbacov. On finite simple paramedial quasigroups . . . . . . . . . . . . 110

N. Pyrch. Network weight in paratopological groups . . . . . . . . . . . . . . . . . . . . . . . 111

A. Rahnamai Barghi. A necessary and sufficient condition for a table algebra to originate from
an association scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

S. M. Ratseev. On the growth of Poisson PI algebras . . . . . . . . . . . . . . . . . . . . . . . 112

A. V. Reshetnikov. On semigroups and similar groupoids . . . . . . . . . . . . . . . . . . . . . 113

M. Roizner. Elementary equivalence of automorphism groups of Abelian p-groups . . . . . . . 114

O. Romaniv. Characterizing Bezout rings of stable range n . . . . . . . . . . . . . . . . . . . . 115

W. Rump. The purity of a module: a new invariant and its consequences . . . . . . . . . . . . 115

A. V. Russyev. Groups of automata without cycles with exit . . . . . . . . . . . . . . . . . . . 116

O. Ryabukho. Endomorphisms and conjugacy of Sushkevich in the semigroup T (N) . . . . . . 117

L. Samoilov. Multilinear components of the prime subvarieties of the variety V ar(M1,1) . . . 117

O. Savastru, P. Varbanets. Zeta-function of k-form . . . . . . . . . . . . . . . . . . . . . . . . 118

N. V. Savelyeva, N. T. Vorob’ev. On the Lausch’s Problem for π-Normal Fitting Classes . . . 119

T. Savochkina. Frattini series and involutions of finite L-groups . . . . . . . . . . . . . . . . . 120

P. Semenov. Automorphisms and elementary equivalence of the semigroup of invertible matrices
with nonnegative elements over commutative rings . . . . . . . . . . . . . . . . . . . . . 121

N. N. Semko, O. A. Yarovaya. About groups close to hamiltonian . . . . . . . . . . . . . . . . 121

V. V. Sergeichuk. Canonical matrices of bilinear and sesquilinear forms over finite extensions
of the field of p-adic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

M. Shahryari. Supersymmetry classes of tensors . . . . . . . . . . . . . . . . . . . . . . . . . . 123

N. Shajareh-Poursalavati. Generalized characteristic polynomial . . . . . . . . . . . . . . . . . 124

I. Shapochka. On classification of Chernikov p-groups . . . . . . . . . . . . . . . . . . . . . . . 124

B. Shavarovskii. On the invariants of polynomial matrices with respect to semiscalar
equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

V. Shchedryk. On matrices reduction by one-side transformations . . . . . . . . . . . . . . . . 126

O. Shukel’. Asymptotic dimension of linear type and functors in the asymptotic category . . . 127



Kharkov, August 18-23, 2009 7

V. V. Shvyrov. On Krull dimension of serial piecewise Noetherian rings . . . . . . . . . . . . . 128

M. G. Siamionau, N. T. Vorob’ev. Local Functions of Fitting Classes . . . . . . . . . . . . . . 129
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Abstracts of Talks

On invariants of irreducible polynomials over a Henselian
valued field

Kamal Aghigh

Let v be a henselian valuation of any rank of a field K and v̄ be the extension of v to a fixed algebraic
closure K of K. In 1970 James Ax proved that if α in K\K, is such that [K(α) : K] is not divisible by
the characteristic of the residue field of v then there exist a in K such that v̄(α− a) ≥ ∆K(α), where

∆K(α) = min{v̄(α− α′)| α′ 6= α runs over K-conjugates of α}.

In 1998, Khanduja generalized the above result by showing that (K, v) is a tame field, if and only if, to
every α ∈ K\K, there corresponds a ∈ K such that v̄(α− a) ≥ ∆K(α). The last statement is equivalent
to saying that to every α in K\K, there corresponds β in K such that [K(β) : K] < [K(α) : K] and
v̄(α − β) ≥ ∆K(α). This has motivated us to consider similar problems for the constants ωK(α) and
δK(α) defined by

ωK(α) = max{v̄(α− α′)| α′ 6= α runs over K-conjugates of α}

and
δK(α) = sup{v̄(α− β) : β ∈ K, [K(β) : K] < [K(α) : K]}.

Dept. of Mathematics, K. N. Toosi Universi-
ty of Technology, 322, Mirdamad ave. West,
P.O.Box 15875-4416,Tehran, Iran
aghigh@kntu.ac.ir

pth roots of elements in finite groups

K. Ahmadidelir†, H. Doostie, A. Sadeghieh

The probability that a randomly chosen element in a finite group has a square root, has been investi-
gated by certain authors. In this talk, we generalize this probability to pth root (p > 2 is a prime number)
and give some bounds for it. Also, if we denote this probability by Pp(G) for a finite group G, we show
that the set {Pp(G) | G is a finite group } is a dense subset of the closed interval [0, 1], investigating this
bounds for Pp(G) promote us to pose an open problem concerning the rational subset of [0, 1].

Our main results are:

Theorem 1. Let G be a finite group of order divisible by prime p, where p is the smallest prime
divisor of |G|. If the Sylow p–subgroup of G is not a proper normal elementary abelian subgroup of G,
then

Pp(G) 6 1− 1√
|G|

.

Theorem 2. The set {Pp(G) | G is a finite group} is dense in [0, 1].

Again, as stated in [1] for P2(G), the following question is still open:

Open problem. Which rational numbers in the interval [0, 1] does the function Pp(G) takes, as G runs
over through the set of all finite groups?
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Completion of pseudonormed rings and semi-isometric
isomorphism

S. A. Aleschenko, V. I. Arnautov‡

Definition 1. Let (R, ξ) and (R′, ξ′) be pseudonormed rings. A ring isomorphism ϕ : R → R′ is

called a semi-isometric isomorphism (see [1]) if there exists a pseudonormed ring
(
R̂, ξ̂

)
such that:

1. (R, ξ) is an ideal in
(
R̂, ξ̂

)
;

2. ϕ can be extended up to an isometric homomorphism ϕ̂ :
(
R̂, ξ̂

)
→ (R′, ξ′).

Definition 2. An element a ∈ (R, ξ) of a pseudonormed ring (R, ξ) is called a generalized divisor
of zero if there exists a subset M ⊆ R such that:

1. inf{ξ(r)|r ∈M} > 0;

2. inf{a · r|r ∈M} = 0 and inf{r · a|r ∈M} = 0.

Remark 1. It’s well known that for any pseudonormed ring (R, ξ) there exists its completion, i.e.

there exists a pseudonormed ring (̃R, ξ) such that (R, ξ) is a dense subring in (̃R, ξ) and any Cauchy

sequence of the pseudonormed ring (̃R, ξ) has its limit in (̃R, ξ).

Theorem 1. Let (R, ξ) and (R′, ξ′) be pseudonormed rings, and (̃R, ξ) and (̃R′, ξ′) be their completi-
ons, respectively. If ϕ : (R, ξ) → (R′, ξ′) is a semi-isometric isomorphism and the pseudonormed ring
(R, ξ) has an element which isn’t a generalized divisor of zero in (R, ξ) then ϕ can be extended up to a

semi-isometric isomorphism ϕ̃ : (̃R, ξ)→ (̃R′, ξ′).
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On the elementary obstruction in linear algebraic groups
over pseudoglobal fields

V. Andriychuk

Let k be an algebraic function field in one variable with pseudofinite [1] constant field. It is known [2]
that over k the group of R-equivalence classes and the defect of weak approximation are trivial for the
following classes of linear algebraic groups over k: simply connected; adjoint; absolutely almost simple
algebraic groups; and for inner forms of groups which are split by a metacyclic extension. In the case of
an arbitrary connected group they are finite. Moreover, for a connected algebraic group the obstruction
to the Hasse principle is a finite abelian group, and it is trivial for a simply connected group. The
proofs of these properties are based on the fact that k is a good field, that is: (i) its cohomological
dimension is 2, (ii) over any finite field extension K/k, for any central simple algebra A/K, the index
of A and the exponent of A in BrK coincide; (iii) for any semisimple simply connected group G/k we
have H1(k,G) = 0.

Let X be a geometrically integral variety over k, k̄ an algebraic closure of k, g the absolute Galois
group of k, k̄(X) function field of X̄ = X ×k k̄. The elementary obstruction is the class ob(X) ∈
Ext1g(k̄(X)∗/k∗, k∗) of the extension of Galois modules 1 → k̄∗ → k̄(X)∗ → k̄(X)∗/k∗ → 1. It is shown
in [3] that the properties (i), (ii), and (iii) allow us to prove the following result.

Theorem 1. Let k be be an algebraic function field in one variable with pseudofinite [1] constant
field of characteristic zero. Let X/k be a homogeneous space of a connected linear group G with connected
geometric stabilizers. Then X(k) 6= ∅ if and only if ob(X) = 0.
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Groups generated by slowmoving automata
transformations

A. Antonenko∗, E. Berkovich[

We consider finite automata over a finite alphabet X = {0, 1, . . . ,m−1} of input and output symbols.
We denote the set of states by Q, the transition function by π : X ×Q→ Q and the output function by
λ : X ×Q→ X. Define λq(x) = λ(x, q), λq : X → X.

We consider transformations defined by automata with the following three properties: 1) for each
state q ∈ Q of an automaton, there exist at most one symbol x ∈ X such that π(x, q) 6= q (slowmoving
automata); 2) there are no cycles except of loops in the Moore diagram of an automaton (automata of
finite type); 3) for each state output function λq is circular shift : λq = σk, where σ(i) = (i + 1) for
i = 0,m− 2, σ(m− 1) = 0, k is an integer.

All such transformations for fixed m-symbol alphabet X generate the selfsimilar group which we
denote by GSlCm. We show that there is an irreducible basis

{
αi|i = 0,∞

}
of GSlCm, where α0 =

(α0, . . . , α0)σ, αi = (αi−1, αi, . . . , αi), i = 1,∞ are transformations of m-symbol alphabet X [1]. Define
also GSlCm(k) = 〈α0, α1, α2, . . . , αk−1〉 which are also selfsimilar. It is easy to see that GSlC2(2) =
D∞ is the infinite dihedral group. Group GSlC2(3) was considered in [2] as group G1324 ' G937. In
[2] it is proved that G937 is fractal, regular weakly branch over its commutant, non contracting and
has exponential growth. We prove that GSlCm and GSlCm(k) are fractal, non contracting and have
exponential growth for any m ≥ 2, k ≥ 2. If a word over

{
αi|i = 0,∞

}
is a relation then the number of

αi in it for any given i is divisible by m. The set of all such words is the commutant of GSlCm.
We find the algorithm of constructing of non-trivial relations in GSlCm and GSlCm(k). Taking a

word with some identity projections it increases the number of identity projections.
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Prime spectrum and primitive Leavitt path algebras

G. Aranda Pino∗, E. Pardo, M. Siles Molina

Leavitt path algebras of row-finite graphs have been recently introduced in [1] and [2]. They have
become a subject of significant interest, both for algebraists and for analysts working in C*-algebras. The
Cuntz-Krieger algebras C∗(E) (the C*-algebra counterpart of these Leavitt path algebras) are described
in [5].

For a field K, the algebras LK(E) are natural generalizations of the algebras investigated by Leavitt
in [4], and are a specific type of path K-algebras associated to a graph E (modulo certain relations). The
family of algebras which can be realized as the Leavitt path algebras of a graph includes matrix rings
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Mn(K) for n ∈ N∪ {∞} (where M∞(K) denotes matrices of countable size with only a finite number of
nonzero entries), the Toeplitz algebra, the Laurent polynomial ring K[x, x−1], and the classical Leavitt
algebras L(1, n) for n ≥ 2 (the latter being universal algebras without the Invariant Basis Number
condition).

In this work we determine the prime and primitive Leavitt path algebras. The main inspiration
springs out of the complete description of the primitive spectrum of a graph C*-algebra C∗(E) carried
out by Hong and Szymański in [6]. Concretely, in [6, Corollary 2.12], the authors found a bijection
between the set Prim(C∗(E)) of primitive ideals of C∗(E) and some sets involving maximal tails and
points of the torus T. We give the algebraic version of this by exhibiting a bijection between the set of
prime ideals of LK(E), and the set formed by the disjoint union of the maximal tails of the graph M(E)
and the cartesian product of maximal tails for which every cycle has an exit Mτ (E) and the nonzero
prime ideals of the Laurent polynomial ring Spec(K[x, x−1])∗.

In addition, the primitive Leavitt path algebras are characterized. Concretely, LK(E) is left primitive
if and only if LK(E) is right primitive if and only if every cycle in the graph E has an exit and E0 ∈M(E).
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About metrizable, linear, group topologies of the Abelian
groups, which coincide on some subgroup and on some

factor group1

V. I. Arnautov

Notations. During all this work, if it is not stipulated opposite, we shall adhere to the following
notations;

1. p is some fixed prime number;
2. n is some fixed natural number;
3. G is an Abelian group;
4. G1 and G2 are subgroups of the group G;
5. If τ is a group topology on G, then we denote by τ |G1 the induced topology on G1, i.e. τ |G1 =

{U ⋂G1|U ∈ τ};
6. ω : G→ G/G2 is the natural homomorphism (i.e. ω(g) = g +G2 for any g ∈ G);
7. If (G, τ) is a topological group, then we denote by (G, τ)/G2 the topological group (G/G2, τ̄),

where τ̄ = {ω(U)|U ∈ τ}.
1This work is executed within the framework of the contract 08.820.08 12RF from 01.07.2008
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Proposition 1. Let τ and τ ′ be group topologies on a group G and G1 and G2 be such subgroups of
the group G, that G1 ⊆ G2 or G2 ⊆ G1. If τ |G1 = τ ′|G1 and (G, τ)/G2 = (G, τ ′)/G2, then the topological
groups (G, τ) and (G, τ ′) possess such bases {Uγ |γ ∈ Γ} and {U ′γ |γ ∈ Γ} of the neighborhoods of zero
respectively, that Uγ

⋂
G1 = U ′γ

⋂
G1 and G2 + Uγ = G2 + U ′γ for any γ ∈ Γ, and if topologies τ and τ ′

are linear, then Uγ and U ′γ are subgroups of group G.

Theorem 1. Let G be any Abelian group of the period pn and G2 = {g ∈ G|p · g = 0}. Let τ and
τ ′ be such metrizable, linear, group topologies that the subgroup G1 = {g ∈ G|pn−1 · g = 0} is a closed
subgroup in each of topological groups (G, τ) and (G, τ ′). Then τ |G1 = τ ′|G1 and (G, τ)/G2 = (G, τ ′)/G2
if and only if there exists such group isomorphism ϕ : G→ G, that the following conditions are satisfied:

1. ϕ(G1) = G1;
2. g − ϕ(g) ∈ G2 for any g ∈ G;
3. ϕ : (G, τ)→ (G, τ ′) is a topological isomorphism (i.e. open and continuous isomorphism).

Moldova, Kishinew, Institut of Mathematics
and Computer Science
arnautov@math.md

Radical rings with center of finite index

O. D. Artemovych

In [1] (see also [2]) F. Szasz asked: "Es sei

â = {(1− x)a(1− x)−1|x ∈ A}

in einem Jacobsonschen Radikalring A. Wann ist jede Klasse â endlich, und wann ist die Anzahl der
Klassen â endlich? (Problem 88)".

In this way we prove

Theorem 1. Let R be a Jacobson radical ring. Then its adjoint group R◦ is an FC-group if and
only if the additive group Z(R)+ of the center Z(R) has a finite index in the additive group R+ of a ring
R.

This gives an answer on the first part of Problem 88. In [3] we prove that a Jacobson radical ring
R with the torsion adjoint group R◦ which has finitely many conjugacy classes is finite. This is partial
answer on the second part of Problem 88.
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On saturated subfields of invariants of finite groups

I. V. Arzhantsev†, A. P. Petravchuk‡

Consider the field k(x1, . . . , xn) of rational functions over an arbitrary field k. A rational function
ψ is called closed if the subfield k(ψ) is algebraically closed in the field k(x1, . . . , xn). For any φ ∈
k(x1, . . . , xn) \ k there exist a closed function ψ and an element H(t) ∈ k(t) such that H(ψ) = φ. The
element ψ is called generative for the element φ. Generative rational functions in two variables appeared
in classical works of H.Poincare on algebraic integration of differential equations, the general case is
considered in [3]. Closed rational functions were studied by many authors, see for example, [3] and [2].

A subfield L ⊆ k(x1, . . . , xn) will be called saturated if for any φ ∈ L \ k the generative rational
function ψ of φ is contained in L. It is clear that every algebraically closed subfield in k(x1, . . . , xn) is
saturated. The results below show that the converse is not true.

Theorem 1. Let k be a field of characteristic zero and G be a finite subgroup of the automorphism
group of k(x1, . . . , xn). Suppose that the group G has neither nontrivial abelian quotient groups nor
quotient groups which are isomorphic to the alternating group A5. Then the subfield k(x1, . . . , xn)

G is
saturated in k(x1, . . . , xn).

Note that the group PSL2(C) contains a unique up to conjugation subgroup which is isomorphic to
A5. Denote its preimage in SL2(C) by I120. This is a group of order 120.

Theorem 2. Let k be an algebraically closed field of characteristic zero and G be a finite subgroup
of GLn(k). The following conditions are equivalent:

(i) the group G has neither nontrivial abelian quotient groups nor quotient groups isomorphic to I120;
(ii) the subfield k(x1, . . . , xn)

G is saturated in k(x1, . . . , xn).

Note that saturated subalgebras of the polynomial algebra k[x1, . . . , xn] were studied in [1].
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Isomorphisms of the groups GLn(R), n > 4 over
associated graded rings

A. Atkarskaya

I.Z. Golubchik and A.V. Mikhalev in [1] and E.I. Zelmanov in [2] described isomorphisms of general
linear groups GLn(R) over associative rings with 1

2 for n > 3. Then I.Z. Golubchik in [3] described
isomorphisms of groups GLn(R) over arbitrary associative rings, n > 3.

We extend Golubchik theorem for the case of an arbitrary associative graded ring R:
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Definition 1. Let R =
⊕
g∈G

Rg, S =
⊕
g∈G

Sg be associative graded rings with 1, Mn(R), Mn(S) be

graded matrix rings. Group isomorphism ϕ : GLn(R) −→ GLm(S) is called an isomorphism respecting
grading, if ϕ(GLn(R) ∩Mn(R)e) ⊆ GLm(S)e and if A− E ∈Mn(R)g, then ϕ(A)− E ∈Mm(S)g.

We prove the following theorem:

Theorem 1. Let G be a commutative group, R =
⊕
g∈G

Rg, S =
⊕
g∈G

Sg associative graded rings with

unit, Mn(R), Mm(S) graded matrix rings, n > 4, m > 4, and ϕ : GLn(R) −→ GLm(S) be a group
isomorphism, respecting grading. Suppose that the isomorphism ϕ−1 also respects grading. Then there
exist central idempotents e and f of the rings Mn(R) and Mm(S) respectively, e ∈Mn(R)0, f ∈Mm(S)0,
a ring isomorphism θ1 : eMn(R) −→ fMm(S) and a ring antiisomorphism θ2 : (1 − e)Mn(R) −→ (1 −
f)Mm(S), both of them preserve grading, such that ϕ(A) = θ1(eA)+ θ2((1− e)A−1) for all A ∈ GEn(R)
(the subgroups generated by elementary and diagonal matrices).
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The Rees-Suschkewitsch Theorem for simple topological
semigroups

Taras Banakh†, Svetlana Dimitrova‡ and Oleg Gutik]

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology
of [1, 2, 3].

We recall that a topological space X is

• countably compact if each closed discrete subspace of X is finite;

• pseudocompact if X is Tychonoff and each continuous real-valued function on X is bounded;

• sequentially compact if each sequence {xn}n∈ω ⊂ X has a convergent subsequence;

• p-compact for some free ultrafilter p on ω if each sequence {xn}n∈ω ⊂ X has a p-limit x∞ = lim
n→p

xn

in X.

Here the notation x∞ = lim
n→p

xn means that for each neighborhood O(x∞) ⊂ X of x∞ the set {n ∈ ω :

xn ∈ O(x∞)} belongs to the ultrafilter p.
By [4], a topological space X is p-compact for some free ultrafilter p on ω if and only if each power

Xκ of X is countably compact if and only if the power X2c
is countably compact. It is easy to see that

each sequence (xn)n∈ω in a countably compact topological space X has p-limit limn→p xn for some free
ultrafilter p on ω. We shall say that for some free filter p on ω a double sequence {xm,n}m,n∈ω ⊂ X has a
double p-limit lim

n→p
lim
m→p

xm,n if P = {n ∈ ω : ∃ lim
m→p

xm,n ∈ X} ∈ p and the sequence ( lim
m→p

xm,n)n∈P has

a p-limit in X. We define a topological space X to be doubly countably compact if each double sequence
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(xm,n)m,n∈ω in X has a double p-limit lim
n→p

lim
m→p

xm,n ∈ X for some free ultrafilter p on ω. It can be shown

that a topological space X is doubly countably compact if X is seqeuntially compact or p-compact for
some free ultrafilter p.

Topological semigroups containing an idempotent can be characterized as follows.

Theorem 1. A topological semigroup S contains an idempotent if and only if for some x ∈ S the
double sequence (xm−n)m≥n has a double p-limit lim

n→p
lim
m→p

xm−n ∈ S for some free ultrafilter p on ω.

Theorem 2. A topological semigroup S contains an idempotent if S satisfies one of the following
conditions:

(i) S is doubly countably compact;

(ii) S is sequentially compact;

(iii) S is p-compact for some free ultrafilter p on ω;

(iv) S2
c

is countably compact;

(v) Sκ
ω

is countably compact, where κ is the minimal cardinality of a closed subsemigroup of S.

A semigroup S is called simple if S does not contain proper ideals. A simple semigroup with a primitive
idempotent is called completely simple. LetX and Y be non-empty sets,G a semigroup and σ : Y×X → G
a map. Then the set X × G × Y with the semigroup operation (x, g, y) · (x′, g′, y′) = (x, gσ(y, x′)g′, y′)
is called the Rees product of the semigroup G over the sets X and Y with the sandwich function σ [5]
and denoted by [X,G, Y ]σ. If G is a group then the semigroup [X,G, Y ]σ is called a paragroup [1]. For
any group G the semigroup [X,G, Y ]σ is completely simple and every completely simple semigroup is
isomorphic to a paragroup [X,G, Y ]σ for some setsX and Y and a group G [5]. If G is a topological group,
X and Y are Hausdorff topological spaces, and σ is a continuous map, then [X,G, Y ]σ with a product
topology is a topological semigroup called a topological paragroup. Every compact simple topological
semigroup is topologically isomorphic to a topological paragroup [X,G, Y ]σ for some Hausdorff compact
topological spaces X and Y and compact topological group G [7]. We observe that the such theorem for
finite semigroup was proved by A. K. Suschkewitsch in [6].

Theorem 3. A topological semigroup S with countably compact square S×S is a topological paragroup
if and only if S is simple and contains an idempotent.

Theorem 4. A topological semigroup S with pseudocompact square S×S is a topological paragroup
if and only if S is simple and contains an idempotent.

Theorem 5. A pseudocompact topological semigroup S is a topological paragroup if and only if S is
completely simple.

We recall that a topological space X is called sequential if for each non-closed subset A ⊂ X there is
a sequence {an}n∈ω ⊂ A that converges to some point x ∈ X \A.

Theorem 6. For a simple topological semigroup S the following conditions are equivalent:

(i) S is a regular sequential countably compact topological space;

(ii) S is topologically isomorphic to a topological paragroup [X,G, Y ]σ for some regular sequential
countably compact topological spaces X, Y and a sequential countably compact topological group G.

References

[1] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The Theory of Topological Semigroups, Vol. I and
II. Marcell Dekker, Inc., New York and Basel, 1983 and 1986.

[2] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I and II. Amer. Math.
Soc. Surveys 7, 1961 and 1967.



18 7th International Algebraic Conference in Ukraine

[3] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.

[4] J. Ginsburg, V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403—
418.

[5] D. Rees, On semi-groups, Proc. Cambridge Phil. Soc. 36 (1940), 387—400.

[6] A. Suschkewitsch, Uber die endlichen Gruppen, Math. Ann. 99 (1928), 529—547.

[7] A. D. Wallace, The Suschkewitsch-Rees structure theorem for compact simple semigroups, Proc. Nat.
Acad. Sci. 42 (1956), 430—432.

†Department of Mathematics, Lviv National
University, Universytetska 1, Lviv, 79000,
Ukraine
tbanakh@yahoo.com

‡National Technical University "Kharkov
Polytechnical Institute", Frunze 21, Kharkiv,
61002, Ukraine

]Department of Mathematics, Lviv National
University, Universytetska 1, Lviv, 79000,
Ukraine
o_ gutik@franko.lviv.ua

Twisted group algebras of

semi-wild representation type

Leonid F. Barannyk

We determine twisted group algebras of semi-wild representation type in the sense of Drozd definition
[1]. We also introduce the concept of projective K-representation type for a finite group (tame, semi-wild,
purely semi-wild) and we single out finite group of each type.

Let G be a finite group, Gp a Sylow p-subgroup of G, G′p the commutant of Gp and Cp a Sylow
p-subgroup of the commutant G′ of the group G. We assume that Cp ⊂ Gp. Denote by D the subgroup
of Gp such that G′p ⊂ D and D/G′p = soc(Gp/G

′
p). Let K be a field of characteristic p and

i(K) =

{
t if [K : Kp] = pt,
∞ if [K : Kp] =∞.

Moreover, let K∗ be the multiplicative group of K, Z2(G,K∗) the group of all K∗-valued normalized
2-cocycles of G, where we assume that G acts trivially on K∗, and KλG be the twisted group algebra of
the group G over the field K with a 2-cocycle λ ∈ Z2(G,K∗).

Theorem 1. Let p 6= 2, G be a finite group, λ ∈ Z2(G,K∗) and d = dimK

(
KλGp/radK

λGp

)
.

Suppose that if |G′p| = p, pd = |Gp : G
′
p| then D is abelian. The algebra KλG is of semi-wild representation

type if and only if the subalgebra KλGp is not uniserial.

We say that a finite group G is of purely semi-wild projective K-representation type if KλG is of
semi-wild representation type for any λ ∈ Z2(G,K∗).

Theorem 2. Let p 6= 2, G be a finite group and s the number of invariants of Gp/G
′
p. Assume that

if |Cp| = p, s = i(K) + 1 and D is non-abelian, then expD = p2. A group G is of purely semi-wild
projective K-representation type if and only if one of the following conditions is satisfied:

(i) Cp is a non-cyclic group;

(ii) s ≥ i(K) + 2;
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(iii) s = i(K) + 1, Cp = G′p = 〈c〉, |Cp| ≥ p2 and gp ∈ 〈cp〉 for every g ∈ D;

(iv) s = i(K) + 1, Cp = G′p, |Cp| = p and D is an elementary abelian p-group.
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Similarity transformation of the pair of matrices to the
best partitioned-triangular form

Yu. Bazilevich

The problem of the transformation of matrices to maximum possible number of blocks has been
solved. The method of commutative matrix and the method of invariant subspace [1, 2] have been used.
Using these methods, the transformation in a finite number of steps has been done.
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The Hilbert series of the algebras of joint invariants and
covariants of two binary forms

Leonid Bedratyuk

Let Vd1 , Vd2 be the vector C-spaces of the binary forms of degrees d1 and d2 endowed with the natural
action of the group SL2(C). Consider the induced action of the group SL2(C) on the algebras of the
polynomial functions O(Vd1 ⊕ Vd2) and O(Vd1 ⊕ Vd2 ⊕ C2). The algebras

Id1,d2 := O(Vd1 ⊕ Vd2)SL2(C) and Cd1,d2 := O(Vd1 ⊕ Vd2 ⊕ C2)SL2(C)
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are called the algebra of simultaneous invariants and the algebra of simultaneous covariants for the binary
forms. The reductivity of SL2(C) implies that the algebras Id1,d2 , Cd1,d2 are finitely generated Z-graded
algebras

Id1,d2 = (Id1,d2)0 + (Id1,d2)1 + · · ·+ (Id1,d2)i + · · · ,

Cd1,d2 = (Cd1,d2)0 + (Cd1,d2)1 + · · ·+ (Cd1,d2)i + · · · ,
where each of subspaces (Id1,d2)i, (Cd1,d2)i of simultaneous invariants and covariants of degree i is finite
dimensional.

The formal power series PId1,d2(z),PCd1,d2(z) ∈ Z[[z]],

PId1,d2(z) =
∞∑

i=0

dim((Id1,d2)i)zi, CId1,d2(z) =
∞∑

i=0

dim((Cd1,d2)i)zi,

are called the Poincaré series of the algebras of simultaneous invariants and covariants. The finite generati-
on of the algebras Id1,d2 , and Cd1,d2 implies that their Poincaré series are expansions of certain rational
functions. Here we consider the problem of computing these rational functions efficiently.

The Poincaré series calculation was an important object of research in classical invariant theory of the
19th century. For the cases d ≤ 10, d = 12 the Poincaré series of the algebra of invariants for the binary
form of degree d were calculated by Sylvester and Franklin, see [1], [2]. Relatively recently, Springer [3]
derived the explicit formula for computing the Poincaré series of the algebras of invariants of the binary
d-forms. This formula has been used by Brouwer and Cohen [4] for d ≤ 17 and also by Littelmann and
Procesi [5] for even d ≤ 36. In [6] the Poincaré series of algebras of simultaneous covariants of two and
three binary forms of small degrees are calculated.

We have found Sylvester-Cayley type formulas for calculation of dim(Id1,d2)i, dim(Cd1,d2)i and Spri-
nger type formulas for calculation of PId1,d2(z) and PCd1,d2(z). Namely,

PId1,d2(t)=
1

2πi

∮

|z|=1

1− z2
(tzd2−d1 , z2)d1+1(t, z2)d2+1

dz

z
,

PCd1,d2(t)=
1

2πi

∮

|z|=1

1 + z

(tzd2−d1 , z2)d1+1(t, z2)d2+1

dz

z
, d2 ≥ d1.

By using the derived formulas, the Poincaré series for d1, d2 ≤ 20 are computed.
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[5] P. Littelmann, C. Procesi, On the Poincaré series of the invariants of binary forms, J. Algebra 133,
2, (1990) 490–499.

[6] V. Drensky, G.K. Genov, Multiplicities of Schur functions with applications to invariant theory and
PI-algebras. [J] C. R. Acad. Bulg. Sci. 57, No. 3 (2004) 5–10.

[7] F. Grosshans, Observable groups and Hilbert’s fourteenth problem. Amer. J. Math. 95 (1973), 229-
253.

[8] K. Pommerening, Invariants of unipotent groups. - A survey. In Invariant theory, Symp. West
Chester/Pa. 1985, Lect. Notes Math. 1278, 8-17, 1987.



Kharkov, August 18-23, 2009 21

[9] W.Fulton, J. Harris, Representation theory: a first course, (1991).

[10] H. Derksen, G. Kemper, Computational Invariant Theory, Springer-Verlag, New York, 2002.
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Characters of Lie algebra sl3 and (q, p)-numbers

Leonid Bedratyuk∗, Ivan Kachuryk\

The usual q-number [n]q :=
q
n
2 − q−n

2

q
1
2 − q− 1

2

can be interpreted as a specialized character of irreducible

representation of the Lie algebra sl2. The aim of this work is generalisation of above approach in the case
of Lie algebra sl3 to obtain relation of its representation characters with double (q, p)-deformed numbers

[x]q,p :=
qx − p−x
q − p−1 .

Let Γλ be the standard irreducible complex representation of sl3 with the highest weight λ = (m,n).
Denote by Λ the weight lattice of all finite dimensional representations of sl3, and let Z(Λ) be their group
ring. The ring Z(Λ) is free Z-module with the basis elements e(λ), λ = (λ1, λ2) ∈ Λ, e(λ)e(µ) = e(λ+µ),
e(0) = 1. Let Λλ be the set of all weights of the representation Γλ. Then the formal character Char(Γλ)
is defined ( see [1]) as formal sum

∑
µ∈Λλ nλ(µ)e(µ) ∈ Z(Λ), here nλ(µ) is the multiplicities of the weight

µ in the representation Γλ. By replacing e(m,n) := qnpm we obtain the specialized expression for the
character Char(Γ(n,m)). For example [1, 0]q,p = q + p−1 + p

q , [0, 1]q,p = p + q
p + q−1. More generally,

[n, 0]q,p = Hn(q, p/q, 1/p), [0, n]q,p = Hn(p, q/p, 1/q), where Hn(x, y, z) is the complete symmetrical
function Hn(x, y, z), (see [2] for details). The following statements hold:

Theorem 1.

(i) [n,m]q,p = [n, 0]q,p[0,m]q,p − [n− 1, 0]q,p[0,m− 1]q,p,

(ii) [n, 0]q,p − (pq−1)[n− 1, 0]q,p = [n+ 1]q,p, [0, 0]q,p = 1,

(iii) [n, 0]q,p =
n+1∑

k=1

(pq−1)n−k+1[k]q,p,

(iv) [n− 1, 0]q,p =
[n+ 1]q,p − (qp−1)2[n]q,p − (pq−1)n[1]q,p

[2]q,p − (pq−1)2 − (pq−1)
,

(iv) [n− 1, 0]q,q =
[n+ 1]q[m+ 1]q[m+ n+ 2]q

[2]q
.

Note that for p = q = 1 the (q, p)-number [n,m]q,p is equal to the dimension of the representation
Γ(m,n).
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Алгебраические основы и приложения
преобразований Грея

А. Я. Белецкий

Коды Грея, предложенные в середине ХХ века в ответ на запросы инженерной практики отно-
сительно построения оптимальных по критерию минимума ошибки неоднозначности преобразо-
вателей типа “угол-код” [1], на заре своего появления привлекли к себе внимание не только ис-
следователей математиков, но и широкого круга разработчиков разнообразной аппаратуры. Отли-
чительная особенность кодов Грея состоит в том, что в двоичном пространстве (или в двоичной
системе счисления) при переходе от изображения одного числа к изображению соседнего старшего
или соседнего младшего числа происходит изменение цифр (1 на 0, или наоборот) только в одном
разряде числа.

За более чем пятидесятилетнюю историю своего развития теория кодов Грея претерпела не-
значительные изменения. По-видимому, оказались вне поля зрения, как математиков, так и разра-
ботчиков аппаратуры, возможности построения кодов, инверсных по направлению формирования
классическим кодам Грея. В известной схеме [1] процесс формирования прямых и обратных кодов
Грея развивается по направлению слева направо; при этом старший (левый) разряд преобразуемой
кодовой комбинации сохраняется неизменным. Вместе с тем можно построить схему преобразова-
ния, в общем, m-ичных равномерных кодов, обратную по направлению классическому (левосторон-
нему) преобразованию Грея [2]. В таком классе преобразований, который назван правосторонним,
при прямом и обратном преобразованиях сохраняется неизменным значение младшего (правого)
разряда преобразуемого числа.

Комбинация лево- и правостороннего преобразований Грея (как прямого, так и обратного),
образующих совокупность простых кодов Грея, совместно с оператором инверсной перестановки
(представляющим собой квадратную (0, 1)-матрицу, в которой элементы вспомогательной диаго-
нали равны единице, а остальные — нулю, послужила основой построения комбинированных или
составных кодов Грея. Применение как простых, так и составных кодов Грея оказалось весьма
успешным в задачах определения структуры и взаимосвязи дискретных симметричных систем
Виленкина-Крестенсона функций (ВКФ), частным случаем которых являются системы дискре-
тных экспоненциальных функций и системы функций Уолша. И, тем не менее, не для всех по-
рядков систем ВКФ удается “связать” с помощью упомянутых выше преобразований Грея полное
множество симметричных систем ВКФ. Возникает так называемая проблема кластеризации, ко-
торая, для примера, проявляется в том, что только 128 из 448 симметричных систем функций
Уолша 16-го порядка оказалось возможным синтезировать с помощью простых и составных ко-
дов Грея. Обозначенную проблему кластеризации удалось разрешить введением так называемых
обобщенных кодов Грея [3].
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В докладе обсуждаются теоретические основы построения алгебраической структуры, состоя-
щей из конечного числа элементов (индикаторных матриц систем ВКФ), на множестве которых
определена бинарная операция типа умножения, удовлетворяющая основным аксиомам группы:
операция ассоциативна; гарантирует единицу и обратные элементы; замкнута для каждой пары
элементов, входящих в группу. Рассматриваются различные направления применения преобразо-
ваний Грея: в криптографии, теории и практике дискретного спектрального анализа сигналов и
изображений, структурном синтезе пересчетных схем [4] и др.
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On the average value of Dirichlet’s convolutions of the
functions τ (n) and r(n) in arithmetic progressions

G. Belozerov∗, P. Varbanets∗

Let τ(n) and r(n) denote the number of divisors and the number of representations as a sum of
two squares of natural n. For each of these functions we have the asymptotic formula of summatory
functions in the arithmetic progressions modulo q which are nontrivial for q ≤ x

2
3
−ε, where x is a length

of sum.
The application of such asymptotic formulas allows to obtain in asymptotic formulas for the sums

∑∗
r(m)r(n),

∑∗
r(m)τ(n),

∑∗
τ(m)τ(n)

(here the ∗ indicates that the summation runs over all positive integers m, n for which mn ≡ `(mod q)
and mn¿ x)

the estimates of error terms R(x)¿ x
3
5
+εq

1
5 , ε > 0.

Using the estimates of the normal Kloosterman sums over Z[i] and 3-dimension Kloosterman sums
over Z we improve the appropriate asymptotic formulas:

S(1)(x; `, q) =
∑∗

r(m)r(n) =
x

q
P (1)q

(
log

x

q2

)
+O

(
x

1
2
+εq

1
4

)

S(2)(x; `, q) =
∑∗

r(m)τ(n) =
x

q
P (2)q

(
log

x

q2

)
+O

(
x

1
2
+εq

1
4

)

S(1)(x; `, q) =
∑∗

τ(m)τ(n) =
x

q
P (3)q

(
log

x

q2

)
+O

(
x

1
2
+εq

1
4

)

where P
(j)
q (u) is a polynomial of degree j with the highest term C

(j)
0 , (log q)−1 ¿ Cj

0 ¿ log q, j = 1, 2, 3.
We also prove the following theorem
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Theorem 1. Let x ∈ R, q ∈ N, x
1
4 ≤ q. Then for almost all `, 1 ≤ ` ≤ q, (`, q) = 1 we have

|S(j)(x; `, q)− x

q
P (j)q

(
log

x

q2

)
| ¿





(
x
q

) 4
5 · xε if q > x

1
3 ;

x
7
10
+εq−

3
5 if x

1
4 < q ≤ x

1
3 .

This result is an analog of Theorem 1 from [1].
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Totally conjugate-orthogonal quasigroups

G. Belyavskaya∗, T. Popovich

It is known that every quasigroup (Q,A) has six (not necessarily distinct) conjugates (or parastro-
phes): A, rA, lA, rlA, lrA, sA where rA(x, y) = z ⇔ A(x, z) = y, lA(x, y) = z ⇔ A(z, y) = x and
sA(x, y) = A(y, x) which are quasigroups.

Two quasigroups (Q,A) and (Q,B) are called orthogonal if the system {A(x, y) = a,B(x, y) = b}
has a unique solution for all a, b ∈ Q.

We say that a quasigroup (Q,A) is a totally conjugate-orthogonal quasigroup (briefly, a TotCO-
quasigroup) if all its conjugates are pairwise orthogonal. In this case the system

∑
= {A, rA, lA, rlA,

lrA, sA} is an orthogonal set of quasigroups. Any quasigroup of
∑

is also a TotCO-quasigroup.
A quasigroup (Q,A) is called a T -quasigroup if there exist an abelian group (Q,+), its automor-

phisms ϕ , ψ and an element a ∈ Q such that A(x, y) = ϕx+ ψy + a.
Necessary and sufficient conditions that a T -quasigroup be a TotCO-quasigroup are established.
In [1] it is proved that there exist infinite TotCO-quasigroups. For finite quasigroups we prove the

following

Theorem 1. There exist TotCO-quasigroups of any order n which is not divided by 2, 3, 5 and 7.

Corollary 1. There exists a TotCO-quasigroup of order n = pk where p 6= 2, 3, 5, 7 is a prime
number, k ≥ 1.

The computer search confirms that do not exist TotCO-quasigroups of order n = 7 among quasi-
groups of the form A(x, y) = ax+ by(modn).

A conjugate-orthogonal quasigroup graph, in which the conjugates are the vertices and two vertices
are joint if and only if the respective conjugates are orthogonal, corresponds to every quasigroup.

Corollary 2. For any n = pk11 p
k2
2 ...p

ks
s where pi, i = 1, 2, ..., s, are prime numbers not equal to

2, 3, 5, 7, ki ≥ 1, there exists a quasigroup of order n realizing the complete graph K6.

Acknowledgements. The research was made in part by support of the Russian Fond of Fundamental
Research (Grant 08.820.08.08 RFFI).
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Postulates of Sushkevich and linear quasigroups

G. Belyavskaya∗, A. Tabarov\

In [1] A.K. Sushkevich proved that if in a quasigroup (Q, ·) the identity (now known as the postulate
(A) of Sushkevich [2]) xy · z = x(y ◦ z) is carried out, then the quasigroup (Q, ·) is isotopic to the group
(Q, ◦).

If a quasigroup (Q, ·) satisfies the identity (known as the postulate (B) of Sushkevich [2]) xy · z =
x(y ·αz) where α is some substitution of the set Q, then the quasigroup (Q, ·) is also isotopic to a group.

We consider the following more general identity in any quasigroup (Q, ·):

α1(α2(x⊗1 y)⊗2 z) = α3x⊗3 α4(α5y ⊗4 α6z) (1)

where αi, i = 1, 2, ..., 6, are some substitutions of the set Q, (⊗k) = (·) or (⊗k) = (∗), x ∗ y = y · x,
k = 1, 2, ..., 4.

Theorem. If in a quasigroup (Q, ·) the identity (1) holds for some substitutions αi, i = 1, 2, ..., 6,
then the quasigroup (Q, ·) is isotopic to a group. Converse, if a quasigroup (Q, ·) is isotopic to a group,
then in this quasigroup the identity (1) is carried out for some suitable substitutions αi, i = 1, 2, ..., 6.

A quasigroup (Q, ·) is called linear (alinear) over a group if there exist a group (Q, ◦), its automor-
phisms (antiautomorphisms) ϕ,ψ and an element a ∈ Q such that x · y = ϕx ◦ a ◦ ψy.

It is established a number of identities with the substitutions in a quasigroup which are particular
cases of (1) and guarantee linearity, alinearity, semilinearity, semialinearity or linearity of a mixed type
of this quasigroup over a group or over an abelian group. These results permit to describe infinite
number of identities which supply isotopy of a quasigroup to a group or its linearity of a given type.
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Analog of Cohen’s theorem for distributive Bezout domains

Sophiya I. Bilavska

Let R be a right distributive Bezout domain. Remark, that domain is a left (right) distributive if
its lattice of right (left) ideals is distributive [1]. The right ideal P of ring R is called prime right ideal if
it follows from aRb ⊆ P , that a ∈ P or b ∈ P . The right Bezout domain is a ring without zero divisors
in which every finitely generated right ideal is principal.

Theorem 1. Distributive right Bezout domain in which any prime right ideal is principal is a
principal right ideals domain.
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The speciality of the structure of two-sided ideals of
elementary divisor domain

S. I. Bilavska‡, B. V. Zabavsky‡

Let ring R be an elementary divisor domain. Remind, that integer domain R is an elementary
divisor domain, if any matrix A over R possesses a canonical diagonal reduction, that is, there exist
invertible matrices R, P and Q of corresponding sizes, such that PAQ = (dij) is the diagonal matrix,
such that Rdi+1,i+1R ⊆ diiR ∩Rdii [1]

Theorem 1. In elementary divisor domain the intersection of all nontrivial two-sided ideals is
equal to zero.

Theorem 2. There is no elementary divisor domain with finite number of nontrivial two-sided
ideals.
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Nagata’s type automorphisms as the exponents of three
root locally nilpotent derivations

Yu. Bodnarchuk∗, P. Prokofiev∗

Locally nilpotent derivations from a Lie algebra san of the special affine Cremona group are in-
vestigated in a connection with the root decomposition of san relative to the maximal standard torus.
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Earlier it was proved (see [1]) that all root locally nilpotent derivations are elementary ones. It imme-
diately follows from this, that a sum of two roots is locally nilpotent if it is a sum of two elementary
derivations and has the triangular form only. A class of three root locally nilpotent derivations is more
interesting, because the well-known Nagata’s and Anick’s exotic automorphisms of polynomial algebra
can be obtained as the exponents of such derivations. Below we use the bold font for the monomials of
the form xk3

3 = xk33 x
k4
4 . . . xknn .

Theorem 1. Three root locally nilpotent derivations of polynomial algebra F[x1, . . . , xn] over the
field F of characteristic zero by renaming the variables accurate within a constant multiple can all be
reduced to the derivation

(
(k2 + 1)

α

β
x1x

k3
3 + xk2+12 xu3

3

)(
βxk22

∂

∂x1
− αxk3−u3

3

∂

∂x2

)
, (1)

where all coordinates of the vectors 2k3 − u3 are nonnegative integers, or to the triangular form.

Using the I. Shestakov’s and Umirbaev’s results [2] we get a series of wild automorphisms which are
the exponents of three root locally nilpotent derivations.

Theorem 2. Let D be a derivation of the polynomial algebra in three variables of the form (1) and
k3 > u3, then the automorphism of polynomial algebra F[x1, x2, x3]

exp(D) =

〈
x1 −

β

k2 + 1
x−m3

((
x2 −

1

β
∆xm3

)k2+1
− xk2+12

)
, x2 −∆xm3

1

β
, x3

〉
,

where m = k3−u3, l = u3,∆ =
(
(k2 + 1)x1x

m
3 + βxk2+12

)
xl3 ∈ KerD,is wild if and only if m > 0, k2 > 0.
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Binomial properties with significant consequences about
Fermat’s equation and on the cosine rule

Enzo Bonacci[, Mario De Paz∗

There are some unexplored properties of the binomial expansion with relevant influences on Fermat’s
equation and Cosine Rule.

The talk consists of three steps:

1. Proving unexplored properties of Pascal’s triangle;

2. Analyzing the consequences of some binomial properties in limiting Fermat’s triple until an almost
impossible condition of existence;

3. Using other binomial properties to extend the Law of Cosines to powers greater than two, i.e., on
synclastic surfaces.
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Conjugation of finite-state automorphisms of regular
rooted trees

I. Bondarenko†, N. Bondarenko‡

We consider the conjugacy problem in the group Aut T of all automorphisms of a regular rooted
tree T and in its subgroup AutfT of all finite-state (automatic) automorphisms. The conjugacy classes
of the group Aut T are described in [1]. An example of two finite-state automorphisms, which are
conjugated in Aut T and not conjugated in Autf T , is presented in [2]. At the same time, it is shown in
[3] that if the finite-state automorphisms have finite order and they are conjugated in Aut T then they
are conjugated in Autf T . The conjugacy problem in the group Autf T is an open problem.

One important class of finite-state automorphisms is a class of bounded automorphisms defined by
S. Sidki. The set of all bounded automorphisms forms a group called the group of bounded automata.
Many interesting groups like the Grigorchuk group, Gupta-Sidki groups, Sushchansky groups, iterated
monodromy groups of post-critically finite polynomials are subgroups of the group of bounded automata.
We prove the following

Theorem 1. Two bounded automorphisms are conjugated in the group Aut T if and only if they
are conjugated in the group Autf T , and this conjugacy problem is solvable.

Theorem 2. The conjugacy problem is solvable in the group of bounded automata.

The solution of the conjugacy problem is connected to an interesting problem about nonnegative
matrices, related to the joint spectral radius and subradius of a set of nonnegative matrices.
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Classification of NP -critical posets

V. M. Bondarenko\, M. V. Styopochkina\

We describe the finite posets with non-negative Tits form, all proper subposets of which have yet
negative Tits form (abbreviated: NP -critical posets). In particular we prove the next statement.

Theorem. Any NP -critical poset is (min,max)-isomorphic to a self-dual one, and every self-dual
NP -critical poset is isomorphic to one from the following list:
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Quadratic forms of semigroups generated by idempotents
with partial null multiplication

V. M. Bondarenko\, O. M. Tertychna‡

Let I = {1, 2, . . . , n} and let J be a subset of I × I without diagonal elements (i, i). We define
S(I, J) to be the semigroup with generators ei, where i ∈ I ∪ 0, and the following relations:

1) e0 = 0 (e0ei = eie0 = 0 for any i ∈ I);
2) e2i = ei for any i ∈ I;
3) eiej = 0 for any pair (i, j) ∈ J .
The set of all semigroups of the form S(I, J) is denoted by I. We call S(I, J) ∈ I a semigroup

generated by idempotents with partial null multiplication.
Let S = S(I, J) ∈ I and J = {(i, j) ∈ (I × I) \ J | i 6= j}. With the semigroup S = S(I, J) we

associate the quadratic form fS(z) : Zm → Z in the following way:

fS(z) =
∑

i∈I
z2i −

∑

(i,j)∈J
zizj .

We call fS(z) the quadratic form of the semigroup S.
We prove the following theorems.

Theorem 1. A semigroup S(I, J) is of finite representation type over k if and only if its quadratic
form is positive (then S(I, J) is finite).

Theorem 2. Let S(I, J) be a finite semigroup. Then S(I, J) is tame over k if its quadratic form
is nonnegative, and wild, otherwise.
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On triangular similarity of nilpotent matrices

V. V. Bondarenko

One studies the problem of reducing triangular matrices (over a field) by triangular similarity. In
particular, one proves that any triangular selfannihilating matrix is triangular similar to a monomial
matrix, and gives an explicit practicable algorithm of such reducing.
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Биномиальные системы счисления

А. А. Борисенко

Предлагаются биномиальные системы счисления. Характерным их свойством является спосо-
бность генерирования ими комбинаторных объектов, основанных на сочетаниях, сочетаниях с по-
вторениями, композициях и других подобных объектах, в частности, помехоустойчивых кодов.

Теория этих систем счисления подробно рассмотрена в работах [1]-[3]. Их важной практиче-
ской особенностью является способность перебирать комбинаторные объекты, решая тем самым
задачу комбинаторного перебора, которая особенно часто используется в задачах комбинаторной
оптимизации.

Относительно недавно были разработаны значительно более сложные, чем линейные биноми-
альные системы счисления, — матричные системы счисления, которые способны генерировать
комбинаторные объекты с большим быстродействием и надежностью, чем обычные линейные си-
стемы [2]. Однако они представляют, на взгляд автора, и интересный математический объект,
исследование которого пока что еще далеко от своего завершения.

Матричные биномиальные системы счисления представляют собой двоичные матрицы, содер-
жащие k столбцов и (n− k) строк, где n и k — параметры биномиальных коэффициентов Ck

n, ко-
торые определяют диапазон данной системы счисления. В этой матрице xij 6∈ {0, 1} представляют

цифры матричной биномиальной системы счисления, биномиальные коэффициенты C j
i+j которой

образуют весовые значения этих цифр.
Числовая функция в этом случае для матричной биномиальной системы счисления будет иметь

следующий вид:

F =
n−k∑

i=0

k∑

j=1

xijC
j
i+j

С ее помощью биномиальная матрица преобразуется в соответствующий номер и обратно номер
преобразуется в биномиальную матрицу.

Так как xij может принимать лишь два значения 0 и 1, то при записи конкретных чисел в
матричной биномиальной форме их можно представить, записывая лишь те элементы матрицы, где
xij = 1, как, например, показано в таблице 2, получив при этом матрицу весовых коэффициентов
— весовую матрицу.
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Automorphisms of Chevalley groups over rings

E. Bunina

Let Gπ(Φ, R) be a Chevalley group of type Φ over a commutative ring R with a unit, Eπ(Φ, R) be an
elementary subgroup in Gπ(Φ, R). We describe automorphisms of groups Eπ(Φ, R) and Gπ(Φ, R) over
local commutative rings with 1/2, for root systems Al, Dl, El, l > 1. Similar results for Chevalley groups
over fields were proved by R. Steinberg for finite fields and J.Hamphris for infinite fields. Description of
automorphisms of Chevalley groups over different commutative rings were studied by various authors,
explicitly by Borel–Titz, Carter–Chen Yu, Chen Yu, E.Abe, Anton A.Klyachko.

Let us define four types of automorphisms of a Chevalley group Gπ(Φ, R).
1. Let CG(R) be a center of the group Gπ(Φ, R), τ : Gπ(Φ, R) → CG(R) a homomorphism of

groups. Then the mapping x 7→ τ(x)x from Gπ(Φ, R) onto itself is called a central automorphism of the
group Gπ(Φ, R).

2. Let ρ : R → R be an automorphism of the ring R. The mapping x 7→ ρ(x) from Gπ(Φ, R) onto
itself is called a ring automorphism of the group Gπ(Φ, R).

3. Let S be a ring containing R, g be an element of Gπ(Φ, S), normalizing Gπ(Φ, R). Then the
mapping x 7→ gxg−1 is denoted ϕg and is called an inner automorphism, induced by an element g.

4. Let δ be an automorphism of the root system Φ such that δ∆ = ∆. Then there exists a unique
automorphism of the group Gπ(Φ, R) such that for any α ∈ Φ and t ∈ R an element xα(t) is mapped
to xδ(α)(ε(α)t), where ε(α) = ±1 for all α ∈ Φ and ε(α) = 1 for all α ∈ ∆ (graph automorphism).

Similarly we can define four types of automorphisms of the elementary subgroup E(R).
An automorphism σ of the group Gπ(Φ, R) (or Eπ(Φ, R)) is called standard, if it is a composition

of introduced four types of automorphisms.

Theorem 1. Let G = Gπ(Φ, R) (Eπ(Φ, R)) be a (elementary) Chevalley group with a root system
Al, Dl, or El, l > 2, R a commutative local ring with 1/2. Then every automorphism of the group G is
standard.

M.V. Lomonosov Moscow State University
helenbunina@yandex.ru

Some properties of the class T in the category of modules
over different rings

Natalia Burban∗, Omelyan Horbachuk‡

Definition. A preradical functor (or simply a preradical) on C is a subfunctor of the identity functor
on C.

As usual, all rings are associative with 1 6= 0, all modules are left and unitary. The category of left
modules is denoted by R −Mod. The investigation is based on the monographs [1-3] and the papers
[4,5].

The objects of the category G are the pairs (R,M), where R is a ring , R ∈ R−Mod. The morphisms
of the category G are semilinear transformations (ϕ,ψ) : (R1,M1) → (R2,M2), where ϕ : R1 → R2 is a
surjective homomorphism and ψ : M1 →M2 is a homomorphism of abelian groups, and ∀m ∈M1, ∀r ∈
R1 ψ(rm) = ϕ(r)ψ(m).

Let T be an idempotent preradical functor on the category G. Consider the class

T (T ) = {(R,M) | T (R,M) = (R,M)}, where(R,M) ∈ Ob(G).
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Proposition 1. The class T is closed under epimorphic images.

Proposition 2. The class T possesses the following property:
if (R,M1) ∈ T (T ) and (R,M2) ∈ T (T ) then (R,M1 ⊕M2) ∈ T (T ).
Proposition 3. Let S be a class of objects of the category G, which is closed under epimorphic

images and under direct sums (if they exist). Put

T (R,M) =
∑

{(R,Mi)|(R,Mi) ⊆ (R,M), (R,Mi) ∈ Ob(S)} .

Then T is an idempotent preradical.
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Free Category Generated by a Partial Semigroup

A. Chentsov

It is well-known that for arbitrary category its set of morphisms forms a partial semigroup. Actually
one of approaches of characterizing category is by its hom-sets[1]. Here we consider the opposite problem
how to build category from arbitrary partial semigroup.

Given a partial semigroup S. There are a set of elements and a set of equations defining the
composition law. We are going to build a category CS from this partial semigroup. This means we
should somehow extract the set of objects and morphisms. Obviously settings imply that carrier of
S would be embedded into set of morphisms of category and category should have some universal
properties of uniqueness.

The calculation of object set is as follows. It is purely graph-theoretic. We start with disjoint union
S + S as nodes set and set S as edges. Graph structure is defined by injections i1,2 : S → S + S. For
every equation uv = w we should equate pairs of nodes (i2(u), i1(v)), (i1(u), i1(w)), (i2(v), i2(w)). We
would end with graph G′ whose nodes set would be the object set of our category. This construction
also can be formulated categorically as coequalizer of three pairs of morphisms.

Using graph G′ we can build term algebra TS with respect to constraints of categorical composition
and obtained object set. This would be a free category generated by graph G′ [1]. Equations of the
semigroup S generate a congruence relation ∼= on TS . The quotient TS/∼= is the set of morphism of the
category being sought.

Proposition 1. The defined construction is a free construction for erasing functor from category
of small categories to category of partial semigroups.
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Proposition 2. If the set of equations of semigroup S is finite then congruence relation ∼= is semide-
cidable.

The construction is quite straight-forward. The most complex and important aspect of it is decid-
ability of equality, for categorical properties are based on equations. Problem with decidability is that
terms don’t have normal form, which is a common case in mathematics[2].
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The extensions of proper locally finite subgroups with
quasicentral sylow 2-subgroups by the quaternion group

I. Chernenko

The subgroup A of the group G is called quasicentral in G, if all subgroups of the subgroup A are
invariant in the group G.

The groups being extensions of the quasicircle subgroup by the quaternion group are investigated in
the work [1]. The finite 2-groups, which are extensions of the quasicentral subgroup by the quaternion
group of order 8 are described in the work [2].

In our report the theorem 1 is devoted to complete description of the groups G being extensions of
proper locally finite subgroups D with quasicentral in G sylow 2-subgroups by the quaternion group of
order 8.

Theorem 1. All groups G being extensions of the proper locally finite subgroups D with quasicentral
in G Sylow 2-subgroups by the quaternion group of order 8 are

G = Nλ(C ·H), (1)

where N - locally finite holl normal subgroup in G without involution, C - quasicentral in G 2-subgroup,
H = K · < b > - finite 2-generated 2-subgroup, K =< c >< a >,
| a | = 2α, α > 1, | b | = 2β , β > 1, [ a, b ] = c, < c >= H ′, | c | = 2δ, δ > 0, a−1ca =
c, D = N × C, C ∩H = D ∩H = Z, a2b2 = f ∈ Z < Φ(H), H - group of one of the theorem 2 types
of the work [2].
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On groups whose subgroups are either subnormal or
pronormal

V. A. Chupordya‡, L. A. Kurdachenko\, I. Ya. Subbotin[

In some sense, many important types of subgroups have their antipodes, i. e. subgroups that have
completely opposite properties. For normal subgroups, such antipodes are contranormal subgroups and
especially abnormal subgroups. Recall, that a subgroup H of a group G is contranormal if HG = G. A
subgroup H of a group G is called abnormal if for any element g of G the subgroup < H,H g > contains
g. Pronormality is a generalization of both abnormality and normality. A subgroup H of a group G is
called pronormal if for every element g of G the subgroups H and Hg are conjugate in < H,Hg >. Of
course, there is no such contrast between subnormal and pronormal subgroups as between contranormal
and subnormal subgroups is. However, since a pronormal subgroup is subnormal if and only if it is
normal, we can consider pronormality and subnormality as some kind of antipodes.

In the paper [1], locally graded periodic and locally soluble non-periodic groups with all pronormal
subgroups were completely described. The groups whose all non-normal subgroups are abnormal were
investigated in [2] and [3]. P. Legovini in [4, 5] studied finite groups whose all subgroups either
subnormal or pronormal. The example constructed by A.Yu.Olshanskii [6, chapter 9]; shows that
there is no hope to describe all infinite such groups. In order to get some constructive results one need
to choose carefully an appropriate class of infinite groups in which obtaining meaningful results would
be possible. The class of locally ( soluble - by - finite ) groups is very useful for this purpose. We proved
the following

Theorem 1. Let G be a locally ( soluble - by - finite ) group whose all subgroups are either
subnormal or pronormal. Then G contains a normal periodic subgroup T such that G/T is nilpotent
and torsion free.
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About distributive property
of lattices of semirings of continuous functions

D.V. Chuprakov

Lattices of congruences of semirings of continuous real-valued functions on topological space are
researched. Let C+(X) be a semiring of all continuous non-negative functions defined on any topological
space X with standard addition and multiplication operations. If we take the operation of maximum
∨, instead of addition, we will get idempotent semiring C∨(X) and idempotent semifield U∨(X). The
set ConS of all congruences of semiring S is a lattice.

In 1998 in article [1] it is proved, that if the lattice ConC+(X) or the lattice ConU(X) is distributive,
then X is F -space. The natural question is the validity of the inverse implication. This question for the
lattice ConU(X) is solved positively in 2003 by D.V. Shirokov [2, theorem].

We have solved this problem for the lattice ConC+(X).

Theorem. Lattices of congruences of semirings of continuous functions C+(X) and C∨(X) on
F-space X have a distributive property.
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Derivation Mappings on non-commutative rings

Elena P. Cojuhari

We define on an arbitrary ring A a family of mappings σ = (σx,y). These mappings are subscripted
by elements of multiplicative monoid G. The assigned properties allow to call these mappings derivations
of the ring A. The operations of differentiation defined traditionally on a ring [1], [2], [3] are particular
examples in our case.

We construct a monoid algebra A < G > by means of the family σ. In [5] we construct a category
C in which A < G > as an object of it satisfies the universal property. Therefore, it could be applied
the well-known construction [1] of skew polynomials of one or several variables over non-commutative
ring A.

We describe completely the derivation mappings in the case of a monoid generated by two elements
[6]. This case is important especially for the theory of skew polynomials in one variable. The obtained
results concerning this special case extend and generalize some related results of T. H. M. Smits in [4]
(see also [2]).
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Buletinul A.Ş. R.M., 2(54) (2007), pp. 107-117.

Technical University of Moldova
ecojuhari@yahoo.com

Modules over group rings of locally soluble groups with
rank restrictions on some systems of subgroups

O. Yu. Dashkova

The investigation of modules over group rings is an important direction in modern Algebra. Many
interesting results were obtained in this direction. Noetherian modules over group rings is a broad class
of modules over group rings. Remind that a module is called Noetherian if partially ordered set of all
submodules of this module satisfies the maximality condition. It should be noted that many problems
of Algebra require the investigation of some specific Noetherian modules. Naturally arose the question
on investigation of modules over group rings which are not Artinian but which are similar to Noetherian
in some sense.

Let A be a RG-module where R is a commutative Noetherian ring. If H ≤ G then the quotient
module A/CA(H) is called a cocentralizer of H in module A. The subject of the investigation of this
paper is a RG-module A where R is a commutative Noetherian ring, G is a locally soluble group of
infinite rank (for different ranks), CG(A) = 1, A is not Noetherian R-module and for every proper
subgroup H of infinite rank the cocentralizer of H in A is a Noetherian R-module. A section p-rank for
prime p and 0-rang for p = 0 are denoted by rp(G).

The main results are the following theorems.

Theorem 1. Let A be a RG-module, G be a locally soluble group, rp(G) be infinite for some p ≥ 0.
Suppose that for every proper subgroup M such that rp(M) is infinite the cocentralizer of M in A is a
Noetherian R-module. Then G is a soluble group.

Theorem 2. Let A be a RG-module, G be a locally soluble group of infinite abelian section rank.
Suppose that the cocentralizer of every proper subgroup of infinite abelian section rank in A is a Noethe-
rian R-module. Then G is a soluble group.

Theorem 3. Let A be a RG-module, G be a locally soluble group of infinite special rank. Suppose
that the cocentralizer of every proper subgroup of infinite special rank in A is a Noetherian R-module.
Then G is a soluble group.

Theorem 4. Let A be a RG-module, G be a soluble group and rp(G) be infinite for some p ≥ 0.
Suppose that for every proper subgroup M such that rp(M) is infinite the cocentralizer of M in A is
a Noetherian R-module. Then G has the series of normal subgroups H ≤ N ≤ G such that H is an
abelian group, N/H is nilpotent and the quotient group G/N is isomorphic to Cq∞, for some prime q.
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Theorem 5. Let A be a RG-module, G be a soluble group of infinite abelian section rank. Suppose
that a cocentralizer of every proper subgroup of infinite abelian section rank in A is a Noetherian R-
module. Then G has the series of normal subgroups H ≤ N ≤ G such that H is an abelian group, N/H
is nilpotent and the quotient group G/N is isomorphic to Cq∞, for some prime q.

Theorem 6. Let A be a RG-module, G be a soluble group of infinite special rank. Suppose that a
cocentralizer of every proper subgroup of infinite special rank in A is a Noetherian R-module. Then G
has the series of normal subgroups H ≤ N ≤ G such that H is an abelian group, N/H is nilpotent and
the quotient group G/N is isomorphic to Cq∞ , for some prime q.
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On group of automorphisms of some finite inverse
semigroup

V. Derech

Let N = {1, 2, . . . , n}. Denote by Sn and In respectively the symmetric group and the symmetric
inverse semigroup on N . Let G be an arbitrary subgroup of the group Sn. Denote by I(G) the set
{ϕ ∈ In |ϕ ⊆ ψ for someψ ∈ Sn}. It is easy to verify that I(G) is an inverse subsemigroup of a
semigroup In.

Theorem 1. The group of automorphisms of an inverse semigroup I(G) is isomorphic to a nor-
malizer of a group G in the symmetric group Sn, that is, Aut(I(G)) ∼= N(G) ( here N(G) is a normalizer
of G in Sn ).

Corollary 1. Let G be a maximal subgroup of Sn and G 6= An, where An is the alternating group
and n ≥ 5. Then Aut(I(G)) ∼= G.

Example 1. Let G be a subgroup of S4 and |G| = 8. Then Aut(I(G)) ∼= G.

Example 2. Let G = Sn, then I(G) = In. Since N(Sn) = Sn, then Aut(In) ∼= Sn.

Example 3. Let G = ∆, that is, G is a trivial group. Obviously, N(∆) = Sn and I(∆) ∼= B(N),
where B(N) is Boolean of a set N . Then Aut(B(N)) ∼= Sn.
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On prolongations of quasigroups with middle translations

Ivan I. Deriyenko

Let Q = {1, 2, 3, . . . , n} be a finite set and Q(·) be a quasigroup on it. Permutations φi (i ∈ Q) of
Q such that x · φi(x) = i for all x ∈ Q, are called tracks of the element i in a quasigroup Q(·).

Any mapping σ of a quasigroup Q(·) defines a new mapping σ̄ on Q(·), called conjugated to σ, such
that

σ̄(x) = x · σ(x)
If σ̄(Q) = Q then we say that σ is complete. A quasigroup having at least one complete mapping is
called admissible.

Let Q′ = Q ∪ {(n+ 1)} and φ be a permutations on the set Q then φ′ is defined in such way:

φ′(x) =
{
φ(x) if x ∈ Q
(n+ 1) if x = (n+ 1)

In the construction for a prolongation of an admissible quasigroup Q(·) proposed by V.D.Belousov
[2] the complete mapping σ of Q(·) and its conjugated mapping σ̄ are used. The operation (◦) on Q′ is
defined by the formula:

x ◦ y =





x · y for x, y ∈ Q, y 6= σ(x)
σ̄(x) for x ∈ Q, y = n+ 1
σ̄σ−1(y) for x = n+ 1, y ∈ Q
(n+ 1) for x ∈ Q, y = σ(x)
(n+ 1) for x = y = n+ 1

(1)

We propose another form for this formula. For this purpose we introduce a new notion: increment
∆σ = {δ1, δ2, δ3, . . . , δn} to the quasigroup Q(·) with a complete permutation σ where δi = (q, σ̄−1(i))
are transpositions.

Theorem. Let {φ1, . . . , φn} be tracks of Q(·) with a complete mapping σ and {ψ1, . . . , ψn, ψn+1} be
tracks of quasigroup Q′(◦) where Q′(◦) obtained from Q(·) by formula (1). Then

ψi = φ′iδi (i = 1, 2, . . . , n) and ψn+1 = σ′.

References

[1] V.D.Belousov. Foundations of the theory of quasigroups and loops (Russian), ”Nauka”, Moscow,
1967.

Dept Higher Math. and Inform.,
Kremenchuk State Polytechnic Univ.,
Kremenchuk, Ukraine
ivan.deriyenko@gmail.com

On connection between quasi-uniform convergence by
Arcela and Alexandrov
S. D. Dimitrova-Burlayenko

The continuous functions defined over the topological group (G,=) and having rang in the Frechet
space Y (full metric locally convex topological space) are considered. Definition of Arcela [1] is formu-
lated for a case of such functions.



40 7th International Algebraic Conference in Ukraine

Definition 1. (by Arcela) The sequence of continuous functions {fn(t)}∞n=1, fn(t) : G→ Y is called
quasi-uniform converging by Arcela to function f(t), if

1. limn→∞ fn(t) = f(t),∀t ∈ G
2. ∀ε > 0 ∀N > 0 ∃ finite number of indexes n1, n2, ...nk such, that

inf1≤i≤k ρ(f(t), fn(t)) < ε, t ∈ G,N < n1 < n2 < ... < nk.

Definition 2. (by Alexandrov [2]) The pointwise convergence of sequence of maps fn to the map
from the topological space G into the metric space Y is called quasi-uniform convergence by Alexandrov,
if for any natural number there is at most countable open covering {Γ1,Γ2, ...,Γs, ...} of space G and
such sequence n1, n2, ..., ns, ... of natural numbers, greater N, that

ρ(f(x), fnk(x)) < ε, ∀x ∈ Γk.

The criterion of concurrence of these two convergence is formulated.

Theorem. For continuous functions over the normal set K into the Frechet space Y , the quasi-
uniform convergence by Alexandrov is equivalent to the quasi-uniform convergence by Arcela if and only
if K is compact set in (G,=).
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Miniversal deformations of pairs of skew-symmetric forms

Andrii Dmytryshyn†, Vladimir Sergeichuk‡

We give a miniversal deformation of each pair of skew-symmetric matrices (A,B) under congruence;
that is, a normal form with minimal number of independent parameters to which all matrices (A +
E,B + E′) close to (A,B) can be reduced by transformations

(A+ E,B + E′) 7→ S(E,E′)T (A+ E,B + E′)S(E,E′), S(0, 0) = I, (1)

in which S(E,E′) smoothly depends on the entries of E and E ′.
We formulate here our result only for pairs of 3-by-3 matrices because of the limitation on the size

of the theses.

Theorem 1. Let (A,B) be any pair of 3× 3 skew-symmetric matrices. Then all matrices (A,B)+
(E,E′) that are sufficiently close to (A,B) are simultaneously reduced by transformations (1) to one of
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the following forms

(i)





0 0 0
0 0 0
0 0 0


 ,



0 0 0
0 0 0
0 0 0




+





∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


 ,



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




 ,

(ii)






0 1 0
−1 0 0
0 0 0


 ,




0 λ 0
−λ 0 0
0 0 0




+





0 0 0
0 0 0
0 0 0


 ,



0 ∗ ∗
∗ 0 ∗
∗ ∗ 0




 , λ ∈ C,

(iii)





0 0 0
0 0 0
0 0 0


 ,




0 1 0
−1 0 0
0 0 0




+





0 ∗ ∗
∗ 0 ∗
∗ ∗ 0


 ,



0 0 0
0 0 0
0 0 0




 ,

(iv)






0 1 0
−1 0 0
0 0 0


 ,




0 0 1
0 0 0
−1 0 0




+





0 0 0
0 0 0
0 0 0


 ,



0 0 0
0 0 0
0 0 0




 .

Each of the pairs (i) − (iv) has the form (Acan, Bcan) + D, in which (Acan, Bcan) is the canonical form
of (A,B) for congruence (see [1]) and the stars in D are complex numbers that tend to zero as (E,E ′)
tends to (0, 0). The number of stars is smallest that can be attained by using transformations (1); it is
equal to the codimension of the congruence class of (A,B).
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Reduction of matrices over Kazimirsky domain

O. Domsha\, B. Zabavsky\

It is known that simple Bezout domain is elementary divisor ring if and only if it is 2-simple [1].
Among 2-simple Bezout domain with stable range 1 we select new class of domains, namely Kazimirsky
domain. Domain R we call Kazimirsky domain if for any non-zero a, b ∈ R there exist such elements
x, y ∈ R and u ∈ R that ax+ uby = 1 [1].

Theorem 1. 2-simple domain with stable range 1 is Kazimirsky domain.

Theorem 2. Simple domain Bezout with stable range 1 is elementary divisor ring if and only if
it’s Kazimirsky domain.
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Free subsemigroups in topological semigroups

Vadym Doroshenko

A subset of a topological space is said to be nowhere dense if the interior of its closure is empty. A
subset is called meagre if it is a countable union of nowhere dense subsets. The complement of a meagre
set is called co-meagre. The well-known Baire Category theorem says that a complete metric space is
not a meagre set.

Let S be a topological semigroup. We will consider all products of topological semigroups as topo-
logical spaces with respect to product (Tykhonov) topology.

The semigroup S is said to be almost free if for each n ≥ 2 the set

{(s1, . . . , sn) ∈ Sn|{s1, . . . , sn} freely generates a free subsemigroup of S}

is not meagre and is co-meagre in Sn.

Theorem 1. Let S be a complete metrizable topological semigroup with the identity e. Suppose that
1) S contains a free dense subsemigroup;
2) Any neighbourhood of the identity is noncommutative.
Then S is almost free.

Let N be the set of all positive integers. Define T (N) to be the semigroup of all transformations of
N under usual composition.

Corollary 1. The semigroup T (N) is almost free.

Let X be a finite alphabet, |X| > 1. Let AS(X) be the semigroup of all automaton transformations
over alphabet X (for definitions of automaton transformations see, for example [1]).

Corollary 2 [2]. The semigroup AS(X) is almost free.

Let T∞(q) denote the semigroup (under multiplication) of all finite dimensional, indexed by positive
integers, upper triangular matrices over the finite field of order q.

Corollary 3 [3]. The semigroup T∞(q) is almost free.
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Central series in the unitriangle automorphism group of
the ring of two polynomials variable over the field of zero

characteristic

Zh. Dovghey
During the latest time many publications (see for example [1]-[2]) are devoted to studying of the

structure and properties of automorphism groups of the ring of two variable polynomials over a field.
Every automorphism of the polynomial ring K[x, y] of two variables over the field K can be defined

by the correspondence

x→ a1(x, y), y → a2(x, y), (1)

where a1(x, y) and a2(x, y) are such polynomials over K that for the mapping K[x, y] in itself which is
defined by (1) there exists the inverse (see for example [1]). An automorphism < a1(x, y), a2(x, y) > is
called unitriangle if

a1(x, y) = x1 + b1, a2(x, y) = x2 + b2(x1), b2(x) ∈ K[x1].

All unitriangle automorphisms form the subgroup in group AutK[x, y] which will be denoted by
UJ2(K). In the talk we characterize upper and lower central series of the group UJ2(K) over the field
of zero characteristic.

Theorem 1. The commutator of the group UJ2(K) consists of automorphisms of the form

< x1, x2 + b2(x1) >, b2(x) ∈ K[x1].

Arbitrary element of the commutator subgroup is a commutator of certain elements of the group UJ2(K).
The central series of the group UJ2(K) stabilizes on the commutator subgroup.

Theorem 2. k-th term of the upper central series of the group UJ2(K) (k = 1, 2, ...) is a subgroup
of all automorphisms of the form < x1, x2 + b2(x1) >, where b2(x1) ∈ K[x1], deg(b2(x1)) ≤ k − 1. The
upper central series of UJ2(K) has the length ω + 1.
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Titling theory and representations of linear groups over
piecewise hereditary algebras

Y. Drozd

A linear group over an algebra A is, by definition, the group of automorphisms GL(P,A) of a finitely
generated projective A-module P . We use the technique of bimodule categories and tiliting theory to
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study the dual space Ĝ, i.e. the space of unitary representations of the group G = GL(P,A) in case,
when A is a piecewise hereditary algebra over the field of complex numbers. Namely, we consider three
cases:

1. A is Dynkinian, i.e. derived equivalent to the path algebra of a Dynkin quiver.

2. A is Euclidean, i.e. derived equivalent to the path algebra of a Euclidean (or, the same, extended
Dynkin) quiver.

3. A is tubular, i.e. derived equivalent to the weighted projective line [3].

Theorem 1. In the above mentioned cases the dual space Ĝ contains an open dense subset G̃ such
that

G̃ '∏r
i=1ĜL(di,C)×∏s

j=1

(
Q(mj , Uj)× (C∗)mj

)
,

where Uj are subsets of C with finite complements and Q(m,U) denotes the factor of the set of vectors{
(a1, a2, . . . , am) | ai ∈ U, ai 6= aj if i 6= j} under the action of the symmetric group Σm.

Moreover,

1. s = 0 if A is Dynkinian [2].

2. s ≤ 1 if A is Euclidean [1].

We conjecture that s ≤ 2 if A is tubular.
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Finite p-groups (p 6= 2) with non-Abelian norm of Abelian
non-cyclic subgroups

M. G. Drushlyak

Following [1], the norm NA
G of Abelian non-cyclic subgroups is the intersection of normalizers of

all Abelian non-cyclic subgroups of group G (on condition that the system of such subgroups is not
empty). The norm NA

G of Abelian non-cyclic subgroups is non-trivial, if it is non-Dedekind. The author
studies finite p-groups (p 6= 2) with non-Abelian norm NA

G of Abelian non-cyclic subgroup. Non-Abelian
p-groups, in which all Abelian non-cyclic subgroups are invariant, were studied in [2] and were called
HAp-groups.

Following [3], the condition of invariance of all non-cyclic subgroups is equivalent to the condition of
invariance only of all Abelian non-cyclic subgroups in every locally finite p-group (p 6= 2). Non-Abelian
p-groups, in which all non-cyclic subgroups are invariant, were studied in [3] and were called Hp-groups.
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Locally finite p-groups (p 6= 2) with non-Abelian norm NG of non-cyclic subgroups were studied
in [4]. Class of non-cyclic groups is wider than the class of Abelian non-cyclic groups, that is why
NG ⊆ NA

G . Taking into account results of [4], we obtain, that NA
G = NG in locally finite p-group (p 6= 2)

G, when the non-cyclic norm NG is non-Abelian.
If G = NA

G , then the group G is HAp-group and NA
G = NG. If the norm NA

G is non-Abelian, then
following theorem takes place.

Theorem 1. Finite p-groups (p 6= 2) G with non-Abelian norm NA
G of Abelian non-cyclic subgroups

are groups of the following types:
1) G is HAp-group, G = NA

G = NG;

2) G = (〈x〉 × 〈b〉) h 〈c〉, where |x| = pn, n > 1, |b| = |c| = p, [x, b] = 1, [b, c] = xp
n−1

, [x, c] =
xp

n−1αbβ, (β, p) = 1, NA
G = NG = (〈xp〉 × 〈b〉) 〈c〉;

3) G = 〈x〉 〈b〉, where |x| = pk, |b| = pm, m > 2, k ≥ m+r, Z(G) =
〈
xp

r+1
〉
×
〈
bp
r+1
〉
, 1 ≤ r ≤ m−1,

[x, b] = xp
k−r−1sbp

m−1t, (s, p) = 1, NA
G = NG =

〈
xp

r〉
h 〈b〉.

Taking into account the theorem 1 [1], author gets the next proposition.

Theorem 2. If the norm NA
G of Abelian non-cyclic subgroups of locally finite p-group (p 6= 2) G is

non-Abelian, then NA
G = NG.
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Neutral elements in n-ary hyperalgebras

W. A. Dudek

An n-ary hyperalgebra is a non-empty set H with the operation f : Hn → P (H), where P (H) is the
set of all non-empty subsets of H. An n-ary hyperalgebra (H, f) is an n-ary hypersemigroup if for every
i = 1, 2, . . . , n it satisfies the identity

f(f(xn1 ), x
2n+1
n+1 ) = f(xi−11 , f(xn+i−1i ), x2n+1n+i ),

where xji denotes the sequence xi, . . . , xj . An n-ary hypersemigroup is an n-ary hypergroup if for all
an1 , b ∈ H and i = 1, . . . , n there exists xi ∈ H such that

b ∈ f(ai−11 , xi, a
n
i+1). (1)

An element e ∈ H such that x ∈ f(e, . . . , e, x, e, . . . , e) holds for every x ∈ H is called a weak identity.
There are n-ary hypergroups with two, three and more weak identities, and n-ary hypergroups without
weak identities.
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Theorem 1. An n-ary hypersemigroup (H, f) is an n-ary hypergroup if and only if for all an1 , b ∈ H
the equation (1) is solved at the place i = 1 and i = n or at the place 1 < i < n.

Theorem 2. An n-ary hypersemigroup (H, f) is an n-ary hypergroup if and only if for all a, b ∈ H
there exists x, y ∈ H such that

b ∈ f(a, . . . , a, x) ∩ f(y, a, . . . , a).

Theorem 3. If an n-ary hypersemigroup (H, f) has a weak neutral element, then there exist a
binary (n = 2) hypersemigroup (H, ◦) and a weak endomorphism ϕ such that

f(xn1 ) ⊆ x1 ◦ ϕ(x2) ◦ ϕ(x3) ◦ . . . ◦ ϕ(xn−1) ◦ xn

for all xn1 ∈ H.
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On modular representations of Rees semigroups over cyclic
group of order two

S. Dyachenko

Let C2 = {e, a} be a cyclic group of order two and P an n×m matrix with elements from C2 ∪ {0}
such that any row and column has at least one nonzero element. A Rees semigroup R(C2, P ) is a set
of m×n matrices which contain exactly one nonzero element from C2 with the following multiplication
A ∗B = APB

Ponizovskii in the article [1] gave the criterion when Rees semigroup has finite and infinite represen-
tation type over a field which characteristic does not divide the order of the group. We are interested
in representation type over a field of characteristic two. It is so called modular case.

The main result. Consider the semigroup R(C2, P ). Let F2 be the two element field. It can be
shown that a semigroup R(C2, SPT ) has the same representation type as the semigroup R(C2, P ) for
any invertible matrices S, T over the group algebra F2[C2]. For the nonzero matrix P one can find
matrices S, T such that SPT is a diagonal matrix, which has e, e+ a or 0 on the diagonal. Denote by
r the number of e on the diagonal of the matrix SPT .

Theorem 1. Let F be a field of characteristic two then following statements about representation
type of R(C2, P ) over F hold

• finite type iff max{m− r, n− r} = 1 and min{m− r, n− r} = 0;

• tame infinite type iff m− r = n− r = 1;

• wild type iff max{m− r, n− r} > 1.
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Equivalence and factorization of partitioned matrices

N. Dzhalyuk

Let R be a principal ideal domain and M(n,R) be a ring of n × n matrices over R. Let T =
triang{T1, T2, . . . , Tk} and D = diag{D1, D2, . . . , Dk} be the cell-triangular and the cell-diagonal matri-
ces with diagonal cells Ti, Di ∈ M(ni, R), i = 1, 2, . . . , k. Matrices A and B ∈ M(n,R) are called: a)
right equivalent (right associate) if B = AU, where U ∈ GL(n,R); b) equivalent if B = PAQ, where
P,Q ∈ GL(n,R).

In [1, 2] the connection between the equivalence of matrices T and D and the solving of linear matrix
equations of Sylvesters type was established.

We consider the factorizations of the matrices T and D over R up to the association.

We established the conditions under which such partitioned matrices have up to the association the
factorizations only of such corresponding partitioned form. We suggested also the method of construction
of such factorizations through the factorizations of their diagonal cells and the solving of the linear
matrix equations of Sylvesters type [4]. The necessary and sufficient conditions of uniqueness up to the
association of the cell-triangular factorizations of the cell-triangular matrices over R that correspond to
the factorizations of their diagonal cells are also established.

The nonsingular cell-diagonal matrices are right equivalent if and only if their corresponding diagonal
cells are right equivalent. If the cell-diagonal matrices are singular, then the right equivalence of this
matrices do not imply the right equivalence of their corresponding diagonal cells.

Theorem 1. Let A = diag{A1, A2, . . . , Ak} and B = diag{B1, B2, . . . , Bk}, Ai, Bi ∈M(ni, R), i =
1, . . . , k, be the singular cell-diagonal matrices.

1) Let among diagonal cells of matrices A and B be at most one singular cell Aj and Bj, respectively.
Then the matrices A and B are right equivalent if and only if their corresponding diagonal cells
are right equivalent.

2) Let matrices A and B have at least one nonsingular cell Aj and Bj, respectively, which are not
right equivalent, then the matrices A and B are not right equivalent.
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On a property of discrete sets in Rk

S. Favorov\, Ye. Kolbasina\

We consider discrete sets in Rk where each point has a finite multiplicity. We call them discrete
multiple sets. For any two discrete multiple sets {an}n∈N and {bn}n∈N we define a distance between
them in such a way:

dist({an}n∈N, {bn}n∈N) = inf
σ

sup
n∈N

| an − bσ(n)|,

where infimum is taken over all bijections σ : N −→ N. This function satisfies all the axioms of metric
except the finiteness.

Definition 1. A vector τ ∈ Rk is called an ε-almost period of a discrete multiple set {an}n∈N ⊂ Rk,
if

dist({an}n∈N, {an + τ}n∈N) < ε.

Definition 2. A discrete multiple set {an}n∈N ⊂ Rk is called almost periodic, if for each ε > 0 the
set of its ε-almost periods is relatively dense in Rk.

A simple example of an almost periodic set is the set

{αm+ F (m)}m∈Zk

where F (m) is an almost periodic mapping from Zk to Rk, α > 0.
For each almost periodic multiple set D there exists M <∞ such that for all c ∈ Rk card (D ∩ {x :

‖x − c‖ < 1) < M . The limit of almost periodic multiple sets is almost periodic as well. For such sets
some analogue of the Bochner criterion of almost periodicity holds. Any almost periodic multiple set D
possesses finite nonzero shift invariant density

∆ = lim
T→∞

card (D ∩ {x : |x1| < T, . . . , |xk| < T})
(2T )k

.

Next we prove that our definition of an almost periodic set is equivalent to the classical one: the discrete
set is almost periodic if the measure with unit masses in points of the set is almost periodic in a weak
sense.

An almost periodic set is one of models describing quasicristallic structures (see [1]).
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Measurable Cardinals and the Cofinality of the Symmetric
Group

S. D. Friedman, L. Zdomskyy‡

A deep theorem of Macpherson and Neumann [3] states that if the symmetric group Sym(κ) consist-
ing of all permutations of a cardinal κ can be written as a union of an increasing chain 〈Gi : i < λ〉 of
proper subgroups Gi, then λ > κ. The minimal λ with this property is denoted by cf(Sym(κ)). It was
proven in [4] that for every regular cardinals λ > κ and a cardinal θ such that cf(θ) ≥ λ, there exists
a cardinal preserving forcing extension V P such that cf(Sym(κ)) = λ and 2κ = θ in V P . Moreover,
for inaccessible κ we can assume that P is κ-directed closed. Therefore if κ is supercompact, then it
remains so in V P . Our main result states that the consistency of cf(Sym(κ)) > κ+ at a measurable κ
can be obtained assuming much less than supercompactness.

Theorem 1. Suppose GCH holds and there exists an elementary embedding j : V → M such that
crit(j) = κ and (H(κ++))V = (H(κ++))M . Then there exists a forcing extension V ′ of V such that κ
is still measurable in V ′ and V ′ ² cf(Sym(κ)) = κ++.

The idea of the proof of Theorem 1 resembles that of the consistency of u < cf(Sym(ω)) established
in [5]. In particular, we introduce a variant of Miller forcing and a (slightly more general than in [2])
variant of Sacks forcing at an inaccessible cardinal κ. Iterated forcing constructions where at each stage
we take any of these forcing notions do not collapse κ+. If such an iteration of length κ++ is suitably
arranged, then cf(Sym(κ)) is equal to κ++ in the corresponding forcing extension.

The idea of the proof that κ remains measurable after the reverse Easton iteration of the forcing
notions described above can be traced back to the work [1], where the “tuning fork” argument was
introduced.
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About linear cross isotopes of linear quasigroups

Iryna V. Fryz

It is well-known that every isotope of a quasigroup is a quasigroup, but it is not true for cross
isotopes. Such a criterion has been found in [1].
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Recall [2], that an operation f of the arity n+1 is called i-cross isotopic of the type ~ı := (i0, ..., is) or
cross isotopic of the type (m,~ı) to (n+1)-ary operation g, if im = i ∈~ı is a subsequence of (0, . . . , n) and
there exist a sequence ~α := (α0, . . . , αn, α) of substitutions α0, . . . , αn, α and an m-invertible operation
h of the arity s+ 1 of the set Q such that

f(x0, . . . , xn) = α−1g(α0x0, . . . , αi−1xi−1, αih(xi0 , . . . , xis), αi+1xi+1, . . . , αnxn) (1)

for all x0, . . . , xn ∈ Q and we will write f = g(~α, h) [3, 2].
A composition of translations and automorphisms of a group is called its linear transformation. If

a multiary quasigroup is isotopic to a binary group and all components are its linear transformations,
then the quasigroup is said to be linear. Every (n+1)-ary quasigroup g, being linear on the cyclic group
Zm, can be given as follows [4]:

g(x0, . . . , xn) = k0x0 + k1x1 + · · ·+ knxn + a (2)

for some invertible elements k0, . . . , kn and an element a of the ring Zm. A cross isotopy (~α, h) is said
to be linear, if α0, ..., αn, α, h are linear.

Let ~ε := (ε, . . . , ε), where ε is the identity transformation of Zm, and let

h(xi0 , . . . , xis) := `0xi0 + `1xi1 + · · ·+ `sxis + b. (3)

Theorem. A linear i-cross (i = im) isotope g(~ε;h) of the type ~ı := (i0, ..., is) of a linear quasigroup
operation g (see (2)) is a quasigroup if and only if the elements kim`p − `mkip , p = 0, 1, . . . , s, are
invertible in the ring Zm.
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Gaussian integers with divisors in narrow sectors

N. Fugelo\ and O. Savastru[

Let Z[i] be the ring of the Gaussian integers. For ϕ1, ϕ2 ∈ [0, π2 ] we denote by S = S(ϕ1, ϕ2) the
sector {

α ∈ Z[i] | 0 ≤ ϕ1 ≤ argα < ϕ2 ≤
π

2

}
.

We define the arithmetic function on Z[i]

τ (S)(α) :=
∑

δ|α
δ∈S

1.
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Let

T (x;S) :=
∑

N(α)≤x
τ (S)(α).

It is obvious that T (x;S) can be considered as the average order of the number of divisors in S of
the Gaussian integer α for which N(α) ≤ x.

Applying estimates of the second power moment of the Hecke zeta-function Z(s,m) with the Grossen-
character λm(α) = e4mi argα on the line Res = 1

2 we obtain

Theorem. Let ϕ2−ϕ1 À x−
1
3
+ε. Then uniformly at S(ϕ1, ϕ2) the following asymptotic formula holds:

∑

N(α)≤x
τ (S)(α) =

2(ϕ2 − ϕ1)
π

(Ax log x+Bx) +O(x2/3+ε),

where A,B are the absolute constants, A > 0.

\Kamyanets-Podilsky [Odessa National University
sav olga@bk.ru

Characterization of almost maximally almost-periodic
groups

S. S. Gabriyelyan

For a topological group G, G∧ denotes the group of all continuous characters on G endowed with the
compact-open topology. Denote by n(G) = ∩χ∈G∧kerχ the von Neumann radical of G. G. Lukács called
a Hausdorff topological group G almost maximally almost-periodic if n(G) is non-trivial and finite and
he raised the problem of describing them.

Following E.G.Zelenyuk and I.V.Protasov, we say that a sequence u = {un} in a group G is a
T -sequence if there is a Hausdorff group topology on G for which un converges to zero. The group G
equipped with the finest group topology with this property is denoted by (G,u). Using the method of
T -sequences, we give a general characterization of almost maximally almost-periodic groups.

Theorem 1. Let G be an infinite group. Then the following statements are equivalent.

1. G admits a T -sequence u such that n(G,u) is non-trivial and finite.

2. G has a non-trivial finite subgroup.

Department of Mathematics, Ben-Gurion
University of the Negev, Beer-Sheva, P.O.
653, Israel
saak@math.bgu.ac.il

Right Bezout rings with waists

A. Gatalevich

We study right Bezout rings with waists, that is, right Bezout rings where Jacobson radical contains
completely prime ideal [1].
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Kaplansky [2] defined the ring R to be an elementary divisor ring if every matrix A over R (not
necessarily square) admits diagonal reduction, that is, there exist invertible matrices P and Q such that
PAQ is diagonal matrix, say (dij), for which dii is a total divisor of di+1,i+1 for each i. He defined a
ring R to be right Hermite ring if every 1 × 2 matrix over R admits diagonal reduction and showed
that a right Hermite ring is a right Bezout ring, i.e., a ring for which every finitely generated right
ideal is principally generated. For integral domains the notions of right Hermite and right Bezout are
equivalent.

A ring R is a right distributive ring if its lattice of right ideals is distributive [3].

Theorem 1. Let R be a right Bezout ring with waists. Then R is right Hermite ring.

Theorem 2. Let R be a distributive Bezout ring in which Jacobson radical contains completely
prime ideal, and there exist no other two-sided ideals in R. Then R is not an elementary divisor ring.
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The structure of minimal left ideals of the Superextensions
of Abelian groups

V. Gavrylkiv∗, T. Banakh[

In the talk we shall discuss the structure of minimal (left) ideals of the superextensions λ(G) of
Abelian groups G. By definition, a family L of subsets of a set X is called a linked system on X if
A ∩ B is nonempty for all A,B ∈ L. Such a linked system is maximal linked if it coincides with any
linked system M on X that contains L. The space λ(X) of all maximal linked systems on X is called
the superextension of X. It is endowed with the topology generated by the sub-base consisting of the
sets U+ = {L ∈ λ(X) : U ∈ L}, where U runs over subsets of X.

It is known [7], [6] that each binary operation ∗ on X extends to a right topological operation on
β(X), the Stone-Cech compactification of X, playing a crucial role in Combinatorics of Numbers. In
the same way the operation ∗ can be further extended to a right-topological operation on λ(X) by the
formula:

U ◦ V =
{ ⋃

x∈U
x ∗ Vx : U ∈ U , {Vx}x∈U ⊂ V

}
.

If the operation ∗ on X is associative, then it extends to an associative operation on λ(X). In this case
β(X) is a subsemigroup of λ(X), see [1].

The interest to studying the semigroup λ(X) was motivated by the fact that for each maximal linked
system L on X and each partition X = A∪B of X into two sets A,B either A or B belongs to L. This
makes possible to apply maximal linked systems to combinatorial and Ramsey problems.
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Theorem 1. A maximal linked system L on a group G is a right zero of λ(G) if and only if L is
invariant in the sense that xL ∈ L for all L ∈ L and all x ∈ G.

We define a group G to be odd if the order of each element x of G is odd. If G is a finite odd group,
then the maximal linked system

L = {A ⊂ G : |A| > |G|/2}
is invariant.

Theorem 2. The superextension λ(G) of a group G possesses a right zero if and only if G is odd.

A maximal linked system Z ∈ λ(G) on a group G is invariant if and only if Z is a right zero of the
semigroup λ(G) if and only if the singleton {Z} is a minimal left ideal in λ(G). Taking into account
that the invariant maximal linked systems form a closed subsemigroup of right zeros of λ(G), we obtain
the following

Theorem 3. A group G is odd if and only if all the minimal left ideals of λ(G) are singletons. In
this case the minimal ideal K(λ(G)) of λ(G) is a closed right zeros semigroup consisting of invariant
maximal linked systems.

We recall that the group Z2 of integer 2-adic numbers is a totally disconnected compact metrizable
Abelian group, which is the limit of the inverse sequence

· · · → C2n → · · · → C8 → C4 → C2

of cyclic 2-groups C2n .

By the continuity of the functor λ in the category of compact Hausdorff spaces, the superextension
λ(Z2) can be identified with the limit of the inverse sequence

· · · → λ(C2n)→ · · · → λ(C8)→ λ(C4)→ λ(C2)

of finite semigroups λ(C2k). This implies that λ(Z2) is a metrizable zero-dimensional compact topological
semigroup.

Theorem 4. Minimal left ideals of the semigroup λ(Z) are compact metrizable topological semi-
groups homeomorphic to minimal left ideals of the superextension λ(Z2).

In fact, the structure of minimal left ideals can be revealed with help of a faithful representation of
the semigroup λ(X) in the semigroup of all self-maps of the power-set of X.

Theorem 5. For a finitely generated abelian group X the minimal left ideals of λ(X) are compact
metrizable topological semigroups, topologically isomorphic to countable products of cyclic 2-groups and
finite cardinals endowed with the left zero multiplication.

In particular, each minimal left ideal of λ(Z) is topologically isomorphic to
2ω ×∏∞k=1C2k , where the Cantor cube 2ω is endowed with a left zero multiplication.

Theorem 6. The superextension λ(Z) contains a topological copy of each second countable profinite
semigroup.

This result contrasts with the famous Zelenuk’s Theorem asserting that the semigroup of ultrafilters
β(X) contains no finite subgroup.
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Matrices that are self-congruent only via matrices of
determinant one

Tatyana G. Gerasimova

This is joint work with Roger A. Horn and Vladimir V. Sergeichuk.

The following theorem was proved by -Docović and Szechtman [2, Corollary 4.7] based on Riehm’s
classification of bilinear forms [3].

Theorem 1. Let M be a square matrix over a field F of characteristic different from 2. The
following conditions are equivalent:

(i) for each nonsingular S, STMS = M implies detS = 1 (i.e., each isometry on the bilinear space
over F with scalar product given by M has determinant 1),

(ii) M is not congruent to A⊕B with a square A of odd size.

Coakley, Dopico, and Johnson [1, Corollary 4.10] gave another proof of this theorem for real and com-
plex matrices only: they used Thompson’s canonical pairs of symmetric and skew-symmetric matrices
for congruence [4]. We give another proof of this theorem using the canonical matrices for congruence,
constructed in [5]. For the complex field, canonical forms of 8 different types are employed in [1]; in
contrast, our canonical forms are very simple and of three types.

We also describe all M satisfying (i) in terms of canonical forms of M for congruence, of (M T ,M)
for equivalence, and of M−TM (if M is nonsingular) for similarity.
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Torsion Graph Over Multiplication Modules
Sh. Ghalandarzadeh, P. Malakooti Rad∗

Let R be a commutative ring and M be an R-module. In this talk, we give a generalization of the
concept of zero-divisor graph in a commutative ring with identity to torsion-graph in a module. We
associate to M a graph denoted by Γ(M) called torsion graph of M whose vertices are non-zero torsion
elements (elements which have non-zero annihilator) of M and two different elements x, y are adjacent
if and only if [x : M ][y : M ]M = 0. The residual of Rx by M , denoted by [x : M ], is a set of elements
r ∈ R such that rM ⊆ Rx for x ∈M . We investigate the interplay between module-theoretic properties
of M and the graph-theoretic properties of Γ(M). Let Γ be a graph and V (Γ) denote the vertices set
of Γ. Let v ∈ V (Γ), then w ∈ V (Γ) is called a complement of v, if v is adjacent to w and no vertex
is adjacent to both v and w. Moreover, Γ is complemented if every vertex has a complement, and is
uniquely complemented if it is complemented and any two complements of vertex are adjacent to the
same vertices. An R-module M is a multiplication module if for every R-submodule K of M there is
an ideal I of R such that K = IM . Among the other results, we prove the following:

Proposition 1. Let R be a commutative ring andM be a multiplication R-module with nil(M) 6= 0,
then

(a) If Γ(M) is complemented, then either |M | ≤ 14 or |M | ≥ 15 and nil(M) = {0, x} for some
0 6= x ∈M .

(b) If Γ(M) is uniquely complemented and |M | ≥ 15, then any complemented of the nonzero x ∈
Nil(M) is an end.

Theorem 1. Let R be a commutative ring and M be a faithful multiplication R-module with
nil(M) 6= 0. If Γ(M) is a uniquely complemented graph then, either Γ(M) is star graph with at most
five edges or Γ(M) is an infinite star graph with center x, where Nil(M) = {0, x}.

Theorem 2. Let R be a commutative ring and M be a multiplication R-module. If Γ(M) is com-
plemented, but not uniquely complemented then, M =M1 ⊕M2, where M1,M2 are submodules of M .
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Weakly Prime submodule

Sh. Ghalandarzadeh, S. Shirinkam∗

Let R be a commutative ring with identity and M be an unitary R-module. In this paper we
investigate weakly prime submodule. A proper submodule N of a module M over a ring R is said to
be weakly prime if IJK ⊆ N for I, J E R and K ≤ M implies that either IK ⊆ N or JK ⊆ N , also
we know that a proper submodule N of a module M is said to be semiprime if I2K ⊆ N for I E R
and K ≤ M implies that IK ⊆ N , it is clear that every prime submodule is semiprime submodule.
It is also obvious that each prime submodule is weakly prime but not conversely. A nonempty set
S ⊆ M is called m-system (weakly m-system) in M if for every α, β ∈ S there exists r ∈ R such
that [α : M ]r[β : M ]M ⊆ S ([α : M ]r[β : M ]M ∩ S 6= ∅). One of the fundamental cornerstones of
commutative ring theory is the ”prime avoidance” theorem, we proved an extension of the following:

Theorem 1. Let N be a R-module and H1, . . . , Hn−2 be weakly prime submodules of M and
Hn−1, Hn, N be submodules of M and N be contained in ∪ni=1Hi, then N ⊆ Hi for some i ∈ {1, . . . , n}.

For any submodule N of M let

(1)
√
N := {u ∈M | every m-system containing u meets N}.

(2) V (N) = {H ∈ Spec(M)|N ⊆ H}

Theorem 2. Let N be a submodule of M , Then:

(1)
√
N =

⋂
H∈V (N)H.

(2) If V (N) = ∅, then
√
N =M .

Theorem 3. Let N be a weakly prime submodule of M , the following are equivalent:

(1) N is a semiprime submodule.

(2) N is an intersection of weakly prime submodules.

(3) N =
√
N .
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Fibonacci length and special automorphisms of
(l,m|n, k)-group

R. Golamie

The (l,m|n, k)-groups have been considered by M.Ejvet and R.M.Thomas [1]. In this paper, by
studying the Fibonacci length of the class of the finitely presented parametric groups (l,m|n, k) defined
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by < a, b|al = bm = (ab)n = (ab−1)k = 1 >, we prove that there are some different subclasses of the
same Fibonacci lengths. These lengths are independent of one of the parameters and involve the Wall
number κ(n). Moreover, the Fibonacci lengths of two homomorphic images of these groups have been
calculated and compared with those of these groups. And also we will give the special automorphism
for every class of the groups.
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Cayley graphs, dessins d’enfants and modular curves

K. Golubev

Maps (i.e. graphs drawn without intersecting edges) on surfaces are parameterized by conjugacy
classes of subgroups of the so-called Grothendieck oriented cartographic group, which may be defined by
the following presentation

C+2 = 〈ρ0, ρ1, ρ2 | ρ21 = ρ2ρ1ρ0 = 1〉

Modular group is isomorphic to the factor-group of C+2 :

PSL2(Z) = 〈ρ0, ρ1, ρ2 | ρ21 = ρ2ρ1ρ0 = 1, ρ30 = 1〉 ' C+2 /〈 ρ30 = 1〉.

Definition 1. Extended modular group is the group presented as follows

EPSL2(Z) = 〈Σ |σ2i = 1, i = 1, 2, 3; (σ0σ2)
2 = 1 = (σ1σ2)

3〉.

The group PSL2(Z) can be embedded in EPSL2(Z) as index 2 subgroup of words of even length in
the alphabet Σ. Defining generating set Σ as transformations of the complex upper halfplane H = {τ ∈
C | Im(τ) > 0} as follows

Σ = {σ0(τ) = −τ , σ1(τ) = −τ + 1, σ2(τ) =
1

τ
}

induces action of the extended modular group EPSL2(Z) on H. Fundamental domain of this action is

a geodesic triangle with vertices in i, e
πi
3 and ∞.

Definition 2. Universal dessin d’enfant Dess∞ is a graph on H obtained by acting on boundary
of the EPSL2(Z) fundamental domain with the group EPSL2(Z).

Theorem 1. The graph dual to the graph Dess∞ is isomorphic to Cayley graph Cal(EPSL2(Z),Σ).

Corollary 1. Let G C PSL2(Z) be normal subgroup of the modular group of the finite index. Then
factor-dessin HDess∞/G (i.e. dessin d’enfant on H/G induced by the universal dessin d’enfant) is dual
to the Cayley graph of the factor-group Cal(EPSL2(Z)/G,Σ).
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On an algebra of languages representable by vertex-labeled
graphs

I. S. Grunsky∗, E. A. Pryanichnikova‡

Recently directed vertex-labeled graphs have been successfully applied to the diverse areas of com-
puter science, robotics, etc. [1,2]. The properties of languages that can be represented by these graphs
were studied in [3]. In this work we introduce an algebra that may serve as a an effective tool for
characterization of languages that can be represented by vertex-labeled graphs.

LetX+ be the set of all non-empty words on a finite alphabet X. We consider an algebra 〈2X+
,◦,∪,~,∅,X〉,

where the operations on languages L,R ∈ 2X
+
are defined as follows.

1) L ∪R = {w|w ∈ L or w ∈ R};
2) L ◦R = {w1 ◦ w2|w1 ∈ L and w2 ∈ R}. For all w1, w2 ∈ X+ and x, y ∈ X w1x ◦ yw2 = w1xw2 if

x = y , else w1x ◦ yw2 is undefined.

3) L∗ =
⋃∞
i=0 L

i, where L0 = X; Ln+1 = Ln ◦ L , n ≥ 0; 4)L~ = Lbeg ◦ L∗ ◦ Lend, where
Lbeg = {x|xw ∈ L, x ∈ X,w ∈ X∗}; Lend = {x|wx ∈ L, x ∈ X,w ∈ X∗}.

According to the definition of regular expressions in Kleene algebra, we define a regular expressions
in algebra 〈2X+

,◦,∪,~,∅,X〉 as follows:
1) ∅, x, y, xy are regular expressions for all x, y ∈ X.

2) If L and R are regular expression, then L ∪R, L ◦R, L~ are regular expressions.

The language represented by regular expression R is denoted by L(R).

Let G = (Q,E,X, µ) be a directed vertex-labeled graph, where Q is a finite set of vertices, E ⊆ Q×Q
is a set of directed edges, X is a finite set of labels, µ : Q→ X is a mapping from set of vertices to the
set of labels. A finite sequence of vertices l = q1q2...qk such that (qi, qi+1) ∈ E is a path in a graph G.
By L(G) we denote a language generated from the graph G as the set of labels for all paths in a graph
G that begins in an initial vertex and ends in a final one.

Theorem 1. Let L be a language of X+. The following conditions are equivalent:
1)L is represented by a regular expression in algebra 〈2X+

,◦,∪,~,∅,X〉 ;
2)L is a language generated from the vertex-labeled graph.
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On minimal identifiers of the vertices of the vertex-labeled
graphs

I. S. Grunsky\, S. V. Sapunov‡

Existence conditions for subsets of the labeled graph vertex language that are minimal in terms of
quantity and word length and discriminate this vertex from any other vertex are considered.

Let G = (G,E,M, µ) be finite, simple, labeled graph with set of vertices G, set of edges E, set
of labels M and surjective labeling function µ : G → M . The set O(g) = E(g) ∪ {g} is called the
neighborhood of vertex g. Graph G is called deterministic if for any vertex g and any s, t ∈ O(g), s 6= t
implies µ(s) 6= µ(t). The sequence of vertices labels µ (g1) . . . µ (gk) corresponding to some path g1 . . . gk
in graph G is called a word. Lg denotes a set of all words produced by vertex g ∈ G. A vertex identifier
g ∈ G is a finite set of words Wg ⊆M+ such that for any vertex h ∈ G the equality Wg ∩Lg =Wg ∩Lh
holds iff g = h.

An identifier Wg is minimal, if any set obtained from Wg through deletion of a single word or
replacement of any word with its proper initial segment, is not an identifier of g. It is demonstrated
that the set of minimal identifiers is infinite in general. A vertex identifier of a strongly deterministic
(SD) graph [1] is reduced if none of its words contains palindromic subwords and is not a proper initial
segment of any other word belonging to this identifier. It is demonstrated that for every vertex identifier
of an SD graph there exists a unique reduced identifier and a procedure for reduction is proposed. It
is demonstrated that the set of minimal reduced identifiers is infinite in general case. A procedure for
matching any set W ⊆ M+ of words with same prefixes with a rooted tree T (W ) and a procedure for
its determination are proposed. A traversal of a rooted tree T (W ) is any set of words corresponding to
any set of paths that pass in the aggregate through all vertices of the tree.

Theorem 1. If a set W is a minimal identifier of an SD graph vertex g, then any traversal of a
rooted tree T (W ) is an identifier of g as well.

It is demonstrated that for vertex identifiers of arbitrarily labeled oriented graphs and initial iden-
tifiers of states of finite automata [2] an analogous theorem does not hold in general.
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Relation J on finitary factorpowers of SN

S. V. Gudzenko

The construction of the factorpower FP (S) of the semigroup of transformations (S,M) is defined
as a quotient semigroup P (S)/∼M where P (S) is the global oversemigroup of S and the congruence
∼M is given by the definition:

A ∼M B ⇔ ∀m ∈M (A(m) = B(m)) .

Green’s relations on the factorpower of the finite symmetric group were researched in [1]. In the
infinite case we can also consider different finitary versions of factorpowers. In particular next variants
are natural for the symmetric group of the denumerable order:

Sfin(N) = {π ∈ SN : | {i : π(i) 6= i} | <∞} , FPfin0 (SN) = FP (Sfin(N)) ;

FPfin1 (SN) =
{
A ∈ FP (SN) : ∃I ⊆ N, |I| <∞ : ∃{σi}i∈I ⊆ SN : A = {σi}i∈I

}
;

FPfin2 (SN) =

{
A ∈ FP (SN) : sup

i∈N

|iA| <∞
}
;

FPfin3 (SN) =
{
A ∈ FP (SN) : ∀i ∈ N |iA| <∞

}
.

In [2] Green’s relations R and L were described.
The report deals with Green’s relation J on the finitary factorpowers of SN. The main result is

Theorem. Let FPf (SN) be one of the finitary factorpowers of SN and A,B ∈ FPf (SN).
Then AJB ⇔ A = σBτ for some σ, τ ∈ SN.
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Semigroup Closures of Finite Rank Symmetric Inverse
Semigroups

Oleg Gutik†, Jimmie Lawson‡ and Dušan Repovš]

A partial one-to-one transformation on a set X is a one-to-one function with domain and range
subsets of X (including the empty transformation with empty domain). There is a natural associative
operation of composition on these transformations, ab(x) = a(b(x)) wherever defined, and the resulting
semigroup is called the symmetric inverse semigroup IX [2]. The symmetric inverse semigroup was
introduced by Wagner [4]. If the domain is finite and has cardinality n, which is then also the cardinality
of the range, the transformation is said to be of rank n. For each n ≥ 0, the members of IX of rank
less than or equal to n form an ideal of IX , denoted Inλ if |X| = λ.

A subset D of a semigroup S is said to be ω-unstable if D is infinite and for any a ∈ D and
infinite subset B ⊆ D, we have aB ∪ Ba 6⊆ D. An ideal series for a semigroup S is a chain of ideals
I0 ⊆ I1 ⊆ I2 ⊆ . . . ⊆ Im = S. We call the ideal series tight if I0 is a finite set and Dk := Ik \ Ik−1 is an
ω-unstable subset for each k = 1, . . . ,m.

Recall that a semigroup S is a semitopological semigroup if it is equipped with a Hausdorff topology
for which all left translation maps λs and all right translation maps ρs are continuous [3].

Proposition 1. Let S be a semitopological regular semigroup that admits a tight ideal series I0 ⊆
. . . ,⊆ Im = S. Then each Ik is closed in S and each member of S \ Im−1 is an isolated point of S.

Corollary 1. Let λ > ω and let n be any positive integer. If τ is a topology on Inλ such that (Inλ , τ)
is a semitopological semigroup, then every element α ∈ Inλ \ In−1λ is an isolated point of the topological
space (Inλ , τ).

Proposition 2. Let S be a semitopological inverse semigroup for which the inversion map x 7→ x′

is continuous. If T is an inverse subsemigroup that admits a tight ideal series, then T is closed in S.

Proposition 2 applies directly to the symmetric inverse semigroup Inλ for λ infinite and n a positive
integer and yields the following corollary.

Corollary 2. Let S be a semitopological inverse semigroup for which the inversion map x 7→ x′ is
continuous. If (an isomorphic copy of) Inλ is a subsemigroup of S, then it is a closed subset of S.

Lemma 1. The class of semigroups admitting a tight ideal series is closed under finite products.

Lemma 2. Let h : S → T be a surjective semigroup homomorphism such that each point inverse
h−1(t) is finite. If S has a tight ideal series, then so does T .

A topological semigroup is a Hausdorff topological space endowed with a continuous semigroup
operation [1]. The next theorem is our main one on the non-existence of compact embeddings of certain
D-classes.

Theorem 1. Let S be a topological semigroup and let T be a subsemigroup having a tight ideal
series I0 ⊆ . . . ⊆ Im. If D := Ik+1 \ Ik is a regular D-class, then D = clS(D) is not compact.

Corollary 3. For an infinite cardinal λ and positive integer n, if Inλ is a subsemigroup of a topo-
logical semigroup S, it cannot be the case that that clS(Ikλ \ Ik−1λ ) is compact for 1 ≤ k ≤ n.

Theorem 2. For any infinite cardinal λ there exists no topology τ on I∞λ :=
⋃∞
n=1 In such that

(I∞λ , τ) is a compact semitopological semigroup.
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Differential preradicals and differential preradical filters

O. L. Horbachuk], M. Ya. Komarnytskyi], Yu. P. Maturin∗

Definition 1. A differential preradical r of A−DMod assigns to each differential A-module C its
differential submodule r(C) in such a way that for every differential A-homomorphism f : N →M

f(r(N)) ⊆ r(M).

Definition 2. Let A be a differential ring with the derivation δ. A differential preradical filter of
A is a collection F of differential left ideals of A possessing the following properties:

DF1. I ∈ F&I ⊆ J&J is a differential left ideal of A→ J ∈ F ;
DF2. I ∈ F&a ∈ A→ (I : a∞) ∈ F ;
DF3. I ∈ F&J ∈ F → I ∩ J ∈ F .
Definition 3. Let A be a differential ring with the derivation δ. A differential radical filter of A is

a differential preradical filter F of A possessing the following property:
DF4. I is a differential left ideal of A&I ⊆ J&J ∈ F&(∀a ∈ J : (I : a∞) ∈ F )→ I ∈ F
Proposition 1. Let A be a differential ring and B be a multiplicatively closed system of differential

two-sided ideals, which are finitely generated as differential left ideals. Then the set FB = {T |T is a
differential left ideal of A&∃L ∈ B : L ⊆ T} is a differential radical filter of A.

Proposition 2. Let A be a differential ring and S be a differential two-sided ideal of A. If every
differential left ideal of A is two-sided then the set

FS = {T |T is a differential left ideal of A&S + T = A}
is a differential radical filter of A.

Proposition 3. Let A be a differential ring. If I is an idempotent ideal of A then
s : M 7→ s(M)(s(M) = {m ∈ M |∀a ∈ I∀n ∈ {0, 1, 2, ...} : m(n)a = 0}) is a differential hereditary

radical.
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Global dimension of polynomial rings in partially
commuting variables

A. Husainov

Let A be any Abelian category. Define the global dimension of A by gl.dimA = sup{n ∈ N :
(∃A,B ∈ Ob A) Extn(A,B) 6= 0}.

This work is devoted to the global dimension of the category of objects in an Abelian category with
the action of a free partially commutative monoid.

For a ring R with 1, let gl.dimR be the global dimension of the category of left R-modules. As
it is well known, for the polynomial ring R[x1, . . . , xn] in pairwise commuting variables, the following
equation holds

gl.dimR[x1, . . . , xn] = n+ gl.dimR .

Moreover, if A is any Abelian category with exact coproducts, then

gl.dimANn = n+ gl.dimA

for the free commutative monoid Nn generated by n elements. We will present one of possible gener-
alizations of this formula. Let M(E, I) be a free partially commutative monoid generated by a set of
variables E, where I ⊆ E × E is an irreflexive symmetric relation containing the pairs of commuting
variables. We prove that

gl.dim AM(E,I) = n+ gl.dim A
for any Abelian category with exact coproducts where n is the sup of numbers of mutually commuting
distinct elements of E. For example, if R[M(E, I)] is the polynomial ring in variables E = {x1, x2, x3, x4}
for which x1x2 = x2x1, x2x3 = x3x2, x3x4 = x4x3, and x4x1 = x1x4, then for any ring R with 1 we have

gl.dimR[M(E, I)] = 2 + gl.dimR .

Moreover, we prove that for any projective free ring R and graded R[M(E, I)]-module A, there exits
a resolution of A consisting of m + n free graded M(E, I)-modules, where m = gl.dimR and n is the
sup of numbers of mutually commuting distinct elements of E.
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Russia, 681013
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On centralizers of rational functions in the Lie algebra of
derivations of k[x, y]

O. Iena[, A. Regeta†

Consider the Lie algebra W2(k) = Der(k[x, y]) of derivations of the polynomial ring k[x, y], where
k is a field of characteristic zero. To describe the structure of the subalgebras of this algebra is an
important and very difficult problem.

For a fixed polynomial f ∈ k[x, y] we study the centralizer of f in W2(k), i. e., the Lie subalgebra
CW2(k)(f) = {D ∈W2(k) | D(f) = 0}.

This Lie algebra corresponds to the stabilizer of the polynomial f in the group Aut(k[x, y]) of all
automorphisms of k[x, y]. There is a natural k[x, y]-module structure on CW2(k)(f).
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Proposition 1. CW2(k)(f) is a free module of rank 1 over k[x, y].

Proposition 2. Let D0 be a free generator of CW2(k)(f). Then the centralizer of an element D =
fD0 from CW2(k)(f) is equal to the Lie subalgebra (fk(h) ∩ k[x, y]) · D0 for some closed polynomial
h ∈ k[x, y].
In particular it is a maximal abelian infinite dimensional subalgebra in CW2(k)(f) and every maximal
abelian subalgebra in CW2(k)(f) is of this type.

Analogous results hold for the Lie algebra of derivations of the field of all rational functions in two
variables k(x, y).

We also study some derivations of the quadratic field extensions of k(x, y), i. e., of

F = k(x, y)[t], t2 = ξ, ξ ∈ k(x, y).

Proposition 3. Let f ∈ k(x, y), let F be as above, and let D = ad(f). Then the kernel of the

derivation D : F → F equals k[f̄ ] + Vλf,ξ(D), where Vλf,ξ(D) = {u ∈ F | D(u) = λf,ξu}, λf,ξ = −
D(ξ)

2ξ
,

and f̄ is a generating rational function for f .
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On Algorithms Inverting the Burau Representation

Yu. Ishchuk∗, N. Zasjadkovych

The Burau representation ρ of the braid group Bn has been exploited for cryptography based on the
braid group. In process of solving braid conjugacy problem using linear algebra methods, it is essential
to know, how to recover preimage braids from the image of this representation. We propose the inverting
algorithms for Burau representation, which are different from [3].

Let us recall that the n-braid group Bn can be presented by the n− 1 Artin generators σ1, . . . , σn−1

and relations

{
σiσj = σjσi, if |i− j| > 1

σiσjσi = σjσiσj , if |i− j| = 1
.

The Burau representation ρB : Bn → GLn(Z[x, x−1]) is defined by rule ρB(σi) =

diag(Ii−1,
(

1− x x
1 0

)
, In−i+1) for all i ∈ {1, . . . , n − 1}. This representation is known to be un-

faithful for all n ≥ 5. Images A = ρB(w) of braids w ∈ Bn are called the Burau matrices, which satisfy
following conditions

∑n
i=1 aji = 1 and

∑n
i=1 aijx

i = xj , for all j ∈ {1, . . . , n}.
In [1] Hughes used algorithm inverting ρB for security analysis of the braid group cryptosystem. The

main idea is to reconstruct w from ρB(w) generator by generator from right to left by assuming that
the first column with highest degree entry in A = ρB(w) indicates a last generator of w. Lee and Park
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[2] improved Hughes algorithm and proposed two new algorithms. These algorithms were compared [3]
with respect to their success rate and elapsed time.

We proposed the algorithms inverting Burau representation of the submonoid B+
n of Bn and the

braid group Bn. Our algorithms compute Artin generators of w from left to right and from both sides
simultaneously. Using [4] we have obtained experimental results, which show that these algorithms have
the higher success probabilities, but they are slower due to their self-correction process.
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Pointfree Representation of real lattice ordered linear map
Abolghasem Karimi Feizabadi

In classical topology it is proved, non constructively, that for a topological space X, every bounded
Riesz map (real lattice ordered linear map) φ in C(X) is of the form x̂ for a point x ∈ X. In this paper
our main objective is to give the pointfree version of this result. In fact, we constructively represent
each real Riesz map on a compact frame M by prime elements.
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On classes of modules and preradicals defined by functor
HomR(U, -)

A. I. Kashu

Fixing a left R-module RU we consider the functor H = HomR(U, -) : R-Mod→ Ab where Ab is the
category of abelian groups. The classes of R-modules, associated to this functor, and the preradicals of
R-Mod defined by these classes are studied ([1]). In particular, the class Gen (RU) of modules generated
by RU defines an idempotent preradical rU such that R(rU ) =Gen (RU), i.e. rU (M) =

∑{Imf | f :
U →M} for every M ∈ R-Mod.

The class of modules KerH = {M ∈ R-Mod |H(M) = 0} is torsion-free and defines an idempotent
radical r U such that P(r U ) = KerH. Then rU ≤ r U and r U is the least idempotent radical containing
rU . The condition is shown when rU = r U (the weak projectivity of RU).

Acting by rU to RR we obtain the ideal I = rU (RR) (the trace of RU), which in his turn defines two
pairs of preradicals (of diverse types):

(
rI , r(I)

)
and

(
r
I
, r
(I)

)
([2]). The properties of these preradicals

are studied, as well as the relations between them and conditions for their coincidence.
Finally, the connections between preradicals (rU , rU ) and preradicals defined by I are investigated.

In particular, we obtain the situation: rI ≤ rU ≤ r U and rI ≤ r(I) ≤ r U . The criterion of
coincidence of these four preradicals is shown.

These results represent the generalizations and modifications of some facts proved earlier in special
conditions: for Morita contexts and adjoint situations ([3]).
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Quivers of finite rings

Nataliya Kaydan

We consider a finite rings with 1 6= 0. A finite ring A is indecomposable if A cannot be decomposed
into a direct sum of two nonzero rings.

Let A be a finite ring with the radical R. Then A is a semiperfect finite ring and right (left) regular
A-module AA(AA) has the following decomposition into a direct sum of indecomposable right (left)
projective A-modules: AA = Pn1

1 ⊕ ... ⊕ P ns
s (AA = Qn1

1 ⊕ ... ⊕ Qns
s ), where Xn is a direct sum of n

copies of a module X.
Recall that a semiperfect ring A is reduced if n1 = n2 = ... = ns.

Proposition. If A is a reduced finite ring, then the quotient ring A/R is a direct product of s finite
fields.

We consider the right and the left quiver of a finite ring A [1]

Theorem 1. A finite ring A is indecomposable if and only if its quiver Q(A) is connected.
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Theorem 2. The right and the left quivers of a finite commutative ring coincide.

Theorem 3. The quiver of a finite indecomposable commutative ring contains one vertex and some
loops in this vertex.

Theorem 4. A finite ring A is uniserial if and only if its right quiver Q(A) is either one vertex
without loops or one loop.

Denote by Fpn a finite field with pn elements.

Example. Let A =

(
F2 F4
0 F4

)
.

The right quiver Q(A) is: Q(A) =

{
1 2
• −→ •

}
and the left quiver Q′(A) is: Q′(A) =

{
1 2
• ⇔ •

}
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The Lattice of Fully Invariant Subgroups of Reduced
Cotorsion Group

Tariel Kemoklidze

The report deals with questions of abelian group theory and the term group always means an
additively written abelian group. The notation and terms, used in the report are taken from the
monographs [1], [2].

p denotes a fixed prime number. tA is a torsion part of group A, quasicyclic p-group is denoted by
Z(p∞).

The investigation of the lattice of fully invariant subgroups of a group is an important task of the
theory of abelian groups. Little is known about this issue concerning cotorsion groups. A group A is
called cotorsion if any extension by a torsion free group C splits i.e. Ext(C,A) = 0. Reduced cotorsion
group A can be represented in the following form:

A =
∏

p

(T •p ⊕ Cp) (1)

where tA = ⊕pTp, T •p = Ext(Z(p∞), Tp), and Cp = Ext(Z(p∞), A/tA) is algebrically compact torsion
free group (see [1,§54,55]).If in the equation (1) Tp is torsion complete group ([4]), or a direct sum
of cyclic p-group (see [5]), then T •p and corresponding A groups are fully transitive and by means of
indicators (see[2] §65,67) describe the lattice of fully invariant subgroups of group A. In the report
group Tp is a countable direct sum of torsion complete p-groups, while cotorsion hull T •p is not fully

transitive (see [3]), therefore to describe the mentioned lattice, lower semilattice Ω will be built which is
different from the set of indicators and the function Φ : A→ Ω is determined that satisfies the necessary
conditions. Consequently we get that the lattice of fully invariant subgroups of groups A is isomorphic
to the filters of semilattice Ω.
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Orientations of the Petersen graph

Yu. Khomenko

Let P be the Petersen graph. Consider two orientations of Petersen graph:
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Adjacency matrices of these quivers are:




0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0







0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0



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A characteristic polynomial of a quiver Q defined by formula χQ(x) = χ[Q](x), where [Q] is the
adjacency matrix of Q. χQ1(x) = χQ2(x) = x10 − 3x5 − x4 − x+ 1, but Q1 6' Q2.
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The isomorphism problem for finitary incidence rings

N. Khripchenko

The notion of a finitary incidence algebra was first introduced in [1] as a generalization of the notion
of an incidence algebra for the case of an arbitrary poset. It was shown that the isomorphism problem
for such algebras was solved positively ([1], Theorem 5). In the present talk we consider this problem
in more general case.

Let C be a preadditive small category. Assume that the binary relation ≤ on the set of its objects,
such that x ≤ y ⇐⇒Mor(x, y) 6= 0, is a partial order. Consider the set of formal sums of the form

α =
∑

x≤y
αxy[x, y], (1)

where αxy ∈ Mor(x, y), [x, y] is a segment of the partial order. A formal sum (1) is called a finitary
series, if for any x, y ∈ Ob C, x < y there exists only a finite number of [u, v] ⊂ [x, y], such that u < v
and αuv 6= 0. The set of the finitary series is denoted by FI(C).

The addition of the finitary series is inherited from the addition of the morphisms. The multiplication
is defined by means of the convolution:

αβ =
∑

x≤y


 ∑

x≤z≤y
αxzαzy


 [x, y],

where αxzαzy = αzy ◦ αxz ∈ Mor(x, y). Under these operations FI(C) form an associative ring with
identity, which is called a finitary incidence ring of a category.

It is easy to see, that the description of the idempotents of FI(C) can be obtained as in [1]. This
allows us to solve the isomorphism problem for finitary incidence rings of preorders.

Let R be an associative ring with identity, P (4) an arbitrary preordered set. Denote by ∼ the
equivalence relation on P , such that x ∼ y iff x 4 y and y 4 x. Define M([x], [y]) to be an abelian
group of row and column finite matrices over R, indexed by the elements of the equivalence classes [x]
and [y]. Consider the following preadditive category C:

1. Ob C = P/∼ with the induced order ≤;

2. For any pair [x], [y] ∈ Ob C define Mor([x], [y]) = M([x], [y]), if [x] ≤ [y], and 0 otherwise (the
composition of the morphisms is the matrix multiplication).

Denote the finitary incidence ring of this category by FI(P,R). Obviously, FI(P,R) is an algebra over
R, which is called a finitary incidence algebra of P over R.
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Theorem 1. Let P and Q be preordered sets, R and S indecomposable commutative rings with
identity, C and D preadditive categories corresponding to the pairs (P,R) and (Q,S), respectively. If
FI(P,R) ∼= FI(Q,S) as rings, then C ∼= D.

Corollary 1. Let P and Q be class finite preordered sets, R and S indecomposable commutative
rings with identity. If FI(P,R) ∼= FI(Q,S) as rings, then P ∼= Q and R ∼= S.

As a corollary we obtain the positive solution of the isomorphism problem for weak incidence algebras
given in [2] .
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On Right Serial Quivers

M. A. Khybyna∗, V. V. Kyrychenko[

Let Q = (V Q,AQ, s, e) be a quiver, which is given by two sets V Q, AQ and two mappings s,
e : AQ→ V Q. The elements of V Q are called vertices or points and the elements of AQ are arrows. If
an arrow σ ∈ AQ connects the vertex i ∈ V Q with the vertex j ∈ V Q, then i = s(σ) is called its start
vertex and j = e(σ) is called its end vertex.

Recall that a right A-module is called serial if it decomposes into a direct sum of uniserial modules,
that is, modules possessing a linear lattice of submodules.

A ring A is called right serial if AA is a serial A-module.
A quiver Q is called right serial if each of its vertices is the starts of at most one arrow.
The quiver of right serial ring is right serial.
Let Nn = {1, . . . , n} and consider a map ϕ : Nn → Nn. We represent ϕ as a right serial quiver Qϕ

by drawing arrows from i to ϕ(i) (i ∈ Nn). A quiver Qϕ contains at least one oriented cycle.
Right serial quivers are considered, for example, in [1]–[3].
We discuss some properties of right serial quivers and its applications.
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Global dimension of semiperfect semidistributive prime
rings

V. V. Kirichenko∗, N. A. Bronickaya∗

We write SPSD-ring for a semiperfect semidistributive ring. A tiled order A is a prime right Noethe-
rian SPSD-ring with the nonzero Jacobson radical. A tiled order A has the classical ring of fractions
Mn(D), where Mn(D) is the ring of all n× n-matrices with elements from division ring D.

We consider tiled orders of finite global dimension [1, §6.10]. Let A be a tiled order in Mn(D),
1 = e11+. . .+enn be the decomposition of 1 ∈Mn(D) into a sum usual matrix idempotents e11, . . . , enn ∈
Mn(D).

Lemma. There exists a tiled order B, which is isomorphic A and 1 ∈ B has the following decom-
position

1 = e11 + . . .+ enn, where e11, . . . , enn ∈ B.

Theorem. There are only finitely many tiled orders in Mn(D) of finite global dimension with the
following decomposition of 1 ∈ B: 1 = e11 + . . .+ enn.

Corollary. There are, up to isomorphism, only finitely many tiled orders in Mn(D) of finite global
dimension.
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On the bands of semigroups

Aleksander Kizimenko

The Clifford’s method of transitive homomorphism system is generalized for description of arbitrary
sublattice of semigroup union.
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Classification of linear operators on a 5-dimensional
unitary space

E. N. Klimenko

The problem of classifying linear operators on a unitary space is a hopeless problem: it has the
same complexity as the problem of classifying any number of linear operators on a unitary space [2].
Moreover, it contains the problem of classifying any system of linear operators on unitary spaces; that
is, unitary representations of any quiver [4, 5].

Nevertheless, each matrix can be reduced to canonical form by Littlewood’s algorithm [3] for reducing
matrices to canonical form under unitary similarity. Various algorithms for reducing matrices to different
canonical forms under unitary similarity were also proposed by Brenner, Mitchell, McRae, Radjavi,
Benedetti and Gragnolini, Sergeichuk, and others; see Shapiro’s survey [6].

For each n, Sergeichuk [4, 5] partitioned the infinite set of canonical n-by-n matrices under unitary
similarity into a finite number of subsets consisting of matrices that can be obtained from the same
parameter matrix. Using Littlewood’s algorithm, we construct the list of all parameter matrices (with
conditions on their parameters) that give canonical 5× 5 matrices under unitary similarity.

This list was constructed twice. First it was obtained by direct calculations. Then we wrote a
computer program that generate this list.

Note that invariants of linear operators on a 4-dimensional complex Euclidean space (more precisely,
of 4-by-4 complex matrices under the action of SO4(C) and O4(C)) were studied in [1].
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Completely isolated subsemigroups of wreath product of
inverse symmetric semigroups

E. Kochubinska

For n ∈ N denote by Nn the set {1, 2, . . . , n} and denote by ISn finite inverse symmetric semigroup.
Let SPNn be the set of partial functions from Nn to ISm

SPNn = {f : A→ ISm | dom(f) = A,A ⊆ Nn}.
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Given f, g ∈ SPNn , the product fg is defined as

dom(fg) = dom(f) ∩ dom(g), (fg)(x) = f(x)g(x) for all x ∈ dom(fg),

where a ∈ Nn, f ∈ SPNn , and fa is defined as:

(fa)(x) = f(xa), dom(fa) = {x ∈ dom(a);xa ∈ dom(f)}.

We consider a partial wreath product of inverse symmetric semigroups

ISm op ISn = {(f, a) ∈ SPNn × ISn | dom(f) = dom(a)},

with the product defined as (f, a)(g, b) = (fga, ab).

If S is a semigroup and T is a subsemigroup of S, then T is called completely isolated if ab ∈ T
implies a ∈ T or b ∈ T .

We show that the only completely isolated subsemigroups of semigroup ISm op ISn are ISm op ISn,
Sm op Sn, (ISm op ISn) \ (Sm op Sn), ISm op Sn, ISm op (ISn \ Sn), (ISm \ Sn) op Sn.
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Multiplication modules, in which every prime submodule is
contained in unique maximal submodule

M. Komarnytskyi∗ and M. Maloyid∗

Let R be associative ring with nonzero identity element. Left R-module M is called a multiplication
module if for every submodule N of M, there exist an ideal B of R such that N = BM .

For a module M, Spec(M) denote the set of all prime submodules of M, Max(M) denote the set of
all maximal submodules of M. Two maximal submodules M1 and M2 of left module M is called to by
related if M/M1

∼=M/M2.

Theorem 1. Let M be any left multiplication module. The following conditions are equivalent:

(1) Every prime submodule of M has, back to isomorphism, the unique simple homomorphic image;

(2) Every prime submodule of M is contained, back to relatednes, in unique maximal submodule of M;

A module M, satisfying these conditions is called lpm-module (left pm-module).

Theorem 2. If M is multiplication left R-module, and Max(M) is retract of Spec(M), then M is
lpm-module.
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On commutative semigroups and splitting preradicals over
them

Mykola Komarnitskyi\, Halyna Zelisko\

The category of acts over commutative semigroup S and the preradicals in the S−Act are considered
[1].

Recall a preradical r : S −Act→ S −Act is called to be splitting, if for every A ∈ S −Act we have
r(A)qB = A.

For example we proved that all preradicals over the commutative monoid S are splitting if and only
if S is union of finite family of groups.

Some corollaries from this result were obtained.
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On 0-cohomology of completely 0-simple semigroups
A. Kostin

The general description of the 0-cohomology for a completely 0-simple semigroup M0(G, I,Λ, P )
was given in [1]. The main result in that paper is that Hn

0 (S,A)
∼= Hn(G,A) for all n > 2. In the case

when n = 2, which is mainly important for the applications, an exact sequence was found only. The
aim of the following proposition is to give a more detailed description for the structure of 0-cocycles in
H2
0 (S,A).

Proposition 1. Let S =M0(G, I,Λ, P ) be a completely 0-simple semigroup, A is a 0-module over
S. Then any 0-cocycle f ∈ Z20 (S,A) is equivalent to a 0-cocycle f̃ ∈ Z20 (S,A) which values do not
depend on µ. More precisely,

f̃(xiλ, yjµ) = ei1ξ(x, y, λ, j),

for some function ξ(x, y, λ, j) which does not depend on i and µ.
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On fractal properties of some Cantor-type sets related to
Q- representation of real numbers

O. Kotova∗, M. Pratsiovytyi†

Let s > 1 be a fixed positive integer, A = {0, 1, . . . , s−1}, Q = {q0, q1, . . . , qs−1} be a set of numbers
with properties:

1) qi > 0;
2) q0 + q1 + . . .+ qs−1 = 1 .

}
(1)

β0 = 0, βi = q0 + q1 + . . .+ qj−1.

Theorem 1. For any x ∈ [0, 1], there exists a sequence of numbers αk ∈ A such that x = βα1 +
∞∑
k=2

[
βαk

∏k−1
j=1 qαj

]
(s-symbol Q-expansion of x).

We denote this expression briefly by 4α1...αk... (s-symbol Q-representation of x). The number is said
to be the k-th Q-symbol of x.

In the talk we describe the fractal properties of the subset M of [0, 1] such that Q-representation
has the following properties:
1. Any l-th (1 < l ∈ N) Q-symbol of x ∈M is arbitrary.
2. Q-symbol with an ordinal number n /∈ {1+ kl}, k = 0, 1, 2, . . . is determined uniquely and it depends
on all previous Q-symbols.

Let us consider a sequence of matrices:

∥∥cnij
∥∥ =




cn01 cn02 . . . cn0(l−1)
cn11 cn12 . . . cn1(l−1)
. . . . . . . . . . . .

cn(s−1)1 cn(s−1)2 . . . cn(s−1)(l−1)


 , n = 1, 2, . . . , cnij ∈ A = {0, 1, . . . , s− 1}.

Theorem 2. If the sequence ||cnij ||∞n=1 is a periodic sequence with a period
(
||cn1+1

ij ||∞n=1, . . . , ||cn1+2
ij ||∞n=1, ||cn1+p

ij ||∞n=1
)

then the Hausdorff-Besicovitch dimension of the set M is the solution of the following equation

s−1∑

i1=0

. . .
s−1∑

ip=0




p∏

k=1


qik

l−1∏

j=1

q
c
n1+k
ikj





x

= 1.

Corollary 1. If all matrices of the sequence ||cnij ||∞n=1 coincide, i.e., cnij = cij , then the Hausdorff-
Besicovitch dimension of the set M is the solution of the following equation

s−1∑

i=0


qi

l−1∏

j=1

qncij



x

= 1.
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Corollary 2. If (ci1 . . . ci(l−1)) = (c01 . . . c0(l−1)), i = 0, s− 1, then the Hausdorff-Besicovitch di-
mension of the set M is the solution of the following equation

(qx0 + . . .+ qs−10 )
l−1∏

j=1

qxc0j = 1.

Corollary 3. If qi =
1
s , then the Hausdorff-Besicovitch dimension of the set M is equal to α0(M) =

1
l logs(s− 1).
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On generalization of the theorem of Ramachandra

F. Kovalchik\, P. Varbanets\

Let S
(m)
1 , S

(m)
2 , S

(m)
3 be the sets of the Hecke zeta-functions Z(as+ b;m) with Grossencharacter

λm(α) = e4mi argα, a, b ∈ R, m is fixed from Z, derivatives, and the logarithms of z-functions, respec-
tively. The logZ(as+ b;m) is defined by analytic continuation from the half-plane σ = <s > 1.
Let

P
(m)
` (s) =

h∏

j=1

f
zj
j (s), fj ∈ S(m)` , zj ∈

{
C if ` = 1;
Z if ` = 2, 3.

Furthermore, let

F (m)(s) = P
(m)
1 (s)P

(m)
2 (s)P

(m)
3 (s)F

(m)
0 (s),

where

F (m)(s) =
∑

α∈Z[i]
α6=0

g(α)

N(α)s
e4mi argα,

F
(m)
0 (s) =

∑

α∈Z[i]
α6=0

Cm(α)

N(α)s
, |Cm(α)| ¿ N(α)ε, ε > 0.

∑

α

|Cm(α)|
N(α)σ

<∞, for σ > 1

2
.

We prove the generalization of the theorem of Ramachandra[1]:

Theorem 1. Let NM (σ, T ) denote the number of zeros of all zeta-functions Z(s,m), |m| ≤ M in
the rectangle σ ≤ <s ≤ 1, |=s| ≤ T , and let B be the constant for which

NM (σ, T )¿ (MT )B(1−σ)(log (MT )2)

Then for h ≤ x, 0 ≤ φ1 < φ2 ≤ π
2 , φ2 − φ1 À exp(−c(log x) + (log log x)−1) we have

S(x, h;φ1, φ2) :=
∑

x<N(α)≤x+h
φ1<argα≤φ2

g(α) =
2φ

π
I(x, h) +R(x, h, φ) (1)
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where

I(x, h) =
1

2πi

h∫

0

(∫

C0(r)
F (0)(s)(v + x)s−1ds

)
dv

R(x, h, φ)¿ x1−
1
B
+ε + h exp

(
−c(log x) 1

3 (log log x)−1
)

(here r = c(log x)−
2
5 (log log x)−1, and C0(r) is the contour by starting from the circle {s ∈ C, |s− 1| =

r}, removing the point s = 1− r, proceeding on the remaining portion of the circle in the anticlockwise
direction).
From the estimates of the number of zeros of the Hecke function Z(s,m) we infer that B = 5

2 if M ∼ T .
We apply the relation (1) for constructing the asymptotic formulas of the summatory functions of type
zω(α)f(α), where ω(α) denotes the number of distinct prime divisors of α in Z[i], and f(α) belongs to
special class of multiplicative functions.
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Characterizations of finite soluble and supersoluble groups

V. Kovaleva[, A. Skiba[

All groups considered are finite. Let X be a class of groups. Then the symbol GX denotes the
product of all normal subgroups E of G such that E ∈ X . Let A, K and H be subgroups of a group
G and K ≤ H ≤ G. Then we say: (i) A X -conditionally covers or avoids the pair (K,H) if there is an
element h ∈ HX such that either AH = AKh or A ∩H = A ∩Kh. A pair (K,H) is called maximal if
K is a maximal subgroup of H. We use S to denote the class of all soluble groups. G is the class of all
groups.

Theorem 1. A group G is soluble if and only if G has a composition series 1 = G0 < G1 < . . . <
Gn = G such that every Sylow subgroup of G S-conditionally covers or avoids each maximal pair (K,H)
of G with Gi−1 ≤ K < H ≤ Gi for some i.

Theorem 2. A group G is soluble if and only if G has a composition series 1 = G0 < G1 < . . . <
Gn = G such that every maximal subgroup of G S-conditionally covers or avoids each maximal pair
(K,H) of G with Gi−1 ≤ K < H ≤ Gi for some i.

Theorem 3. Let G be a group. Then the following statements are equivalent:
(1) G is supersoluble.
(2) Every subgroup of G G-conditionally covers or avoids each maximal pair of G.
(3) Every ∩-irreducible subgroup of G G-conditionally covers or avoids each maximal pair of G.
(4) Every cyclic subgroup of G with prime order and order 4 G-conditionally covers or avoids each

maximal pair of G.

[Francisk Skorina Gomel State University
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The width of verbal subgroups of unitriangular matrices
groups over ring of Z/mZ

V. Kovdrysh

Letm be a positive integer and let Z/mZ be a ring of congruence classes modulom. Let UTn(Z/mZ)
denote the unitriangular group of degree n over ring Z/mZ consisting of all unitriangular matrices

A = e+
∑

1≤i<j≤n
αijeij , αij ∈ Z/mZ,

where e denotes the unit matrix of size n and eij is the matrix having identity in the place (i, j) and
zeros elsewhere ([1]).

For a set of words W = {wi}i∈I and a group G we define the verbal subgroup V (G) of group G as
the subgroup generated by all values of the words wi, i ∈ I in group G. We define the width of verbal
subgroup V (G) as a minimal positive integer k, such that every element from V (G) is a product of at
least k values of the words in group G. If such k does not exist, then we say that group G has a width
∞.

Theorem 1. Let m and n be positive integer, then:
a) the width of each element of lower central series of group UTn(Z/mZ) is 1;
b) the width of each element of commutant series of group UTn(Z/mZ) is 1.
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Posets which are acts over semilattices
I. B. Kozhukhov

An act over a semigroup S is a set X with the mapping X × S → X, (x, s) 7→ xs such that
x(st) = (xs)t for all x ∈ X, s, t ∈ S. A semilattice is a partially ordered set (poset) A in which
every subset {a, b} ⊆ A has the infimum inf{a, b}. It is well known that the semilattice is exactly the
commutative idempotent semigroup (with the multiplication a ·b = inf{a, b}). It is not difficult to check
that every act X over a semilattice S is a poset with the ordering x ≤ y ⇔ x ∈ yS1. It is natural to
ask, which posets can be acts over semilattices? It is proved in [1] that a connected poset X is an act
over a chain iff the set x∇ = {y|y ≤ x} is a chain for every x ∈ X (the connectedness is here equivalent
to the condition ∀x, y ∃z ≤ x, y). It is not difficult to prove that, if X is an act over a semilattice then
the following condition holds: (A) ∀x ∈ X (x∇ is a semilattice).

Consider the following conditions on the map α : X → X: (1) α is isotone, i.e., ∀x, y (x ≤ y ⇒ xα ≤
yα); (2) α is decreasing, i.e. ∀x (xα ≤ x; (3) α is idempotent, i.e. α2 = α; (4) ∀x, y (x = xα& y ≤ x⇒
y = yα).

Proposition 1. Let X be a poset, and Φ be the set of all maps satisfying conditions (1)–(4). Then
Φ is an idempotent commutative semigroup (a semilattice).

It is clear that the poset X is an act over a semilattice iff Φ acts on X transitively, i.e., ∀x, y (x ≤
y ⇒ ∃ϕ ∈ Φ (x = yϕ)). However it doesn’t hold for all posets satisfying (A). For example, for the set
X = {1, 2, 3, 4, 5, 6, 7} where 7 < 5, 6, 6 < 3, 4, 5 < 1, 3, 4 < 1, 2, 3 < 1, 2, there is no ϕ ∈ Φ such that
2ϕ = 3.
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Checking experiments on automata in quasimanifolds

V. A. Kozlovskii

While studying checking experiments on automata different assumptions are made regarding behav-
ior of reference automata and classes with respect to which experiments are considered [1]. Experiments
constructed under restrictions of a given class F normally have greater distinguishing capacity then is
imposed by F , i.e., they are checking experiments with respect to a wider class of automata. A maximal
possible extension of class F characterizes maximal distinguishing capability. It is demonstrated that
for traditionally considered class Fn of all automata with number of states equal to n such extension
leads to classes that are quasimanifolds of automata.

Let us consider Mealy automata A= (S,X, Y, δ, λ), where S, X, Y are correspondingly the set
of states, inputs and outputs, δ is transition function and λ is output function. Input-output word
w = (p, q) is generated by automaton A in state s, if λ(s, p) = q. A checking experiment for (A,F ) is a
set of input-output words W generated by automaton A in a certain state such that if W is generated
by automaton B ∈ F then B contains a subautomaton equivalent to A. Let reference automaton A
be a DD-1 automaton, i.e., any input-output word generated by the state s of A is an initial identifier
of this state [2]. Using graph-theoretic characterizations of automata representations [2] the following
theorem is proved.

Theorem 1. There exists a finite number of quasimanifolds K1,K2, ...,Kf such that 1) an experi-

ment W is a checking experiment for (A,Fn) iff W is a checking experiment for (A,∪fi=1Ki); 2) number

of such quasimanifolds f ≥ 2m if n ≥ 2m, where m = |X|; 3)K(I1A) = ∩fi=1Ki; 4) class ∪fi=1Ki can not
be extended without losing the property of conserving the set of checking experiments for (A,Fn).

This theorem demonstrates that class extension under restrictions of conserving the set of checking
experiments could have a rather complicated structure. This structure determines the complexity of
checking experiments recognition problem. It is demonstrated that in the case considered this problem
is NP -complete.

Analogous results hold for some other classes of automata, for example, for group and lossless
automata.
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Про розв’язання загальних функцiйних рiвнянь,
подiбних до Муфанг, над квазiгрупами

Галина Крайнiчук

Данi тези є продовженням тез [1], де зазначено, що всi загальнi функцiйнi рiвняння, якi мають
по двi появи двох предметних змiнних, а третя — чотири появи (такими, зокрема, є функцiйнi
рiвняння Муфанг), над множиною квазiгрупових операцiй парастрофно рiвносильнi восьми фун-
кцiйним рiвнянням. Нами знайдено розв’язки всiх цих рiвнянь, крiм рiвняння Муфанг. Розв’язок
одного рiвняння подано в [1], розв’язки ще трьох рiвнянь наведено в наступних теоремах.

Теорема 1 Шiстка квазiгрупових операцiй (f1, . . . , f6), що визначенi на множинi Q, є розв’яз-
ком функцiйного рiвняння

F1(F2(x; y);F3(x; z)) = F4(F5(x; y);F6(x; z)) (1)

тодi i тiльки тодi, коли для довiльного елемента e ∈ Q iснує лупа (Q; ·) з нейтральним елемен-
том e, пiдстановки α, β, γ, δ та вiдображення ν множини Q в середнє ядро лупи (Q; ·) такi, що
виконуються рiвностi

f1(x; y) = αx · βy, f2(x; y) = α−1(γf5(x; y) · νx),
f4(y; z) = γy · δz, f6(x; z) = δ−1(νx · βf3(x; z)).

Теорема 2 Шiстка квазiгрупових операцiй (f1, . . . , f6), що визначенi на множинi Q, є розв’яз-
ком функцiйного рiвняння

F1(x;F2(y;F3(x; y))) = F4(x;F5(z;F6(x; z))) (2)

тодi i тiльки тодi, коли iснують пiдстановки α та γ, такi, що виконуються рiвностi

f1(x; γx) = f4(x;αx), f3(x; y) = f r2 (y; γx), f6(x; z) = f r5 (z;αx).

Теорема 3 Шiстка квазiгрупових операцiй (f1, . . . , f6), що визначенi на множинi Q, є розв’яз-
ком функцiйного рiвняння

F1(F2(x; y);F3(x; y)) = F4(F5(x; z);F6(x; z)) (3)

тодi i тiльки тодi, коли iснує перетворення δ, таке, що виконуються рiвностi

f2(x; y) = f `1(δx; f3(x; y)), f5(x; z) = f `4(δx; f6(x; z)).
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Left transitive quasigroups

N. Kroitor

Quasigroup Q (·) is called left-transitive, if in Q (·) the identity is xy · xz = yz is true [1].
The following results are obtained:

1. Any left-transitive quasigroup Q (·) has left unit f , f x = x, ∀x ∈ Q.
2. Any left-transitive quasigroup Q (·) is an LIP -quasigroup.
3. Any loop which is an isotope of a left-transitive quasigroup Q (·) is a group.
4. Every left-transitive quasigroup Q (·) is a left Bol quasigroup, i.e. in Q (·) the identity

x (y · xz) = R−1ex (x · yx) · z

holds.
5. A left-transitive quasigroup Q (·) is isotopic to an abelian group in only case, when Rf is a

quasigroup automorphism.
6. Left nucleus Nl of a left-transitive quasigroup Q (·) has the form

Nl = {a ∈ Q | af = a , ax = xf · a, ∀x ∈ Q} .

7. Any quasiautomorphism γ of a left-transitive quasigroup Q (·) has the form γ = RkRfγ0, where
γ0 is an automorphism of quasigroup Q (·), k is some fixed element of set Q.

8. In any left-transitive quasigroup Q (·), any quasiautomorphism γ is an automorphism of quasi-
group Q (·) in only case, when γ f = f.

9. Examples are constructed.
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The signature operator for graded Hilbert subdifferential
Hodge spaces

Jan Kubarski

There is the well known Hirzebruch signature operator for smooth manifolds and for Lipschitz
manifolds (N.Teleman). The crucial role plays the Hodge theory and the Poincare duality property. In
the lecture we present algebraic aspects of the Hirzebruch signature operator in the category of unitary
or Hilbert spaces.
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Idempotent ideals of associative rings

I. V. Kulakivska

Let A be an associative ring with 1 6= 0. A two-sided ideal I ⊂ A is idempotent, if I2 = I. If
J2 = J , then (I + J)2 = I + J . Denote by I(A) the set of all idempotent ideals of A. The set I(A) is a
commutative band by addition.

If e ∈ A is an idempotent, then the set AeA idempotent ideal.

We will consider semiperfect rings A satisfying the following two conditions:

(a) Let PrA be the prime radical of A and A/PrA is right Noetherian;

(b) the prime radical PrA is T -nilpotent (right and left).

Theorem. If a semiperfect ring A satisfies to conditions (a) and (b), then every ideal I ∈ I(A) has
the form I = AeA for some idempotent e ∈ A.

Nikolaev State University
kulaknic@ukr.net

Cramer’s rule for some two-sided quaternionic matrix
equations

I. Kyrchei

Let M (n,H) be the ring of n × n quaternion matrices. Denote by a.j the jth column and by ai.
the ith row of a matrix A. Suppose A.j (b) denotes the matrix obtained from A by replacing its jth
column with the column-vector b, and Ai. (b) denotes the matrix obtained from A by replacing its ith
row with the row-vector b.

Within the framework of theory of the column and row determinants over the quaternion skew field
[1] the following theorem introduces Cramer’s rule for two-sided quaternionic matrix equations.

Theorem 1. Suppose

AXB = C (1)

is a two-sided matrix equation, where {A,B,C} ∈ M(n,H) are known and X ∈ M(n,H) is unknown. If
ddetA 6= 0 and ddetB 6= 0, then (1) has the unique solution matrix with entries represented as follows

xi j =
rdetj(BB

∗)j.
(
cAi .
)

ddetA ddetB
,

or

xi j =
cdeti(A

∗A). i

(
cB.j

)

ddetA ddetB
,

where cAi . := (cdeti(A
∗A). i (c.1) , . . . , cdeti(A

∗A). i (c.n)) is the row-vector and

cB.j := (rdetj(BB
∗)j. (c1 .) , . . . , rdetj(BB

∗)j. (cn .))
T

is the column-vector for all i = 1, n and j = 1, n.
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Limit theorems for L-functions with an increasing modulus

A. Laurinčikas

Let χ be a Dirichlet character modulo q, and L(s, χ), s = σ + it, be a corresponding Dirichlet L–
function. The first limit theorem for L(1, χ) with real character χ, as q →∞, was obtained by Chowla
and Erdős in 1951. In 1971, 1972, Elliott proved limit theorems for |L(s, χ)| and argL(s, χ) as q →∞.
Stankus [1] generalized the latter results for L(s, χ).

Let F (z) be a holomorphic normalized Hecke eigen cusp form of weight k for the full modular group.
We consider the twisted L-function L(s, F, χ) defined, for σ > k+1

2 , by the Dirichlet series

L(s, F, χ) =
∞∑

m=1

c(m)χ(m)

ms
,

where c(m) are the Fourier coefficients of the form F (z). The function L(s, F, χ) can be analytically
continued to an entire function, and has, for σ > k+1

2 , the Euler product expansion over primes.

We suppose that q is a prime number, and, for Q > 2, denote

MQ =
∑

q∈Q

∑

χ=χ(modq),
χ6=χ0

1,

where χ0 is the principal character mod q. In the report, we consider [2] the weak convergence of
probability measures

µQ
(
|L(s, F, χ)| ∈ A

)
, A ∈ B(R),

µQ
(
argL(s, F, χ) ∈ A

)
, A ∈ B(γ),

and

µQ
(
L(s, F, χ) ∈ A), A ∈ B(C),

where

µQ(. . .) =M−1
Q

∑

q6Q

∑

χ=χ(modq)
χ6=χ0...

1,

and in place of dots a condition satisfied by a pair (q, χ(mod q)) is to be written. Here B(S) is the class
of Borel sets of the space S, and γ is the unit circle on C.

Similar problems can also be discussed for L-functions of elliptic curves.
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On pro-2-completion of first Grigorchuk group

Yuriy Leonov

Let Gr be the first Grigorchuk group constructed in [1]. It is a well-known 3-generated infinite
2-group, which is subgroup of automorphism group Aut T2 of the rooted dyadic tree T2. Generators of
Gr = 〈a, b, c〉 can be described recursively (d = bc) using its action on subtrees:

b = (a, c), c = (a, d), d = (e, b),

where a permutes 2 subtrees of level one, e is the neutral element of Aut T2.
Let Gr be pro-2-completion of Gr. Let’s regard the new elements of the group Aut T2:

z = (q, x)a, x = (r, z), r = (u, z), u = (x, e), q = (z, r)

and a group W = 〈z, x, r, u, q〉. Regard also the semigroup W+ generated by the same set of elements
(with positive powers of generators).

Theorem. 1. Pro-2-completion of the group W is a subgroup of Gr.
2. Semigroup W+ is without torsion.

Corollary. 1. Completions of groups Gr and W ′ = 〈a, b, c, z〉 coincide.
2. Groups Gr and W ′ are not isomorphic.
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On weakly coercive differential polynomials in two
variables in the L∞ norm

D. Limanskii

A differential polynomial P (D) =
∑
|α|≤l aαD

α of order l is called weakly coercive in the isotropic

Sobolev space
◦
W l
∞(Rn) if it obeys the a priori estimate

∑

|α|≤l−1
‖Dαf‖L∞(Rn) ≤ C1‖P (D)f‖L∞(Rn) + C2‖f‖L∞(Rn),

where constants C1 and C2 do not depend on f ∈ C∞0 (Rn).
Denote by P l(ξ) :=

∑
|α|=l aαξ

α and P l−1(ξ) :=
∑
|α|=l−1 aαξ

α the l- and (l− 1)-homogeneous parts
of the polynomial P (ξ) =

∑
|α|=l aαξ

α.

The following result provides an algebraic criterion for weak coercivity in
◦
W l
∞(R2).

Theorem 1. [1] Let P (D) be a differential polynomial in two variables of order l, and assume that
all the coefficients and zeros of P l(ξ) are real. Then P (D) is weakly coercive in the isotropic Sobolev

space
◦
W l
∞(R2) if and only if the polynomials P l(ξ) and ImP l−1(ξ) have no common nontrivial real

zeros.

The proof of Theorem 1 is based on the fact that a weakly coercive polynomial in two variables
has no multiple real zeros, and on the decomposition of a ratio of two homogeneous polynomials in two
variables into a sum of partial fractions.
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On isomorphisms of nilpotent decompositions of finitely
generated nilpotent groups of class 3 without torsion

V. Limanskii

A free product G ∗ H of groups G and H in a variety M is calculated by formula G ◦ H = G ∗
H/V (G ∗H). Here V (G ∗H) denotes the verbal subgroup of G ∗H corresponding to M. Let M be a
nilpotent variety of class 3.

Theorem. Suppose that G1 ◦G2 ◦ · · · ◦Gk = H1 ◦H2 ◦ · · · ◦Hl are two decompositions of a finitely
generated nilpotent group without torsion having indecomposable and non-identity factors. Then k = l,
and Gi

∼= Hi, i ∈ {1, . . . , k}, after a suitable renumbering of factors.
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Differentially finite and endomorphically finite rings

I. I. Lishchynsky

We discuss some results of our joint work with O. D. Artemovych.
Let R be an associative ring with an identity element. If δ(r) = 0 for almost all r ∈ R, then a

derivation δ : R→ R is called finite. We study rings with every derivations finite and prove

Theorem 1. Let R be a left Noetherian ring. Then all derivations of R are finite if and only if R
is of one of the following types:

(i) R is a finite ring;
(ii) R is a differentially trivial ring;
(iii) R = F ⊕ S is a ring direct sum of a finite ring F and a differentially trivial ring S.

Recall that a ring R having no non-zero derivations is called differentially trivial [1].
We also investigate EF-rings, i.e. rings R with the finite images Imσ for any nonidentity ring

endomorphism σ of R. Each rigid ring is an EF-ring. Recall that a ring R is called rigid if it has only
the trivial ring endomorphisms, i.e., the identity idR and zero 0R [2].

Theorem 2. Let R be a left Artinian ring. Then R is an EF-ring if and only if it is of one of the
following types:

(i) R is a finite ring;
(ii) R is a rigid ring (i.e. R is a rigid field of characteristic 0 or R is isomorphic to some ring of

integers modulo a prime power pn).
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On action of derivations on nilpotent ideals of associative
algebras

V. S. Luchko

Let A be an associative algebra (not necessarily finite dimensional) over a field F . Recall that an
F -linear mapping D : A −→ A is called a derivation of A if D(ab) = D(a)b + aD(b) for arbitrary
elements a, b ∈ A. Every element a ∈ A defines an inner derivation Da : x −→ [a, x] = ax − xa, where
x ∈ A. The set of all derivations of an algebra A will be denoted by Der(A). An ideal I of the algebra
A is said to be characteristic if D(I) ⊆ I for any derivation D ∈ Der(A). In [2] G.Letzter has proved
that the Levizki radical (the largest locally nilpotent ideal) of an associative ring R is characteristic
provided that the additive group R+ is torsion-free. This result is an analogue for associative rings of
a result of B.Hartley [1] about locally nilpotent radical of a Lie algebra in zero characteristic.

If I is a nilpotent ideal of an associative algebra A over a field of positive characteristic then the
ideal I + D(I) may be not nilpotent. Thus, it is of interest to find conditions under what the ideal
I +D(I) is nilpotent and the sum of all nilpotent ideals is characteristic.

If I is an ideal of an associative algebra A, then the index of nilpotency n(I) is a natural number
such that In(I) = 0, In(I)−1 6= 0. Further, N(A) denotes the sum of all nilpotent ideals of the algebra A.
The ideal N(A) is locally nilpotent, i.e. each of its subalgebras generated by finite number of elements
from N(A) is nilpotent.

Theorem. Let A be an associative algebra over a field F , let I be a nilpotent ideal of index n from A
and D ∈ Der(A). Then I+D(I) is a nilpotent ideal of index ≤ n2 in the following cases: 1) charF = 0;
2) charF = p > 0 and n < p.

Corollary. Let A be an associative algebra over a field F and N(A) be the sum of all nilpotent
ideals of the algebra R. Then N(A) is a characteristic ideal of A in the following cases: 1) charF = 0;
2) N(A) is a nilpotent ideal of index < p, where p = charF > 0.

Note that the restriction on the index of nilpotency in these statements cannot be omitted because
there exists an associative algebra A over a field of characteristic p and D ∈ Der(A) such that I +D(I)
is non-nilpotent for a nilpotent ideal I of the algebra A with n(I) = p.
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Norm of cyclic subgroups of non-prime order in p-groups
(p 6= 2)

T. D. Lukashova∗, M. G. Drushlyak∗
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In the modern theory of groups an important place is occupied by results, got at the study of groups
depending on properties of different characteristic subgroups, in particular, the center of group, the
commutant of group and others. Effective direction of researches is also a study of groups in which
restrictions are put on the wide class of characteristic subgroups — on Σ-norm. In this abstract the
system Σ is the system of all cyclic subgroups of non-prime order. Such Σ-norm is called the norm of
cyclic subgroups of non-prime order and is denoted NG(Cp) (see [1]). Thus, the norm NG(Cp) is the
intersection of normalizers of all cyclic subgroups of non-prime order (on condition that the system of
such subgroups is not empty).

The norm NG(Cp) of cyclic subgroups of non-prime order in non-periodic groups was studied in [1].
In the case when the periodic group G coincides with the norm NG(Cp), all cyclic subgroups of the
compound order are invariant in the group G. Non-Dedekind groups of such type were studied in [2]
and were called almost Dedekind groups.

Lemma 1. The norm NG(Cp) of cyclic subgroups of non-prime order of p-group G (p 6= 2) is
Abelian, if there exist such cyclic subgroup 〈x〉 of compound order in the group G, that 〈x〉∩NG(Cp) = E.

Lemma 2. If norm NG(Cp) of cyclic subgroups of non-prime order of locally finite p-group G
(p 6= 2) is non-Abelian, then every cyclic subgroup of compound order of the group G contains commutant
of the norm NG(Cp).

Corollary 1. The norm NG(Cp) of cyclic subgroups of non-prime order is Abelian, if the group G
contains the subgroup of type (p2, p2).

Theorem 1. If p-group G (p 6= 2) satisfies the minimal condition for subgroups and has non-
Abelian norm NG(Cp) of cyclic subgroups of non-prime order, then it is the finite extension of the
central quasicyclic subgroup.

Corollary 2. The p-group G (p 6= 2), which has the non-Abelian norm NG(Cp) of cyclic subgroups
of non-prime order, does not contain products of two quasicyclic subgroups.

Corollary 3. If the p-group G (p 6= 2) satisfies the minimal condition for subgroups and has the
non-Abelian norm NG(Cp) of cyclic subgroups of non-prime order, then [G : NG(Cp)] ≤ ∞.

Corollary 4. If the p-group G (p 6= 2) is infinite extension of the norm NG(Cp), then either the
norm NG(Cp) of cyclic subgroups of non-prime order is Abelian or the group G does not satisfy the
minimal condition for subgroups.
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Algebraic Approach to Problem Solving of Linear
Inequalities System

M. Lvov

In the present report the algebraic approach to designing the algorithm of solution of linear in-
equalities system (LIS) is developed. The essence of the matter is that multisorted algebraic system
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(MAS) AConstr in which LIS presented as the expression S is constructively defined. LIS solution is
computation of the value as element of AConstr of MAS S - special canonical form of S. The result
of applying this approach is the algebraic programs - specifications of MAS. These specifications use
notions of inheritance, extensions and morphisms of MAS.
This canonical form permits also to describe algorithms of transformation of multiple integral on poly-
hedral domain to iterated integral, changing the integration’s order, solving the problem of linear pro-
gramming. We use the idea of projecting the methods of Furier-Motskin and Chernikov. The description
of MAS uses:
Sort Variable - linearly ordered set of variables.
Sort ExtCoef - linearly ordered field Coef, extended with symbols −∞,+∞.
Sort LinComb(Coef, Variable) - affine space of linear combinations.
Sort LinUnEqu - algebra of linear inequalities, presented in the form

xn ≤ a1x1 + · · ·+ an−1xn−1, or xn ≥ a1x1 + · · ·+ an−1xn−1

Sort VarSegment - sort of elementary segments of solution’s space of LIS over ExtCoef. Element of
VarSegment has the form S = [L(Y ), x,G(Y )] with semantics L(Y ) ≤ x ≤ G(Y ).
Sort Trapezoid - sort of elementary trapezoids in solution’s space of LIS over ExtCoef. The element
is defined by construction

T = Sn.Sn−1. . . . .S1, Sj = [Lj(Xj−1), xj , Gj(Xj−1]), Xk−1 = (x1, . . . , xk−1)

with semantics
T = (Ln(Xn−1) ≤ xn ≤ Gn(Xn−1))& . . .&(L1 ≤ x1 ≤ G1).

Sort ConPol - sort of convex polygons in solution’s space of LIS over ExtCoef. The element can be
presented by canonical form

P = T1 ++T2 ++ . . .++Tk, Ti ∈ Trapezoid,

i.e. splitted on sum of disjointed trapezoids.
Mark in conclusion that this approach is applicable for a wide class of subject domains, it permits to
obtain well structured algebraic programs, also to solve problems of synthesis and verification of appro-
priated algebraic problems.

Kherson State University, 40 Rokiv Zhovtnya
str., 27, Kherson, 73000, Ukraine.
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On non-periodic groups with non-Dedekind norm of
Abelian non-cyclic subgroups

F. M. Lyman[, M. G. Drushlyak[

The intersection of normalizers of all Abelian non-cyclic subgroups of group G is called the norm
of Abelian non-cyclic subgroups and is denoted NA

G . If the norm NA
G contains Abelian non-cyclic

subgroups, then all of them are invariant in it, and subgroup NA
G is either Dedekind, or HA-group [1].

Properties of subgroup NA
G influence on properties of group G, especially, when NA

G is non-Dedekind.
In abstract authors proceed (see [2]) researches of non-periodic groups with the non-Dedekind norm

NA
G of Abelian non-cyclic subgroups, in particular, in the case when NA

G is finite extension of infinite
cyclic subgroup, which is basic for non-periodic HA-group.
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Theorem 1. The norm NA
G of Abelian non-cyclic subgroups of non-periodic group G is Dedekind

in each of following cases:

1) subgroup NA
G is finite;

2) group G contains Abelian non-cyclic subgroup M , which satisfies the condition M ∩NA
G = E;

3) group G contains the infinite cyclic invariant subgroup 〈g〉, which satisfies the condition (〈g〉) ∩
NA
G = E.

Theorem 2. Let G be the non-periodic locally soluble group. Suppose that its norm NA
G of Abelian

non-cyclic subgroups is non-Dedekind and is finite extension of infinite cyclic subgroup. If the group G
is also finite extension of infinite cyclic subgroup, then its centralizer contains all elements of infinite
order of the group and it is the product of invariant cyclic p-group or quaternion group and infinite
cyclic group.
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A∞-categories via operads and multicategories

V. Lyubashenko

A∞-algebras and (unital) A∞-categories are generalizations of dg-algebras and dg-categories. They
are related to operads and multicategories in two ways. First of all, operations in (unital) A∞-algebras
and A∞-categories form a (non-symmetric) dg-operad, which is an instance of enriched multicategory
with one object. This dg-operad is a resolution of the corresponding notion for dg-algebras. We discuss
various notions of unitality for A∞-categories and their equivalence in non-filtered case.

Secondly, A∞-categories form a closed category and, moreover, they are objects of a symmetric closed
multicategory. The latter property holds also for unital A∞-categories. This point of view leads to the
notion of a pretriangulated A∞-category, which is a generalization of a pretriangulated dg-category.
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Spectrum of Prime Fuzzy Subhypermodules

R. Mahjoob∗, R. Ameri

Let R be a commutative hyperring with identity and M be an unitary R-hypermodule. We intro-
duce and characterize the prime fuzzy subhypermodules of M. We investigate the Zariski topology on
FHspec(M), the prime fuzzy spectrum of M, the collection of all prime fuzzy subhypermodules of M.
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On action of outer derivations on nilpotent ideals of Lie
algebras

D. V. Maksimenko

If L is a Lie algebra over a field K, then a K-linear mapping D : L→ L is called a derivation of L
provided that D([x, y]) = [D(x), y] + [x,D(y)] for all elements x, y ∈ L. The set of all derivations of a
Lie algebra L will be denoted by Der(L) (it is also a Lie algebra relative to the operation [D1, D2] =
D1D2 −D2D1). An ideal I of the algebra L is said to be characteristic if D(I) ⊆ I for any derivation
D ∈ Der(L). It is well known that the nilradical (the sum of all nilpotent ideals) of a finite dimensional
Lie algebra over a field of characteristic 0 is characteristic. It was shown in [2] that for an arbitrary
Lie algebra L (not necessarily finite dimensional) over a field of characteristic 0 and D ∈ Der(L) the
image D(I) of a nilpotent ideal I ⊆ L lies in some nilpotent ideal of the algebra L. The restriction on
characteristic of the ground field is essential while proving this assertion.

Using methods that are analogous to ones in [4] during the investigation of behavior of solvable
ideals under outer derivations we show that the similar assertion is true for modular Lie algebras.

The main result of the work is the following theorem:

Theorem. Let I be a nilpotent ideal of nilpotency class n of a Lie algebra L over a field of char-
acteristic 0 or characteristic p > n+ 1 and D ∈ Der(L). Then I +D(I) is a nilpotent ideal of the Lie
algebra L of nilpotency class at most n(n+ 1)(2n+ 1)/6 + 2n.
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We should note that the estimation of nilpotency class of the ideal I + D(I) from this theorem is
rather rough.

Corollary. Let L be a Lie algebra (not necessarily finite dimensional) over a field F, let N(L) be
the sum of all nilpotent ideals of L. If the ideal N(L) is nilpotent, then it is a characteristic ideal in the
following cases: a) charF = 0; b) charF = p > 0 and nilpotency class of N(L) is less than p− 1.

The restriction on nilpotency class in the last statement cannot be omitted. Really, in [1], p.74-75
an example of Lie algebra L of characteristic p is constructed such that the nilradical N of L is of
nilpotency class p and N +D(N) is non-solvable for a derivation D ∈ DerL.
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On multiacts over right zero semigroups

M. Yu. Maksimovski

A right act over a semigroup S [1] is the set X with the mapping X ×S → X, (x, s) 7→ xs such that
x(st) = (xs)t for all x ∈ X, s, t ∈ S. Similarly we can define a left act. If two or several semigroups acts
on the set X, then we can define a biact and a multiact. A biact [1] over two semigroups S and T is
the set X which is a left S-act and a right T -act, and the actions of these semigroups are commutative,
i.e., (sx)t = s(xt) for all s ∈ S, t ∈ T , x ∈ X. If the set X is a right act over a family of semigroups
{Si|i ∈ I} and (xsi)sj = (xsj)si for all x ∈ X, si ∈ Si, sj ∈ Sj , then we call X a multiact over the
family of semigroups {Si|i ∈ I}. In [2] were described acts over right zero and left zero semigroups.
Our results generalize theorems of [2] on multiacts over right zero and left zero semigroups. Namely,
the following theorem is proved.

Theorem. Let X, {Ri|i ∈ I} be the sets, σi be the equivalence relations on X for every i ∈ I, and
σij = sup{σi, σj} for all i, j ∈ I and i 6= j. For any r ∈ Ri, let Y

i
r be a set of the representatives of the

σi accordingly, i.e., for all i ∈ I, r ∈ Ri, x ∈ X

|Y i
r ∩ xσi| = 1.

Let the following condition be fulfilled: for every x ∈ X, every i, j ∈ I such that i 6= j, there exists an
element a ∈ Kij (here Kij is the σij-class of the element x) such that

Y i
r ∩ aσj = {a}.

For r1, r2 ∈ Ri we put r1r2 = r2. Then Ri is a right zero semigroup, for all i ∈ I. Put now

xr = x′ ∈ Y i
r ∩ xσi

(x ∈ X, r ∈ Ri). Then X is a multiact over the family of right zero semigroups {Ri|i ∈ I}. Conversely,
every multiact over a family of right zero semigroups can be obtained by this way.
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Decomposition numbers for Schur superalgebras S(m|n)
for m + n ≤ 4
Frantisek Marko

The focus of this talk are Schur superalgebras S = S(m|n) in positive characteristic p. We recall basic
structural results in characteristic zero and explain some corresponding results in positive characteristic.
In particular, we have computed decomposition numbers and filtrations of costandard modules by simple
modules for S = S(3|1), S(2, 2), S(2|1) and S(1|1). Knowledge of characters of simple modules for these
S allowed us to confirm a conjecture of La Scala - Zubkov about superinvariants of the general linear
supergroup GL(m|n).

(Part of the talk is a joint work with A.N. Grishkov and A.N.Zubkov.)

Pennsylvania State University,
Hazleton, USA
fxm13@psu.edu

On certain collections of submodules

Yu. P. Maturin

Let R be a ring and let M be a left R-module.
We shall consider the following conditions for a collection F (M) of some submodules of M:
C1. L ∈ F (M), L ≤ N ≤M ⇒ N ∈ F (M);
C2. L ∈ F (M), f ∈ End(M)⇒ (L : f)M ∈ F (M);
C3. N,L ∈ F (M)⇒ N ∩ L ∈ F (M);
C4. N ∈ F (M), N ∈ Gen(M), L ≤ N ≤M ∧ ∀g ∈ End(M)N : (L : g)M ∈ F (M)⇒ L ∈ F (M);
C5. N,K ∈ F (M), N ∈ Gen(M)⇒ t(K⊆M)(N) ∈ F (M).

Definition. A non-empty collection F (M) of submodules of a left R-module M satisfying (C1),
(C2), (C3) [(C1), (C2), (C3), (C4)] is said to be a preradical [radical] filter of M .

Let Rf(M)[Pr f(M)] be the set of all radical [preradical] filters of M .

Theorem. If M is a semisimple left R-module with a unique homogeneous component then
(i) Rf(M) = Pr f(M);
(ii) (Rf(M),⊆) is a chain;
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(iii) M is a non-zero module of finite composition length then

Rf(M) = {{{0}}, {L|L ≤M}}.
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On quasi-prime differential modules and rings

I. Melnyk[, M. Komarnytskyi∗

Let (R,∆) be an associative differential ring with nonzero identity, and let (M,D) be a differential
module over (R,∆), where ∆ = {δ1, . . . , δn} is the set of pairwise commutative ring derivations, D =
{d1, . . . , dn} is the set of module derivations consistent with the corresponding ring derivations δi.

Recall from [1] that a differential submodule N is quasi-prime if there exists an m-system S of R
and Sm-system X of M such that N is maximal among differential submodules not meeting X.

A differential submodule N of M is called differentially prime if M/N is differentially prime, i. e.
if the left annihilator of each of its nonzero submodules coincides with the annihilator of the module
M/N .

Theorem 1. If P is a quasi-prime differential submodule of the differential module M , then P is
differentially prime in M .

We call a differential ring quasi-prime if its zero (differential) ideal is quasi-prime.

Proposition 1. Let P be a differential ideal of the differential ring R. Then the factor ring R/P
is quasi-prime if and only if P is a quasi-prime ideal of R.

It is clear that any differentially simple ring is quasi-prime. Every differential integral domain is a
quasi-prime differential ring. The matrix ring over a differential domain is quasi-prime. It follows from
the above proposition, that the factor rings R/M , R/P , where M is maximal among differential ideals,
P is prime ideal, are quasi-prime.

A differential ring is quasi-semiprime if it has no nonzero differentially nilpotent ideals.

Theorem 2. A direct product of quasi-prime differential rings is a quasi-semiprime ring.

We also consider a question on ultraclosedness of a class of quasi-prime differential modules and
rings.
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Homogeneous Markov chains

I. A. Mikhailova

Let P = (pij) ∈ Mn(R) be a transition matrix for a finite homogeneous Markov chain (see [1, Ch.

6]). In this case pij ≥ 0 and
n∑
j=1

pij = 1 (i = 1, . . . , n), i.e., P is stochastic.

Let B = (bij) ∈Mn(R) be a non-negative matrix. Using B one can construct a simply laced quiver
Q(B) in the following way:

(a) the set of vertices V Q(B) of Q(B) is {1, 2, . . . , n};
(b) there is one arrow from i to j if and only if bij > 0.
Let P = {α1, . . . , αn} be a finite poset and [Q(P )] = B the adjacency matrix of Q(P ). B =

[Q(P )] = (bij) is (0, 1)-matrix with zero main diagonal. Let
n∑
j=1

bij = βj (j = 1, . . . , n) and D =

diag(β−11 , . . . , β−1n ). Then DB is a stochastic matrix with Q(DB) = Q(P ). A Markov chain with the
transition matrix DB is absorbing.
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An example of the Jordan algebras variety with the almost
polynomial growth

S. P. Mishchenko\, A. V. Popov†

We give here the first example of the variety of Jordan algebras with almost polynomial growth.
Necessary definitions see for instance in the books [1] and [2].

Let F be a field of characteristic zero and V be the variety of linear algebras over F. Let Pn(V) be
the vector space of the multilinear polynomials in the first n variables of relatively free algebra. The
sequence of dimensions cn(V) = dimPn(V) defines the growth of the variety V.

Let λ = (λ1, λ2, . . . ) be the partition of the number n and χλ the corresponding irreducible character
of the symmetric group Sn. We can consider Pn(V) as Sn−module and decompose its character χn(V)
into the sum of irreducible characters with multiplicities mλ

χn(V) =
∑

λ`n
mλχλ. (1)
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Let A be the commutative algebra generated by t, ai, bi, i = 1, 2, . . . , over F with relations: the
product of any words of degree more than one will be zero and also aiaj = 0, bibj = 0, t2 = 0, aibj = 0,
tbi = 0, t . . . aiaj = 0, t . . . bibj = 0, t . . . aibjai+1 = −t . . . ai+1bjai, t . . . biajbi+1 = −t . . . bi+1ajbi for any
i and j.

Theorem 1. Let V be the variety generated by the algebra A. Then

1) V is the variety of Jordan algebras defined by the identity (xy)(zt) ≡ 0;

2) V is the variety of the almost polynomial growth;

3) cn(V) = k
(
n
k+1

)
, where k =

[
n
2

]
is the integer part of n

2 ;

4) the multiplicities in (1) satisfy the next conditions: mλ = 0 if λ = (1n) or λ1 ≥ 4 or λ1 = λ2 = 3
and other multiplicities are equal to 1.

The authors were partially supported by RFBR grant 07-01-00080.
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On a finite group having a normal series with restriction on
its factors

V. S. Monakhov∗, A. A. Trofimuk∗

By the Zassenhaus Theorem [1, IV, Satz 2.11] the commutant of a finite group with cyclic Sylow
subgroups is a cyclic Hall subgroup such that the corresponding quotient group is also cyclic. Hence
the derived length of such group is no greater than 2.

Recall that a group G is bicyclic if it is the product of two cyclic subgroups. The invariants of finite
groups with bicyclic Sylow subgroups were found in paper [2]. In particular, it is proved that the derived
length of such groups is at most 6 and the nilpotent length of such groups is at most 4.

It is easy to show that a finite group is supersolvable if it has a normal series such that every Sylow
subgroup of its factors is cyclic.

In this paper we study a finite group having a normal series with bicyclic Sylow subgroups of its
factors. We prove the following

Theorem. Let G be a solvable group having a normal series such that every Sylow subgroup of its
factors is bicyclic.

1) The nilpotent length of G is at most 4 and the derived length of G/Φ(G) is at most 5.
2) G contains a normal Ore dispersive subgroup N such that G/N is supersolvable.
3) l2(G) ≤ 2 and lp(G) ≤ 1 for every prime p > 2.
4) G contains the normal Ore dispersive {2, 3, 7}′-Hall subgroup.
Here Φ(G) is the Frattini subgroup of a group G and lp(G) is the p-length of G.
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Finite state conjugation of linear functions on the ring of
n-adic integer numbers

D. Morozov[, Yu. Bodnarchuk[

Automorphisms of the one rooted infinite binary tree Tn (the degree of all vertices except the root
one equals n+1) can be identified with bijections of the ring Zn of integer n-adic numbers. For instance,
the so-called adding machine ε can be defined as the function x → x + 1, x ∈ Zn. As well known, the
centralizer CAutTn(ε) is a closure of the cyclic group < ε > in the topology of projective limit on AutTn
and consists of the functions x→ x+ p, p ∈ Zn, CAutTn(ε) ' Z+n .

Here we investigate the conjugation problem for automorphisms of Tn, which can be realized as
linear functions of the form x→ ax+b, a ∈ Z∗n, b ∈ Zn in the finite state automorphisms group FAutTn.
Let Zqpn be the set of quasi-periodic n-adic integers then finite state automorphisms which are linear
functions can be characterized in such a manner.

Lemma. A linear function f(x) = ax+ b is a finite state automorphism if and only if a ∈ Z qp∗
n , b ∈

Zqpn .

We say that automorphism is a spherical homogeneous if it acts transitively on vertices which are
equidistant from the root one. Adding machine ε is an example of such an automorphism. As well
known all spherical homogeneous automorphisms are conjugate in AutTn.

Theorem. Two spherical homogeneous finite state automorphisms f1(x) = a1x+ b1, f2(x) = a2x+
b2, a1, a2, b1, b2 ∈ Zqp∗n which are linear functions are conjugate in FAutTn, if and only if a1 = a2.

In particular, the spherical homogeneous finite state automorphism in FAutT2 x → 5x + 1 is not
conjugate to ε : x → x + 1. This phenomena can be explained in such a manner. It is easy to prove
that if an equation (x+ 1)χ = 5x+ 1 have a solution χ ∈ FAutT2 then it has a solution χ0 ∈ FAutT2
such that 0χ = 0, 0 ∈ Z2. On the other hand it is known that for spherical homogeneous automorphisms
g1, g2 ∈ AutT2 for any pair of points x, y ∈ Z2 there exists χ ∈ AutT2 such that gχ1 = g2 and xχ = y,
moreover the last condition defines χ uniquely. Let χ0 = 5x−1

4 be a function which is defined for a
natural x and extended by continuity on Z2. It is easy to check that χ0 ∈ AutT2, satisfies the equation

and 0χ0 = 0 so it is unique solution in AutT2 which leaves immovable 0. But χ0 :
1
3 →

3√5−1
4 and we get

that some periodic sequence of digits transforms to the aperiodic one, which implies that χ0 6∈ FAutT2.
Remark that linear functions f(x) = 5x+ 1, f−1(x) = (1/5)(x− 1), are not conjugated in FAutT2,

so FAutT2 is not ambivalent in contrast to AutT2.
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On a Heyde characterization theorem for discrete Abelian
groups

M. Myronyuk

A lot of studies were devoted to characterizations of a Gaussian distribution on the real line. Specif-
ically, in 1970 Heyde proved the following theorem.

Heyde theorem ([1, §13.4.1]). Let ξj, j = 1, 2, ..., n, n ≥ 2, be independent random variables. Let
αj, βj be nonzero constants such that βiα

−1
i ± βjα

−1
j 6= 0 for all i 6= j. If the conditional distribution

of L2 = β1ξ1 + · · · + βnξn given L1 = α1ξ1 + · · · + αnξn is symmetric then all random variables ξj are
Gaussian.

Let X be a locally compact separable Abelian metric group, Aut(X) the set of topological auto-
morphisms of X. Let ξj , j = 1, 2, ..., n, n ≥ 2, be independent random variables with values in X and
distributions µj . Consider the linear forms L1 = α1ξ1 + · · · + αnξn and L2 = β1ξ1 + · · · + βnξn, where
αj , βj ∈ Aut(X) such that βiα

−1
i ± βjα−1j ∈ Aut(X) for all i 6= j. Formulate the following problem.

Problem 1. Describe groups X for which the symmetry of the conditional distribution of the linear
form L2 given L1 implies that all distributions µj are either Gaussian or belong to a class of distributions
that can be considered as a natural analogue of the class of Gaussian distributions.

Problem 1 has not been solved, nevertheless it was studied in different important subclasses of the
class of locally compact Abelian groups. In [2] Problem 1 was completely solved in the class of finite
Abelian groups, and then in [3] it was solved in the class of countable discrete Abelian groups.

Formulate now the following general problem.
Problem 2. Let X be a locally compact separable Abelian metric group. Assume that the condi-

tional distribution of the linear form L2 given L1 is symmetric. Describe possible distributions µj .
Problem 2 was solved in the class of finite Abelian groups in [4]. We solve Problem 2 in the class of

countable discrete Abelian groups.
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About Sets of Congruences on Some Subsemigroups of the
Semigroup of Linear Relations

M. I. Naumik

Let V be a left-vector space over a substance. We recall that a linear relation on V is a subspace of
a space V

⊕
V and denote the multiplicative semigroup of all linear relations on V by LR(V ).

Let LV (V ) and LW (V ) be subsemigroups of the semigroup LR(V ), and consequently of all partial
coisolated linear transformations and all partial linear transformations. The description of congruences
on these semigroups one can find in [1, 2].

Theorem 1. A set of congruences on LW (V ) is a semiset of the set of all binary relations on
LW (V ). In particular, it is a distributive set.

Theorem 2. A set of congruences on LV (V ) is a semiset of the set of all binary relations on
LV (V ). In particular, it is a distributive set.

These results are the continuations of the development of the idea by A.I. Maltsev [1].
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On nondegeneracy of Tate pairing for curves over complete
discrete valuation fields with pseudofinite residue fields

V. Nesteruk

We study the Tate pairing for curves over complete discrete valuation fields with pseudofinite residue
fields.

Let C be an absolutely irreducible projective curve defined over a field k and let K be an algebraic
extension of k, (m, char(k)) = 1. For divisor classes x ∈ Cl0(K(C))[m] and y ∈ Cl0(K(C))/mCl0(K(C))
there are coprime divisors D and R such that x = [D] and y = [R] +mCl0(K(C)), and there exists a
function f ∈ K(C) such that (f) = mD.

Definition. The Tate pairing

tm : Cl0(K(C))[m] × Cl0(K(C))/mCl0(K(C)) −→ K∗/(K∗)m

is defined by tm(x, y) = f(R).

F. Hess in [1] presented an elementary proof of the nondegeneracy of the Tate pairing for curves
over finite fields. Also, M. Papikian in [2] proved the nondegeneracy of the Tate pairing for curves over
complete discrete valuation fields with finite residue field. We prove the nondegeneracy of the Tate
pairing for curves over complete discrete valuation fields with pseudofinite residue field. Namely,

Theorem. The Tate pairing tm is nondegenerate for curves over complete discrete valuation fields
with pseudofinite residue field.
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Composition Nominative Algebras as Computer Program
Formalism

Mykola Nikitchenko

The aim of the talk is to present the definition, properties and applications of Composition Nomi-
native Algebras (CNA), which can be considered as adequate models of program semantics of various
levels of abstraction and generality.

Formalization of program semantics is based on the following main principles.
Development Principle (from abstract to concrete): the notion of program should be introduced

as a process of its development which starts from abstract understanding capturing essential program
properties and proceeds to more and more concrete considerations, thus gradually revealing the notion
of program in its richness.

Compositionality Principle: programs can be considered as functions which map input data into
results, and which are constructed from simpler programs (functions) with the help of special operations,
called compositions.

Nominativity Principle: structures of programs data are based on nominative (naming) relations.
In accordance with these principles, CNA can be defined as algebras of functions over nominative

data with compositions as operations.
Three types of CNA are investigated, which correspond to abstract, collective and hierarchic levels in

data considerations. On the collective level such data types as presets, sets, and nominates are specified.
Presets are considered as collections without equality of their elements, sets are presets with equality
and membership relation, and nominates are specified as collections of named elements. The main
attention is paid to the hierarchical level of data construction. Algebras of this level are very expressive
and can be used to construct formal models of specification, programming and database languages.

The main problems studied for CNA are various completeness problems, especially problems of
compositional and computational completeness. Special notions of abstract computability over various
data structures – natural computability of functions and determinant computability of compositions –
are introduced; complete classes of computable functions and compositions of various abstraction levels
are defined. For example, in the simple case of functions over nominates a finite set of names V and
arbitrary preset of basic values W is built on, the complete class of corresponding computable functions
precisely coincides with the class of functions obtained by closure of naming, denaming and checking
functions under multiplication, iteration and overlaying compositions.

CNA, which were primarily oriented on programming, can be also considered in a more general
setting as formal models of predicate languages. Such considerations lead to special kinds of logics
called Composition Nominative Logics. Logics of various abstraction levels are defined, corresponding
calculi are constructed, their soundness and completeness/incompleteness proved (details are presented
in [1]).
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In the whole, we can say that CNA can be considered as simple but powerful formal models of
program semantics which are also applicable to some other important problem domains, in particular,
to mathematical logic and computability theory.
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Groupoid of idempotents of a finite semigroup

BorisV.Novikov

Let S be a finite semigroup, E(S) the set of its idempotents. Define on E(S) a new operation ∗:
if e, f ∈ E(S) then e ∗ f is the idempotent of the monogenic semigroup 〈ef〉. Denote the obtained
groupoid by E∗. It is idempotent since e ∗ e = e for any e ∈ E∗.

In some cases E∗ turns out to be a semigroup:

Proposition 1. Let S = M(G; I,Λ;P ) be a completely simple (finite) semigroup. Then E∗ is a
rectangular (I × Λ)-band.

For completely 0-simple semigroups the situation is more complicated:

Proposition 2. Let S =M0(G; I,Λ;P ) be a completely 0-simple semigroup, eiλ, ejµ, ekν (i, j, k ∈
I, λ, µ, ν ∈ Λ) its nonzero idempotents. Then

(eiλ ∗ ejµ) ∗ ekν =

{
eiν , if pλj , pµi, pµk, pνi 6= 0,
0 otherwise,

eiλ ∗ (ejµ ∗ ekν) =
{
eiν , if pµk, pνj , pλj , pνi 6= 0,
0 in opposite case.

Thus E∗ is not a semigroup generally speaking. Recall that a groupoid is diassociative if each its
2-generated subgroupoid is associative.

Theorem 1. For any finite semigroup S the groupoid E∗ is diassociative.

Corollary 1. Let E∗ contain the zero and e, f ∈ E∗. Then

e ∗ f = 0 =⇒ f ∗ e = 0.
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On groups with separating subgroups relative systems of
indecomposable cyclic subgroups

Oksana Odintsova

A subgroup S of group G is called a separating subgroup if all subgroups from some system Σ
of subgroups of the group G are normal in G when they don’t belong to S. And such group G is
called a group with separating subgroups with regard to system Σ. An intersection M of all separating
subgroups of G is called a separator of group G. The separatorM coincides with a subgroup of G which
is generated by all non-normal subgroups of system Σ [1].

A group with separating subgroup relative systems of proper subgroups of this group is called H(S)-
group. The description of the H(S)-groups is given in theorem 1.4.2 [2].

As is generally known a class of groups with normal cyclic subgroups, in particular with normal
indecomposable cyclic subgroups, coincides with a class of Dedekind groups (the groups with normal
proper subgroups).

When we consider the groups with different separating subgroups relative systems of subgroups it
turns out that a class of groups with separating subgroups relative systems of cyclic subgroups coincides
with a class of the H(S)-groups. But a class of groups with separating subgroups relative systems of
indecomposable cyclic subgroups appears to be wider than the class of the H(S)-groups. Expansion
happened due to the groups of type 2 of the theorem 2.

Theorem 1. Each group G (which is not H(S)-group) with separating subgroups relative systems
of indecomposable cyclic subgroups is periodic.

Theorem 2. A group G is non-Dedekind group with separating subgroups relative systems of inde-
composable cyclic subgroups if and only if G is one of following types:

1. G is a direct product of proper Sylow pi-subgroups Pi, i ∈ I, each of them contains subgroup Si
(Si is normal in the group G) and all subgroups of Pi are normal in G, when they do not belong
to Si (Pi is H(S)-group with separator Si);

2. G=A×B, when A and B are Hall subgroups of group G, subgroup A is Dedekind group or a group
of type 1 of this theorem and subgroup B cannot be Dedekind group or a group type 1 of this
theorem.
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Actions of inverse semigroups on rooted trees

A. Oliynyk

Let Tn, n ≥ 2, be a rooted n-regular tree. Denote by ISA(Tn) the inverse semigroup of partially
defined automorphisms of Tn. An inverse semigroup S is said to act level transitively by partial auto-
morphisms on the rooted tree Tn if there exists an inverse semigroup homomorphism from S onto some
level transitive inverse subsemigroup of ISA(Tn).

Recall, that the canonical partial order “≤” on an inverse semigroup S is defined by the rule

a ≤ b if and only if a = eb for some e ∈ E(S),

where E(S) denotes the set of idempotents of S. For any nonempty subset A of S the set

Aω = {b ∈ S : a ≤ b for some a ∈ A}

is called the closure of A. If Aω = A then A will be called closed.
Let H be some closed inverse subsemigroup of an inverse semigroup S and an element a ∈ S such

that aa−1 ∈ H. Then a set (Ha)ω is called a right coset of S by H. The different cosets are disjoint.
One of the cosets is H itself. The cardinality of the set of all right cosets of S by H is called the index
of H in S and denoted by [S : H]. The notions of closed subset and right coset were introduced in [1].

Theorem. Let S be an inverse semigroup. If there exists a descending chain

S = S0 ⊃ S1 ⊃ S2 ⊃ . . .

of closed inverse subsemigroups such that

∞⋂

i=0

Si = E(S)

and all the indexes [Si : Si+1], i ≥ 0, are equal to some n ≥ 2 then the inverse semigroup S acts level
transitively by partial automorphisms on the rooted tree Tn.
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Doubling of metric spaces

B. Oliynyk\, V. Sushchansky∗

We shall use standard definitions from metric geometry([1]). Let (X, ρ) be a metric space, (X ′, ρ′)
be an isometric copy of (X, ρ) and f be some isometry from X to X ′. Fix a positive number a ∈ R+
and define a non-negative symmetric real function df on the disjoint union X tX ′

by the rules:

• if x = y then df (x, y) = 0
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• if x, y ∈ X then df (x, y) = ρ(x, y);

• if x, y ∈ X ′ then df (x, y) = ρ′(x, y);

• if x ∈ X, y ∈ X ′ and y = f(x) then df (x, y) = a;

• if x ∈ X, y ∈ X ′ and y 6= f(x) then df (x, y) = a+ ρ′(f(x), y).

The function df is a metric on the set X tX ′
. We call (X tX ′

, df ) a doubling of metric space X
and denoted 2X(f, a).

Proposition 1. Let f1 and f2 be some isometries of (X, ρ). Then spaces 2X(f1, a) and 2X(f2, a)
are isometric.

We say that a metric space (X, ρ) is a Cayley’s space if there exists some group H and a system of
generators S of this group such that the Cayley graph (H,S) is isometric to (X, ρ) as a metric space
(see [2]).

Theorem 1. If (X, ρ) is a Cayley’s metric space, then 2X(f, 1) is a Cayley’s metric space.

Theorem 2. Let (X, ρ) be a metric space such that there exists a positive number a such that
a > diamX. Then the isometry group of doubling of metric space X is isomorphic as a permutation
group to the direct product of isometry group of spaces X and the symmetric group S2:

Is2X(f, a) = IsX × S2. (1)
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On the Monoids over which all quasi-filters are trivial

R. Oliynyk[, M. Komarnytskyi[

Let S be a semigroup with 0 and 1. The terminology and necessary definitions can be found in [1].
Each left S−act A is assumed to be unitary (i. e., 1A = A ) and centered (i.e., 0a = s0 = 0 where 0 ∈ A
for all s ∈ S and a ∈ A).

Let A and B be two left S−acts. Recall that the mapping f : A → B is called homomorphism if
f(sa) = sf(a) for all s ∈ S and a ∈ A. We consider category of left S−acts and their homomorphisms
and denote it by S −Act.

A quasi-filter (see [2]) of S is defined to be subset E of Con(S) satisfying the following conditions:

1. If ρ ∈ E and ρ ⊆ τ ∈ Con(S), then τ ∈ E .
2. ρ ∈ E implies (ρ : s) ∈ E for every s ∈ S.
3. If ρ ∈ E and τ ∈ Con(S) such that (τ : s), (τ : t) are in E for every (s, t) ∈ ρ\τ , then τ ∈ E .
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For example, if σ is some Rees congruence on S then the family

Eσ = {τ | τ ∈ Con(S), τ ∨ σ = 1S}

is quasi-filter. We call it σ− quasi-filter.Also we call a quasi-filter E trivial if either it contains 4S or
only contains 5S , when 4S = {(s, s)|s ∈ S} and 5S = {(s, t)|s, t ∈ S}.

A monoid S is called perfect (see [3]) if every left S−act has a projective cover.
The next theorem describes monoids which have only trivial quasi-filters and is an analog of well

known result for modules (see [4]).

Theorem. Let S be commutative monoid. Then the following statements hold:
1. All quasi-filters E are trivial.
2. All σ-quasi-filters Eσ are trivial.
3. S is a perfect monoid.
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On number of generators of ideals of prime SPSD-rings
Z. D. Pashchenko

Let A be an associative ring with 1 6= 0. Denote by µ∗r = max
I⊆A

µr(I), where µr(I) is the minimal

number of generators of a right ideal I of A. Analogously, one can define µ∗l (A). By definition, A is
principal right ideal ring.

We write SPSD-ring A for a semiperfect semidistributive ring A. Following [1, Ch. 14] we say that
a ring A is a tiled order if A is a prime right Noetherian SPSD-ring with the nonzero Jacobson radical.

Proposition 1. Let I ⊆ A be a two-sided ideal of a tiled order A. Then µr(I) = µl(I).

Denote by µ∗t (A) = maxµr(I), where I is a two-sided ideal of A.
Let s be a number of vertices of the quiver Q(A) of a tiled order A.

Theorem 1. The following equalities for a reduced tiled order A hold:

µ∗r(A) = µ∗l (A) = µt∗(A) = s.
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On asymptotic properties of modular Lie algebras

V. M. Petrogradsky\, A. A. Smirnov\

Let L(X) be a free Lie algebra of finite rank over a field of positive characteristic. Let G be a finite
nontrivial group of homogeneous automorphisms of the algebra L(X). It is known that the subalgebra
of invariants H = LG is infinitely generated [2]. Our goal is to determine how big is its free generating
set. Let Y = ∪∞n=1Yn be the free homogeneous generating set of H, where the elements Yn have degree
n with respect to X. In case of characteristic zero there is an exact formula for the generating function
H(Y, t) =

∑∞
n=1 |Yn|tn [3]. In case of a field of positive characteristic we describe the growth of the

generating function and prove that the sequence |Yn| grows exponentially. Our arguments rely on [1],
[3].

Also we consider the subalgebra growth sequence. Let L be a finitely generated restricted Lie
algebra over a finite field F . By an(L) we denote the number of restricted subalgebras H ⊂ L such that
dimK L/H = n for all n ≥ 0. We obtain the subalgebra growth sequence {an(L)|n ≥ 0}. This notion
is similar to the subgroup growth in group theory and was considered in [6], [4], [5]. We find an upper
bound on the subalgebra growth for a finitely generated metabelian restricted Lie algebra over a finite
field.
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Matrix polynomial equations and its solutions

V. M. Petrychkovych

Let F be an algebraically closed field of characteristic zero

Xm +A1X
m−1 + · · · +Am−1X +Am = 0 (1)

be matrix equation, where Ai are n×n matrices over F, i = 1, . . . , m, X be a variable matrix. The
polynomial matrix

A(λ) = Iλm +A1λ
m−1 + · · · +Am−1λ+Am,
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where I is identity matrix, λ ∈ F will be called the characteristic matrix of the matrix equation (1).
The roots of polynomial ∆(x) = detA(λ) are characteristic roots of equation (1).

The solvability of the matrix equation (1) depends on the multiplicities of its characteristic roots.
If the characteristic roots of equation (1) have multiplicities 1, this equation has k solutions, where
mn 6 k 6

(
mn
n

)
[1]. It follows from [2], that the equation (1) is solvable whenever its characteristic

roots have multiplicities less or equal 2. In this case we investigate the number of its solutions.

Theorem 1. Suppose that the characteristic roots of the matrix equation (1) have multiplicities
2 and the elementary divisors of its characteristic matrix A(λ) are pairwise relatively prime. Then
equation (1) is solvable and the number of its solutions k satisfies the condition

1 6 k 6
n−t∑

i=0

(
n− i
i

)(
r

n− i

)
,

where r is the number of the different characteristic roots of equation (1),

t =

{
q, if n = 2q

q + 1, if n = 2q + 1.
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On the stable range of rings of matrices

V. M. Petrychkovych\, B. V. Zabavsky[

It is important to study the relationship between the stable range of the ring M(n,R) of matrices
of order n over ring R and the stable range of the ring R itself. It is known [1,2] that if the stable
range of R is equal to 1 or 2, then the stable range of M(n,R) also equals 1 or 2 respectively. We
present the class of matrices of stable range 1 over R such that R can have stable rang greater than
1.

Let R be an adequate ring, i.e. R be domain of integrity in which every finitely generated ideal is
principal and for every a, b ∈ R with a 6= 0, a can be represented as a = cd, where (c, b) = 1 and
(di, b) 6= 1 for any non-unit factor di of d [3]. The collection of matrices (A1, . . . , Ak), Ai ∈M(n,R),
i = 1, . . . , k is called primitive if A1V1 + · · · + AkVk = I, for some matrices Vi ∈ M(n,R),
i = 1, . . . , k, where I is the identity matrix.

Theorem 1. Let R be an adequate ring, M ′(2, R) the set of matrices A = ‖aij‖21, aij ∈ R such
that (a11, a12, a21, a22) = 1. The stable range of the set of matrices M ′(2, R) equals one, in other words
for every primitive pair of matrices (A,B), A,B ∈ M ′(2, R) there exists the matrix P ∈ M(2, R)
such that AP +B = Q, where Q is invertible matrix in GL(2, R).
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On 0-homology of categorical at zero semigroups

Lyudmyla Yu. Polyakova

The 0-cohomology and 0-homology of semigroups were introduced in [1] and [2] as a generalizations
of Eilenberg-MacLane cohomology and homology. The one of possible applications of the 0-cohomology
and 0-homology is the computation of classical cohomology and homology of semigroups.

It was shown in [2] that the first 0-homology group of a semigroup with zero S is isomorphic to the
first homology group of semigroup S, which is called 0-reflector of S. The 0-homology groups of S of
greater dimensions in the general case are not isomorphic to the homology groups of S.

We show that for the categorical at zero semigroups such an isomorphism can be built for all
dimensions.

Definition. A semigroup S is called categorical at zero if xyz = 0 implies xy = 0 or yz = 0.

Theorem. If S is categorical at zero then the 0-homology group H0
n(S,A) is isomorphic to the

homology group Hn(S̄, A) for all n ≥ 0 and every module A, which is considered as a 0-module over S
in the first case and as a module over S in the second case.
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On tensor product of locally compact modules

Valeriu Popa

Let R be a topological ring with identity, and let RL
(
respectively,LR

)
be the category of left

(respectively, right) unital locally compact modules over R. For a locally compact module X, we denote
by c(X) the connected component of X and by k(X) the submodule of compact elements of X.

Definition. A topological module X is said to be compactly generated if it admits a compact set of
topological generators.

Theorem 1. Let G be an abelian topological group. For any X ∈ LR and Y ∈ RL, let B(X ×Y,G)
be the group of all hypocontinuous R-balanced mappings from X×Y to G, endowed with the compact-open
topology.

(i) If X,Y are compactly generated and G is compact without small subgroups, then B(X × Y,G) is
locally compact.

(ii) If X,Y are compact and G is without small subgroups, then B(X × Y,G) is discrete.

(iii) If X,Y are discrete and G is compact, then B(X × Y,G) is compact.

Corollary 1. Let X ∈ LR and Y ∈ RL. If X,Y are compactly generated, compact, or discrete, then
X ⊗R Y is locally compact, compact or discrete, respectively.

Theorem 2. Let X ∈ LR and Y ∈ RL.

(i) If Y = k(Y ), then X ⊗R Y ∼= X/c(X)⊗R Y.

(ii) If Y = c(Y ), then X ⊗R Y ∼= X/k(X)⊗R Y.
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On semiscalar equivalence of polynomial matrices

V. M. Prokip

Let F be an algebraically closed field of characteristic zero. ByMm,n(F) we denote the set of m-by-n
matrices over F and by Mm,n(F[x]) the set of m-by-n matrices over the polynomial ring F[x]. For any
matrix C(x) ∈Mn,n(F[x]), let C∗(x) denote the adjoint matrix of C(x), i.e., C∗(x)C(x) = C(x)C∗(x) =
In detC(x), where In is the n× n identity matrix.

For b(x) = (x − β1)
k1(x − β2)

k2 . . . (x − βr)
kr ∈ F[x] and A(x) ∈ Mm,n(F[x]) we define the matrix

M [A, b] =




N1
N2
...
Nr


 ∈ Mmk,n(F), where Nj =




A(βj)

A(1)(βj)
...

A(kj−1)(βj)


 ∈ Mmkj ,n(F) , j = 1, 2, . . . , r, and k =

k1 + k2 + · · ·+ kr. The Kronecker product of matrices C(x) and D(x) is denoted by C(x)⊗D(x).
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Matrices A(x), B(x) ∈ Mn,n(F[x]) are said to be semiscalar equivalent [1] if there exist matrices
P ∈ GL(n,F) and Q(x) ∈ GL(n,F[x]) such that

A(x) = PB(x)Q(x).

We give a criterion of semiscalar equivalence of nonsingular polynomial matrices over an algebraically
closed field of characteristic zero.

Theorem 1. Let nonsingular matrices A(x), B(x) ∈ Mn,n(F[x]) be equivalent and S(x) =
diag((s1(x), s2(x), . . . , sn(x)) be their Smith normal form. For A(x) and B(x) define the matrix D(x) =((
s1(x)s2(x) · · · sn−1(x)

)−1
B∗(x)

)
⊗AT (x) ∈Mn2,n2(F[x]).

The matrices A(x) and B(x) are semiscalar equivalent if and only if there exists a vector t =
[t1, t2, . . . , tn2 ]T over F such that M [D, sn]t = 0 and the matrix




t1 t2 . . . tn
tn+1 tn+2 . . . t2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .
tn2−n+1 tn2−n+2 . . . tn2




is nonsingular.
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On finite simple paramedial quasigroups
D. Pushkashu∗, V. Shcherbacov∗

The problem ”Classify the finite simple paramedial quasigroups” is proposed by Jaroslav Jezek and
Tomas Kepka at Loops ’03, Prague 2003 (http://en.wikipedia.org/wiki/Problems-in-loop-theory-and-
quasigroup-theory).

A quasigroup ([1]) (Q, ·) is called a T-quasigroup, if there exist an abelian group (Q,+), its auto-
morphisms ϕ, ψ and a fixed element g such that x · y = ϕx+ ψy + g for all x, y ∈ Q [2]. A quasigroup
(Q, ·) with identity xy · uv = xu · yv is medial. A T-quasigroup is medial iff ϕψ = ψϕ [1]. A quasigroup
(Q, ·) with identity xy · uv = vy · ux is paramedial [2]. A T-quasigroup is paramedial iff ϕ2 = ψ2 [2].

Simple medial quasigroups are described in [3]. Finite simple T-quasigroups are researched in [4].
A quasigroup (Q, ·) is α-simple, if this quasigroup does not contain a non-trivial congruence that is
invariant relative to a permutation α of the set Q.

Theorem 1. A finite paramedial quasigroup (Q, ·) with the form x ·y = ϕx+ψy+g over an abelian
group (Q,+) is simple if and only if: (i) (Q,+) ∼=

⊕n
i=1(Zp)i; (ii) the group 〈ϕ,ψ〉 is an irreducible

subgroup of the group GL(n, p) in case n > 1, the group 〈ϕ,ψ〉 is any subgroup of the group Aut(Zp,+)
in case n = 1.

The quasigroup (Q, ·) in case |Q | > 1 can be quasigroup from one of the following disjoint quasigroup
classes:
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1. x ·y = αϕ1x+αψ1y+g, where x◦y = ϕ1x+ψ1y is a paramedial α-simple distributive quasigroup,
α,ϕ1, ψ1 ∈ Aut(Q,+), ϕ1 + ψ1 = ε, ϕ1 + ϕ1 = ε, ϕ1αϕ1 = ψ1αψ1;

2. ψ = −ϕ; (Q, ·) is a medial unipotent quasigroup, quasigroup (Q, ·) is isomorphic to quasigroup
(Q, ◦) with the form x ◦ y = ϕx− ϕy over the group (Q,+).

The work was supported by grant 08.820.08.08 RF.
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Network weight in paratopological groups

N. Pyrch

A paratopological group is a pair (G, τ) consisting of a group G and a topology τ on G making the
group operation m : G×G→ G on G continuous.

A family N of subsets of a topological space X is a network for X if for every point x ∈ X and any
neighborhood U of x there exists an M ∈ N such that x ∈ M ⊂ U . The network weight nw(X) of a
space X is the smallest cardinal number of the form |N |, where N is a network for X.

Theorem 1. Let G be a paratopological group, which is algebraically generated by its symmetric
subspace X. Then nw(X) = nw(G).

Corollary 1. Let G and H be paratopological groups, G ∗H — their free product (see [2]). Then
nw(G ∗H) = max{nw(G), nw(H)}.

For every topological space there exist free paratopological group Fp(X) on X and free abelian
paratopological group Ap(X) on X (see [1]).

Corollary 2. Let X be a T1-space. Then nw(Fp(X)) = nw(Ap(X)) = |X|.
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A necessary and sufficient condition for a table algebra to
originate from an association scheme

A. Rahnamai Barghi

A table algebra is a C-algebra with nonnegative structure constants was introduced in [1]. As a folk-
lore example, the adjacency algebra of an association scheme (or homogeneous coherent configuration)
is an integral table algebra. On the other hand, the adjacency algebra of an association scheme has a
special character which is called the standard character, see [2]. We generalize the concept of standard
character from adjacency algebras to C-algebras. This generalization enables us to find a necessary and
sufficient condition for a commutative table algebra to originate from an association scheme.
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On the growth of Poisson PI algebras

S. M. Ratseev

Let K be arbitrary field. A vector space A is called a Poisson algebra provided that, beside addition,
it has two K-bilinear operations which are related by derivation. First, with respect to multiplication, A
is a commutative associative algebra with unit; denote the multiplication by a ·b (or ab), where a, b ∈ A.
Second, A is a Lie algebra; traditionally here the Lie operation is denoted by the Poisson brackets {a, b},
where a, b ∈ A. It is also assumed that these two operations are connected by the Leibnitz rule

{a · b, c} = a · {b, c}+ b · {a, c}, a, b, c ∈ A.

Let V be a variety of Poisson algebras, F (V ) be a countable rank relatively free algebra of the variety
V and Pn(V ) ⊂ F (V ) be the subspace of all the multilinear elements of degree n in {x1, . . . , xn}.

Theorem 1. Let V be a variety of Poisson algebras over arbitrary field, satisfying the identities

{{x1, y1}, {x2, y2}, ..., {xm, ym}} = 0,

{x1, y1} · {x2, y2} · ... · {xm, ym} = 0,

for some m. Then there exist numbers N , α, β and such integer d ∈ {1, 2, ..., s} that

nαdn ≤ dim Pn(V ) ≤ nβdn

for any n ≥ N .

Corollary 1. If the characteristic of arbitrary fields is not equal to two then there exists no variety
of Poisson algebras with intermediate growth between polynomial and exponential.
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Theorem 2. In the case of characteristic zero of the base field, a variety of Poisson algebras V has
polynomial growth if and only if there exists a constant C such that mλ = 0 in the sum

χn(V ) = χ(Pn(V )) =
∑

λ`n
mλχλ

whenever n− λ1 > C.
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On semigroups and similar groupoids

A. V. Reshetnikov

Let X be a set, let ”?” and ”×” be two operations on X such that the Cayley tables of these
operations may be different only for the diagonal elements. Then we say that the groupoids (X, ?) and
(X,×) are similar. We also say that ”?” and ”×” are similar operations. If an element x is such that
x ? x = x× x then we say that x is a θ-element.

The following question is of our interest: if two groupoids are similar and one of them is a semigroup,
under which conditions does the other one become a semigroup?

Let (X, ?) be a semigroup and (X,×) be a groupoid similar to (X, ?). We say that condition A holds
if (u× u)× z = u× (u× z), (z × u)× u = z × (u× u) for all elements u which are not θ-elements, and
for all elements z. We say that condition B holds if (x× y)× u = x× (y× u), (u× x)× y = u× (x× y)
for all elements u which are not θ-elements, and for all elements x, y such that u = x× y.

Lemma 1. Let (X, ?) and (X,×) be similar groupoids, and (X, ?) be a semigroup. Then (X,×) is
a semigroup if and only if both conditions A and B are fulfilled.

Theorem. Let (X, ?) and (X,×) be similar groupoids, and (X, ?) be a semigroup. If the condition
B holds then (X,×) is a semigroup if and only if the conditions

(i) u is not a θ-element; (ii) x 6= u & (x 6= u× u or x is not a θ-element)

imply the conditions

(iii) if u ? x 6= u and x is not a right unity of the semigroup (X, ?) then (u ? u) ? x = (u × u) ? x;
(iv) if x ? u 6= u and x is not a left unity of the semigroup (X, ?) then x ? (u ? u) = x ? (u × u); (v)
(u× u) ? u = u ? (u× u).

The author does not know the necessary and sufficient conditions for B. However, some results may
be obtained.

Lemma 2. Let (X, ?) and (X,×) be similar groupoids, and (X, ?) be a semigroup. If the condition
B holds, then we have, for each θ-element u:

1) either such element x exists that u = u ? x = u× x (which is equivalent to x = x ? u = x× u);
2) or such element x exists that u = x× x 6= x ? x.
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The following is possible for every θ-element u: u = u ? x = x ? u and x = u ? u = x ? x for some x.
There exists a hypothesis that all of the cases for the condition B can be reduced to this variant.
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Elementary equivalence of automorphism groups of
Abelian p-groups

M. Roizner

In the paper we consider elementary properties (i. e., properties expressible in first order terms) of
the automorphisms group of Abelian p-groups.

The first who considered connection of elementary properties of the different models with elementary
properties of derivative models was A.I.Maltsev in [1] in 1961. He proved that groups Gn(K) and
Gm(L), where G = GL,SL, PGL,PSL and n,m ≥ 3, K,L — fields of characteristics 0, are elementary
equivalent iff m = n and fields K and L are elementary equivalent.

In 1992, this theory was continued with the help of ultraproduct construction and Keisler-Chang
isomorphism theorem by K.I. Beidar and A.V.Mikhalev in [2], in which they found general approach to
problems of elementary equivalence of different algebraic structures and generalized Maltsev theorem in
the case of K and L are skewfields or associative rings.

Continuation of this research was made in 1998–2001 years in papers of E.I. Bunina, in which results
of A.IMaltsev extended for unitary linear groups over skewfields and associative rings with involution,
also for Chevalley groups over fields.

In 2000, V. Tolstikh in [3] considered connection of the second order properties for skew fields with
the first order properties of automorphism groups of spaces of infinite dimension over the skewfields. In
2003, E. I. Bunina and A. V. Mikhalev considered connection of the second order properties of associative
rings and the first order properties of categories of modules, endomorphism rings, automorphism groups
and projective spaces of modules of infinite rank over the rings, see [4].

In [5] E. I. Bunina and A. V. Mikhalev discovered connection of second order properties of an Abelian
p-group with first order properties of its ring of endomorphisms.

In this paper we discover connection of the second order properties of an Abelian p-group and the
first order group properties of its group of automorphisms, for the case of p > 2:

Theorem 1. Let A, C be p-groups, p ≥ 3. If AutA ≡ AutC, then basic subgroups and divisible
parts of the groups A and C are equivalent in second order logic
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Characterizing Bezout rings of stable range n

O. Romaniv

Throughout this paper R will denote an associative ring with 1 6= 0.
A row (a1, a2, . . . , an) of elements of a ring R is a right unimodular row if there are elements xi ∈ R,

1 ≤ i ≤ n, with
∑
aixi = 1. If x = (x1, . . . , xn) is unimodular, then we say that x is reducible if there

exists y = (y1, . . . , yn−1) such that the (n− 1)-row (x1 + xny1, . . . , xn−1 + xnyn−1) is unimodular. R is
said to have stable range n ≥ 1 if n is the least positive integer such that every unimodular (n+ 1)-row
is reducible. The concept of a ring of the stable range is left-right equivalent. [1]

By a right (left) Bezout ring we mean a ring in which all finitely generated right (left) ideals are
principal, and by a Bezout ring a ring which is both right and left Bezout. [2]

Theorem 1. A ring R is a right Bezout ring if and only if for any elements a, b ∈ R there are
elements d ∈ R and a0, b0, c0 ∈ R with a0R+ b0R+ c0R = R such that

(a, b, 0) = d(a0, b0, c0).

Theorem 2. A commutative Bezout ring R is a ring with finite stable range n if and only if for
any elements a1, a2, . . . , an ∈ R there are an element d ∈ R and a unimodular row (a01, a

0
2, . . . , a

0
n) of

elements of a ring R such that

(a1, a2, . . . , an) = d(a01, a
0
2, . . . , a

0
n).
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The purity of a module: a new invariant and its
consequences

W. Rump

To any associative ring R with unity, we construct a site mos(R) which can be visualized as a tree
(with infinite branches). Then R-modules are just abelian sheaves on this site. Since every sheaf on a
tree is itself a tree, every module can be regarded as a tree. Based on this observation, we associate
a cardinal invariant, the purity, to every R-module M , and show that the cardinality of M can be
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measured by means of its purity. As an application, we give a very general, quantitative existence
theorem for flat covers and answer some related open questions.
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Groups of automata without cycles with exit

A. V. Russyev

Let X be a finite nonempty set. This set is called an alphabet and its elements are called letters. An
automaton over alphabetX is a tuple A = 〈X,Q,ϕ, λ〉, where Q denotes the set of states, ϕ : Q×X → Q
is the transition function and λ : Q×X → X is the output function.

Consider the set X∗ =
⋃
n≥1X

n ∪ {Λ} of all words over alphabet X. On this set one can define an
operation of concatenation. The transition and output functions of an automaton A = 〈X,Q,ϕ, λ〉 can
be extended to the set Q×X∗ by the next formulas. For all q ∈ Q, w ∈ X∗ and x ∈ X

ϕ(q, wx) = ϕ(ϕ(q, w), x), ϕ(q,Λ) = q,

λ(q, wx) = λ(q, w)λ(ϕ(q, w), x), λ(q,Λ) = Λ.

Every state q ∈ Q defines a map fq = λ(q, ·) : X∗ → X∗. The automaton A is called invertible if all
these maps are bijections.

The group of an invertible automaton A = 〈X,Q,ϕ, λ〉 is the group generated by the set {fq : q ∈
Q} ([1]).

A cycle in an automaton A = 〈X,Q,ϕ, λ〉 is a sequence of pairwise different states q1, q2, . . . , qn ∈ Q,
n ≥ 1, such that there exists a sequence of letters x1, x2, . . . , xn ∈ X which satisfies equalities ϕ(qi, xi) =
qi+1, 1 ≤ i ≤ n, and ϕ(qn, xn) = q1. This cycle is called a cycle with exit if there exist i, 1 ≤ i ≤ n, and
x ∈ X such that ϕ(qi, x) /∈ {q1, q2, . . . , qn}. In other case this cycle is called a cycle without exit. The
group of a finite automaton without cycles with exit is finite ([2]).

Theorem 1. Let A = 〈X,Q,ϕ, λ〉 be an automaton without cycle with exit over binary alphabet,
|Q| = n and G be the group generated by this automaton. Then |G| ≤ 22

n−1
.

Theorem 2. For arbitrary positive integer n there exists an n-state automaton over binary alphabet
without cycles with exit such that the order of the group of this automaton is 22

n−1
.

References

[1] Nekrashevych V. V. Self-similar groups, volume 117 of Mathematical Surveys and Monographs. –
American Mathematical Society: Providence, RI, 2005. – 231 p.

[2] Russyev A. V. On finite and Abelian groups generated by finite automata, Matematychni Studii,
24 (2005) 139–146.

Kyiv Taras Shevchenko university,
Kiev, Ukraine
russev@mail.univ.kiev.ua



Kharkov, August 18-23, 2009 117

Endomorphisms and conjugacy of Sushkevich in the
semigroup T (N)

O. Ryabukho

Let T (N) be the semigroup of all (fully defined) transformations over the set of positive integers N .
In [1] A.K. Sushkevich has introduced subsemigroups In(N) of injective transformations over N and
Sur(N) of surjective transformations over N . Evidently we have In(N)∩Sur(N) = S(N), where S(N)
is the symmetric group over N .

Lemma 1. For any permutation f ∈ S(N) there exist transformations g ∈ In(N) and h ∈ Sur(N)
such that f = gh. The transformation g may be taken in arbitrary way and the transformation h for
fixed g in a number of way.

It follows from this lemma that for any g ∈ In(N) there exists h ∈ Sur(N) such that Id = gh where
Id is the identity permutation.

Definition 1. A pair (g, h), g ∈ In(N), h ∈ Sur(N) is called admissible if gh = Id.

Theorem 1. For any admissible pair (g, h) the mapping ϕg,h : T (N) → T (N) which is defined by
ϕg,h(u) = hug, u ∈ T (N), is a monomorphism of the semigroup T (N) in itself. Endomorphism ϕg,h is
an automorphism if and only if g ∈ S(N), h = g−1.

Definition 2. Transformations u, v are called conjugated in the sense of Sushkevich if there exist
admissible pairs (g1, h1), (g2, h2) such that u = g1vh1, h = g2uh2.

Theorem 2. The conjugation in the sense of Sushkevich is an equivalence relation on the semigroup
T (N).

We call equivalence classes for this relation conjugacy classes in Sushkevich sense in the semigroup
T (N). Problem of the characterization of this classes is a generalization of the problem of characteriza-
tion of conjugacy classes in S(N).
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Multilinear components of the prime subvarieties of the
variety V ar(M1,1)

L. Samoilov

Consider the free associative algebra F 〈X〉 over a field F generated by a countable set X. A T -ideal
Γ of the algebra F 〈X〉 is called a verbally prime iff for every T -ideals Γ1,Γ2 an inclusion Γ1Γ2 ⊆ Γ
implies one the inclusions Γ1 ⊆ Γ or Γ2 ⊆ Γ. A variety of the algebras is called prime if its ideal of
identities is verbally prime.

In the case of characteristic zero (charF = 0) the prime varieties were described by A.R. Kemer in
[1]. The problem of classification of prime varieties in the case charF = p > 0 is open and very difficult.
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Denote by G the Grassmann algebra with the standard Z2-grading G = G0 ⊕ G1. Consider the
algebra M2(G) =M2 ⊗G and its subalgebra M1,1:

M1,1 =

{(
A B
C D

) ∣∣∣A,D ∈ G0, B,C ∈ G1
}
.

We describe the multilinear identities of a prime subvariety of the variety V ar(M1,1).

Theorem 1. If charF = p > 2 then the set of multilinear identities of a prime subvariety of the
variety V ar(M1,1) coincides with the set of multilinear identities of the algebra M1,1, or it is generated
by the identity [x, y, z] = 0, or it is generated by the identity [x, y] = 0.

If charF = 2 then the multilinear identities of the varieties V ar(M1,1) and V ar(M2) coincide. In
this case the multilinear components of prime subvarieties of the variety V ar(M1,1) were described by
A.R. Kemer in [2].

It is easy to see that the Theorem 1 follows from the Theorem 2:

Theorem 2. Let p 6= 2, U be any T -ideal with the properties T [M1,1] ⊂ U , T [M1,1] ∩ P 6= U ∩ P .
Then for some m

[x1, y1, z1][x2, y2, z2] . . . [xm, ym, zm] ∈ U.
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Zeta-function of k-form
O. Savastru∗, P. Varbanets\

Let n, k be the positive integers, k ≥ 2 and let α, δ ∈ (0, 1]n. Consider the absolutely convergent
series for <s > 1

ξn,k(s;α, δ) =
∑

m∈Zn≥0

e2πim·α




n∑

j=1

(mj + δj)
k



−s

,

(here m · α denotes the dot product of m and α, m = (m1, . . . ,mn), δ = (δ1, . . . , δn))
which we call the zeta-function of the k-form

Q(m, δ) =
n∑

j=1

(mj − δj)k

For k = 2, n ≥ 2, we obtain the classic Epstein zeta-function, and for k = n ≥ 3, α = δ = (0, . . . , 0) the
ξ(s;α, δ) coincides with the Waring zeta-function introduced by A. Vinogradov[1].

We construct the integral representation of ξn,k(s;α, δ) under condition k
n < n ≤ k, which permits

to study the behavior of this function in neighborhood of poles in the points s = `
k , ` = 0, 1, . . . , n, and

s = 1.
Moreover, we obtain the asymptotic formulae for the summatory function of the number of representa-
tions N as the sum of n k-th powers of non-negative integers.
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On the Lausch’s Problem for π-Normal Fitting Classes

N. V. Savelyeva], N. T. Vorob’ev]

All groups considered are finite and solvable. A Fitting class F is said to be a maximal Fitting
subclass of a Fitting class H (denoted by F < ·H) if F ⊂ H and the condition F ⊆ M ⊆ H, where M is a
Fitting class, always implies M ∈ {F,H}. A Fitting class ∅ 6= F is called X-normal (denoted by FE X)
if F ⊆ X and for every X-group G its F-radical GF is an F-maximal subgroup of G.

Definition. Let P be the set of all primes and ∅ 6= π ⊆ P. If a Fitting class F is normal in the
Fitting class Sπ of all π-groups then we call F π-normal.

Theorem. Every maximal Fitting subclass of a π-normal Fitting class is π-normal.

Corollary 1. (J. Cossey [1]). Let F be a Fitting class. If F < ·S then FES.

Corollary 2. [2]. Let F and H be Fitting classes. If F < ·HES then FES.

Corollary 3. [3]. Let F be a Fitting class. If F < ·Sπ then FESπ.

The intersection of all non-identity S-normal Fitting classes is a non-identity S-normal Fitting
class S? which is called the minimal normal Fitting class [4]. H. Lausch had formulated a problem (see
question 9.18 [5]) on existence of maximal Fitting subclasses in the minimal normal Fitting class S?.
It is proved (see corollary 2 [6]) that (Sπ)? is the unique non-trivial minimal π-normal Fitting class.
Corollary 4 gives a negative answer to the Lausch’s problem for π-normal Fitting classes.

Corollary 4. The minimal π-normal Fitting class (Sπ)? has no maximal Fitting subclasses.

Corollary 5. (N. T. Vorob’ev [7]). The minimal normal Fitting class S? has no maximal Fitting
subclasses.
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Frattini series and involutions of finite L-groups

T. Savochkina

Two classes of finite 2-groups are explored: L - the class of all 2-groups G, every maximal cyclic
subgroup of which has a supplement; H - the class of all finite 2-groups from L every homomorphic
image of which is a group from L.

Fundamental results from a theory of L-group are laid out in the articles [1] [2]. In particular, in [1]
it is set, that every finite 2-group G from L has exact factorization into cyclic subgroups. It is proved
[2], that a class L is not closed under homomorphic images. Other results are about groups which can
be factorized into transposite subgroups (see [3]).

In this research the groups from H, their Frattini series and central involution of these groups are
explored. Let G be any L-group with exponent 2n+1 and Φ(G) its Frattini subgroup. Let Φ0 = G,
Φ1 = Φ(G), Φk+1 = Φ(Φk), k ≥ 1. In [1] important facts about subgroup Φk are proved.

Next theorems about subgroups from classes L and H are proved in this research.

Theorem 1. Let G be any H-group and T its maximal cyclic subgroup from G, NG(T) = T λ S
and M = CS(T). Then CG(T) = T × M and S = S/M is cyclic.

Theorem 2. Let G ∈ L and suppose there is normal supplement in G for all maximal cyclic sub-
groups < g >. Then G is abelian group.

Theorem 3. Let G be any L-group with exponent 2k. Then there exists central involution u in
group Φk–1, such that factor group G/ <u> ∈ L.
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Automorphisms and elementary equivalence of the
semigroup of invertible matrices with nonnegative elements

over commutative rings

P. Semenov

Let R be an ordered ring, Gn(R) the subsemigroup of GLn(R), consisting of all matrices with
nonnegative elements. In [1] A.V. Mikhalev and M.A. Shatalova described all automorphisms of the
semigroup Gn(R) in the case when R is a linearly ordered skewfield and n > 2. In the work [2] E.I.
Bunina and A.V. Mikhalev described all automorphisms of the semigroup Gn(R), if R is an arbitrary
linearly ordered associative ring with 1/2, n > 3. In the paper [3] E.I. Bunina and A.V. Mikhalev found
necessary and sufficient conditions for these groups to be elementary equivalent.

We consider semigroups of invertible matrices with nonnegative elements over commutative partially
ordered rings with 1/2. We prove two following theorems:

Theorem 1. Every automorphism of the semigroups of invertible matrices with nonnegative el-
ements Gn(R), where R is a commutative partially ordered ring with 1/2, n ≥ 3, coincides with a
composition of an inner automorphism (conjugation by some invertible in Gn(R) matrix), a ring au-
tomorphism (induced by some automorphism of the semiring R+ of nonnegative elements), a central
homothety, on some special subsemigroup of Gn(R) generated by elementary matrices.

Theorem 2. If the semigroups Gn(R) and Gm(S) (R,S are commutative partially ordered rings
with 1/2, n > 3) are elementary equivalent, then m = n and the semirings R+ and S+ are elementary
equivalent.
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About groups close to hamiltonian

N. N. Semko∗, O. A. Yarovaya

Let G be a group. Let’s denote with Lnon−norm(G) the family of all non-normal subgroups of G.
Study of the impact of Lnon−norm(G) on the structure of group G was started long ago and continues
to this day. G.M. Romalis and M.F. Syesekin in [1]-[3] started to study the groups, in which family
Lnon−norm(G) consists of abelian subgroups. Such groups were called metahamiltonian groups. The
full description of metahamiltonian groups have been obtained in the monograph of N.F. Kuzennyj and
N.N. Semko [4]. The natural continuation of such researches is a consideration of a situation, when the
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subgroups of the family Lnon−norm(G) belong to the class of groups, which are a natural extension of
the class of abelian groups (for instance, the subgroups of a family Lnon−norm(G) have finite derived
subgroups or are FC-groups). Since the Chernikov groups are a natural extension of the finite groups,
then the groups with Chernikov derived subgroups are a natural extension of the groups with finite
derived subgroups.

We start the study of groups, in which every subgroup either is normal or has a Chernikov derived
subgroups.

Theorem 1. Let G be a locally (soluble-by-finite) group whose subgroups either are normal or have
Chernikov derived subgroups. Then the following assertions hold:

(1) Every finitely generated subgroup of G is central-by-finite, in particular, G is a locally FC-group.

(2) The derived subgroup of a group G is a locally finite subgroup. In particular, if G is torsion-free,
then G is abelian.

Theorem 2. Let G be a locally graded group whose subgroups either are normal or have Chernikov
derived subgroups. Suppose that G is not locally (soluble-by-finite) group. Then the following assertions
hold:

(1) G contains a normal locally finite subgroup T with G/T to be a non-periodic abelian group.

(2) T does not have finite system of generated elements.

(3) Every proper subgroup of T has Chernikov derived subgroups.

Theorem 3. Let G be a locally soluble group. If every proper subgroup of G has Chernikov derived
subgroup, then derived subgroup of whole group G is Chernikov subgroup.
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Canonical matrices of bilinear and sesquilinear forms over
finite extensions of the field of p-adic numbers

Vladimir V. Sergeichuk

Canonical matrices of

(a) bilinear and sesquilinear forms,

(b) pairs of forms in which every form is symmetric or skew-symmetric, and

(c) pairs of Hermitian forms
are given over fields that are finite extensions of the field of p-adic numbers Qp, p 6= 2.
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Supersymmetry classes of tensors

M. Shahryari

In [1], a joint paper by me and A. Madadi, we introduced a concrete method to construct the
irreducible representations of the simple Lie algebra sln(C), using the notion of symmetry classes of
tensors. A similar work can be done for the Lie superalgebra sl(p|q), if we have a suitable notion of
supersymmetry classes of tensors. On the other hand, recently the term super linear algebra has been
widely appeared in both mathematics and physics articles which study objects of linear algebra from
super-structure point of view, (see [3]). Since during last five decades, there have been published several
articles concerning symmetry classes of tensor, it is natural to have in hand the super-version of this
linear algebra object. This article is the first step toward introducing supersymmetry classes of tensor
and the author hopes the resulting notion will be very interesting both from multilinear algebra and
from representation of Lie superalgebras point of view.

In this paper, we introduce the notion of a supersymmetry class of tensors which is the ordinary
symmetry class of tensors Vχ(G) with a natural Z2-gradation. We give the dimensions of even and odd
parts of this gradation as well as their natural bases. Also we give a necessary and sufficient conditions
for the odd or even part of a supersymmetry class to be zero.
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Generalized characteristic polynomial

N. Shajareh-Poursalavati

Let n be a positive integer number and G be a subgroup of the full symmetric group on n letters.
Assume that F is a favorite field and c is a function from G to F . We refer the generalized matrix
function afforded by G and c, dGc , which is a generalization of the concept of ordinary determinant of n
by n matrices. By using dGc , we refer and determine the generalized characteristic polynomials of n by
n matrices over a favorite filed F afforded by some permutation groups, which are the generalizations
of the concept of ordinary characteristic polynomial.
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On classification of Chernikov p-groups

I. Shapochka

LetM be a divisible abelian p-group with minimality condition and H be a finite p-group. In papers
[1, 2, 3] the Chernikov p-groups G(M,H,Γ), which are the extensions of the group M by the group H
and which are defined by some matrix representation Γ of the groupH over the ring Zp of p-adic integers,
has been studied using the theory of integral p-adic representation of finite groups. In particular all
Chernikov p-groups of type G(M,H,Γ) were classified up to isomorphism in the case if H is the cyclic
p-group of order ps and Γ runs the set of all Zp-representations of the group H which contains not
more than k (k ≤ 3) nonequivalent irreducible components ∆1, . . . , ∆k, in which connection if k = 3
then ∆1 is identity representation. It’s also has been shown that the problem of the description up to
isomorphism of all Chernikov groups of type G(M,H,Γ), where Γ runs the set of all Zp-representations
of the p-group H which contains k nonequivalent irreducible components is wild if one of the following
conditions holds:

1) H is the cyclic p-group of order ps, s > 3, k > 4;
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2) H is the cyclic p-group of order ps, s > 2, k = 3, p > 3 and the degree of the representation ∆i

greater then 1 (i = 1, 2, 3);

3) H is the cyclic p-group of order ps, s > 2, k > 3, p > 2,

4) H is the noncyclic p-group, k > 4.

Recently we have obtained the classification up to isomorphism of some Chernikov p-groups of
type G(M,H,Γ) in the case if H is an abelian p-group and Γ runs the set of all indecomposable Zp-
representations of the group H which contains precisely two nonequivalent irreducible components.
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On the invariants of polynomial matrices with respect to
semiscalar equivalence

B. Shavarovskii

In the present report, some class of polynomial matrices is studied in connection with their reducibil-
ity by semiscalar equivalent transformations to some simpler form. We consider related researches [1,
2] in which the conditions for semiscalar equivalence of polynomial matrices having only two distinct
invariant factors are indicated. Let us now turn to matrices with three and more distinct invariant
factors.

Assume that N(x) ∈Mn(C[x]), detN(x) = xk and the Smith form of the matrix N(x) is of the form
diag(xk1 , . . . , xkn), where 1 ≤ k1 < . . . < kn. By a codegree of the polynomial a(x) ∈ C[x] we mean the
lowest degree of its monomial and denote it by co deg a. The coefficient of this monomial is called the
younger coefficient of a(x). By definition, co deg 0 = +∞. By a codegree of the polynomial row (column)
we mean the lowest codegree of its elements. An element ai(x) of the row ā(x) =

∥∥ a1(x) . . . an(x)
∥∥

(column āT (x)) is said to by key element if co deg ai = co deg ā and co deg ai < co deg aj for all j,
j > i (j < i). We shall say that two rows (columns) āp(x) and āq(x), p < q, form an inversion if
co deg āp > co deg āq ( co deg āp < co deg āq ), or co deg āp = co deg āq and the key element of āp(x)
is arranged on the left (above) of the key element of āq(x).

Theorem 1. In the class {CN(x)Q(x)}, C ∈ GLn(C), Q(x) ∈ GLn(C[x]) of semiscalarly equiva-
lent matrices there exists a matrix of the form

CN(x)Q(x) =

∥∥∥∥∥∥∥∥

xk1 0 . . . 0
a21(x) xk2 . . . 0
. . . . . . . . . . . .

an1(x) an2(x) . . . xkn

∥∥∥∥∥∥∥∥
= F (x) , (*)
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that satisfies the following conditions:

1) deg aij < ki , co deg aij > kj , i = 2, . . . , n , j < i;

2) each row has highest codegree;

3) the key elements of rows of the same codegree are arranged in the different columns;

4) the younger coefficients of the key elements of rows equal 1.

Theorem 2. In the class of semiscalarly equivalent matrices of the form (*) with the 1) - 4) prop-
erties, there exists such a matrix, that its adjoint matrix F∗(x) satisfies the following conditions:

1) each column has highest codegree;

2) the key elements of two arbitrary columns of the same codegree are arranged in the different rows
if the corresponding pair of rows of matrix F (x) does not form an inversion.

Theorem 3. The class {CN(x)Q(x)} uniquely defines the positions and codegrees of the key ele-
ments of rows of matrix F (x) and of columns of matrix F∗(x) as well as younger coefficients of the key
elements of columns of matrix F∗(x).
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On matrices reduction by one-side transformations

V. Shchedryk

In studying some matrix problems, in particular, the factorization of matrices one needs to describe
all non-associate matrices with prescribed canonical diagonal form. The classical Hermite normal form
is improper to this problem because it describes non-associate matrices with prescribed determinant.
Our purpose is to provide the first step toward the construction of normal form of such matrices by
one-side transformations, which clarify the canonical diagonal form of the matrix.

Let R be an adequate domain and A be n×n matrix over R with canonical diagonal form Et⊕ϕEn−t
, ϕ 6= 0 , 1 ≤ t < n. Then there exist matrices P,Q such that

PAQ = Et ⊕ ϕEn−t = Φ .

Theorem. Let P =

∥∥∥∥
P11 P12
P21 P22

∥∥∥∥ , where P11 is t× t matrix and

∥∥∥∥∥∥∥∥∥

β1 0 0
∗ β2 0

. . .

∗ ∗ βn

∥∥∥∥∥∥∥∥∥
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be left Hermite normal form of the matrix (ϕEt ⊕ En−t)P. Then there exists matrix U such that

AU =

∥∥∥∥
C11 C12
C21 C22

∥∥∥∥
−1

Φ,

where

C22 =

∥∥∥∥∥∥∥∥∥

βt+1 0 0
ct+2.t+1 βt+2 0

...
. . .

cn.t+1 cn.t+2 βn

∥∥∥∥∥∥∥∥∥
,

where cij lie in complete set of residues modulo βj , i = t+2, t+3, . . . , n, j = t+1, t+2, . . . , n− 1. The
entries cij , βk, k = t+ 1, t+ 2, . . . , n, are uniquely determined independently of the choice of P.
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Asymptotic dimension of linear type and functors in the
asymptotic category

O. Shukel’

Let (X, d) be a metric space. Recall that the asymptotic dimension of X does not exceed n (written

asdimX ≤ n) if for every D > 0 there is a uniformly bounded cover U of X such that U =
n⋃
i=0
Ui, where

every Ui is a D-discrete family (see [1]).
The notion of asymptotic dimension plays an important role in the geometric group theory and

another areas of mathematics.
The following notion, which is a modification of the asymptotic dimension, is introduced in [2]. The

asymptotic dimension of linear type of a metric space X does not exceed n, if there is c > 0 such that,
for every D > 0, there exist D′ > D and a cover U of X which satisfy the properties:

1) U =
n⋃
i=0
Ui, where every family Ui is D′-discrete;

2) mesh(U) < cD′, where mesh(U) = sup{diam(U)|U ∈ U}.
The author [3] proved that some covariant functors in the asymptotic category (see [4]) preserve the

class of metric spaces of finite asymptotic dimension. The aim of this talk is to extend these results
over the case of spaces of finite asymptotic dimension of linear type. Moreover, we obtain some exact
estimates similar to those in [5].
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On Krull dimension of serial piecewise Noetherian rings

Vjacheslav V. Shvyrov

One property of right Noetherian rings and Noetherian modules is that they have a Krull dimension
in the sense Rentschler-Gabriel. Naturally arises the question of having Krull dimension for the case of
serial piecewise Noetherian rings. A positive answer to this question is obtained.

Definition 1. A ring A is called a right piecewise Noetherian ring if it satisfies the following con-
ditions:

(i) A is a finite set of pairwise orthogonal primitive idempotents e1, e2, . . . , en such that 1 = e1 +
e2 + . . .+ en;

(ii) eAe is right Noetherian ring for any primitive idempotent e ∈ A.
Definition 2. If a, b belong to a poset A, and a ≥ b, then we define a/b = {x ∈ A | a ≥ x ≥ b}.

This is a subposet of A and is called the factor of a by b. By descending chain {an} of elements of A
we mean that a1 ≥ a2 ≥ . . . ≥ an ≥ . . . ; and the factors ai/ai+1 are called the factors of the chain.

Definition 3. We define the deviation of a poset A, devA for short. If A is trivial then devA =
−∞. If A is nontrivial but satisfies the d.c.c. then devA = 0. For a general ordinal α, we define
devA = α provided:

(i) devA 6= β < α;
(ii) in any descending chain of elements of A all but finitely many factors have deviation less than

α.

Definition 4. If M is right module over ring R then Krull dimension of M , written K dim(M),
is defined to be the deviation of L(M), the lattice of submodules of M . In particular, K dim(RR) is the
right Krull dimension of R.

Lemma 1. IfMR is Noetherian then K dim(M) exists; and if R is right Noetherian then K dim(RR)
exists.

Theorem 1. Let R be a serial piecewise Noetherian ring and 1 = e1 + e2 + . . . + en, then R has
Krull dimension and K dim(R) ≥ m iff K dim(Ri) ≥ m, m is natural, i = 1, . . . , n, where Ri = eiRei.
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Local Functions of Fitting Classes

M. G. Siamionau[, N. T. Vorob’ev[

All groups considered are finite. In definitions and notations we follow [1].
Let P be the set of all prime numbers. A map f : P → {classes of groups} is called a local function [2].

Note that if all values of a local function f are Fitting classes, then f is called an H-function or Hartley
function. Let π = Supp(f) and Eπ be the class of all π-groups. If there exists an H-function f such
that F = Eπ ∩ (∩p∈πf(p)NpEp′) then the class F is called local [3].

It was proved [4] that every local Fitting class is defined by the largest integrated H-function F such
that all nonempty values of F are Lockett classes [1] and F (p) = F (p)Np ⊆ F for all prime p.

In this paper a new local definition for an arbitrary Fitting class F by a description of its local
function is shown.

Definition. Let X and ∅ 6= F be Fitting classes. We define the class of groups FX as follows: G ∈ FX

if and only if the F-radical of G is an X-group. If X = ∅ then FX = ∅.
Theorem. Every local Fitting class F is defined by the local function x such that:

x(p)Np = x(p) =

{
FF (p), if p ∈ π;
∅, if p ∈ π′,

where F is the largest integrated H-function of the class F and π = Supp(F).

The theorem implies some corollaries which give us descriptions of new local definitions of known
Fitting classes. In particular, we have the following

Corollary. The Fitting class N of all nilpotent groups is defined by the local function x such that
for every prime p

x(p)Np = x(p) = (G : GN ∈ Np).
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On zeta-functions associated to certain cusp forms

D. Šiaučiūnas

Let F (z) be a normalized Hecke eigenform of weight κ for the full modular group with the Fourier
series expansion

F (z) =
∞∑

m=1

c(m)e2πimz, c(1) = 1.

The zeta-function ϕ(s, F ), s = σ + it, attached to F is defined, for σ > κ+1
2 , by

ϕ(s, F ) =

∞∑

m=1

c(m)

ms
,

and is analytically continuable to an entire function.
Let w 6= 0 be an arbitrary complex number. Then, for σ > κ+1

2 ,

ϕw(s, F ) =
∞∑

m=1

gw(m)

ms
,

where gw(m) is a multiplicative function. Let h(m) = g2w(m)m1−κ. Then in [1], an asymptotic formula
for the mean value of ∑

m≤x
h(m), x→∞, (1)

in the case |w| ≤ 1
2 and Rew2 > 0 has been obtained. In the report, we will discuss the case |w| > 1

2 .
Asymptotic formula for the mean value of (1) is applied in the investigation of the moments

T∫

0

|ϕ(σ + it, F )|2kdt

for σ ≥ κ
2 , k ≥ 0 and T →∞.
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On HM ∗-groups
L. V. Skaskiv

It is joint work with O.D. Artemovych. Let p be a prime. Recall that a group G is called an HM ∗-
group if its commutator subgroup G′ is hypercentral and the quotient group G/G′ is a divisible Černikov
p-group (see [1] and [2]). Any group of Heineken-Mohamed type is an HM ∗-group. It is obvious that
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a hypercentral HM ∗-group is a divisible Černikov p-group. Any locally nilpotent HM ∗-group is a p-
group. If the commutator subgroup G′ of HM∗-group G has no proper supplements in G, then G is
also a p-group. Recall that a group G is called indecomposable if any two proper subgroups generate a
proper subgroup in G.

Theorem. Let G be an HM∗-group.

(1) If G is an indecomposable group, then every proper subgroup of G is hypercentral.

(2) Suppose that G is a soluble group with the normalizer condition. Then

(i) G/G′ is a quasicyclic p-group if and only if G is indecomposable;

(ii) if the commutator subgroup G′ is nilpotent of finite exponent, then all subgroups are subnor-
mal in G.

We study also other properties of HM ∗-groups and construct some examples of HM ∗-groups.
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On one property of the lattice of all n-multiply
ω-composition formations

A. N. Skiba‡, N. N. Vorob’ev‡

All groups considered are finite. The notations and terminology see in [1], [2].
Recall that a complete lattice of formations Θ is called inductive [1] if for any set of Θl–formations

{Fi | i ∈ I} and for any set of inner Θ-valued satellites {fi | i ∈ I} [2], where fi is a satellite of Fi, we
have

∨Θl(Fi | i ∈ I) = LF (∨Θ(fi | i ∈ I)).
Theorem. The lattice of all n-multiply ω-composition formations is inductive.
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A criterion for two-modality of ideals for one-branch
one-dimensional singularities of type W

R. Skuratovski

One-branch one-dimensional singularity is, by definition, a subalgebra A in the ring of formal power
series S = K[[t]] over a filed K, such that S is a finitely generated A-module. They say that such a
singularity is of type W , if A contains an element of order 4, i.e. an element at4+o(t4), where a 6= 0 is an
element from the field K. A singularity is called plane, if the maximal ideal of the ring A is generated by
2 elements. Any one-branch singularity of type W always contains an element of order m not divisible
by 4. We denote by m(A) the smallest of such orders. We deduce a necessary and sufficient conditions
in order that an one-branch singularity of type W has at most two-parameter families of ideals.

Theorem 1. An one-branch singularity A of type W has at most 2-parameter families of ideals if
and only if m(A) ≤ 11.

Equivalent condition: A contains a plane singularity of type W24, W30 or W#
2,2q−1 in the Arnold’s

classification [1].

For such rings a complete description of ideals is given.
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About classification and solving Moufang-like functional
equations on quasigroups

Fedir M. Sokhatsky∗, Halyna V. Krainichuk∗

A binary operation f , defined on a set Q, is said to be invertible or quasigroup, if every of the
equations f(x; a) = b, f(a; y) = b has a unique solution for all a, b of Q. Assigning x and y to every
pair (a; b) defines invertible operations f ` and f r on Q. So, the superidentities

F (F `(x; y); y) = x, F (x;F r(x; y)) = y, (F `)` = F, (F r)r = F (1)

hold, i.e. the equalities are true for all F ∈ ∆ and for all x, y ∈ Q, where ∆ denotes the set of all
quasigroup operations of Q.

Functional equations, having no functional and subject constants and having two-placed functional
variable only, are under consideration. An equation is called general, if all functional variables are
pairwise different. Two functional equations are said to be parastrophic equivalent (see [1]), if one can
be obtained from the other in a finite number of renaming functional or subject variables or applying
the superidentities (1).

Solving of the Moufang functional equations is a well-known problem in the theory of quasigroups [2].
Every of these three equations as well as Bol functional equation has two subject two-appearence vari-
ables and one four-appearence variable.
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Theorem 1. Every general functional equation, having two subject two-appearence variables and
one four-appearence variable is parastrophic equivalent to at least one of eight functional equations.

We have solved seven of the eight functional equations. For example,

Theorem 2. A sequence (f1, . . . , f6) of quasigroup operations defined on Q is a solution of

F1(x;F2(x;F3(x; y))) = F4(F5(x; z);F6(z; y)) (2)

if and only if there exists a group (Q; +) and substitutions α, β, γ, δ, ν, ϕ such that

f3(x; y) = f r2 (x; f
r
1 (x;ϕ

−1(δx+ γy))), f4(x; y) = ϕ−1(αx+ νy),

f5(x; z) = α−1(δx− βz), f6(z; y) = ν−1(βz + γy).
(3)

Corollary. A sequence (f1, . . . , f6) of quasigroup operations, which are topological on the topological
line R with the ordinary topology, is a solution of (2) if and only if there exist homeomorphisms α, β,
γ, δ, ν, ϕ of the space R such that (3) hold, where (+) is the additive operation of the field R.
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journal 56 9 (2004), 1259–1266.
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3-torsion of the Brauer group of elliptic curve with additive
reduction over general local field

L. Stakhiv

In a series of papers (see. e.g., [1] and references there) V.I. Yanchevskǐi, V.I. Chernousov, V.I.
Guletskii, G.L. Margolin, U. Rehman, S.V. Tikhonov described the 2-component of the Brauer group of
an elliptic or hyperelliptic curve defined over a local field of characteristic zero. The study of 3-primary
torsion of the Brauer group of an elliptic curve over a local field was initiated by V.I. Yanchevskǐi and
S.V. Tikhonov by investigating the case of elliptic curves with additive reduction [2]. Earlier it was
shown by the author that some results concerning 2-torsion of the Brauer group can be extended to the
case of elliptic curves over complete discretely valued fields with pseudofinite residue fields.

The purpose of this talk is to show that the 3-component of the Brauer group of an elliptic curve
with additive reduction defined over a general local field [3] may be described in the same way as in
the case of local ground field. Namely, it is proved that 3-primary torsion component of the Brauer
group of an elliptic curve with additive reduction defined over general local field k is isomorphic either
to the direct sum of 3-primary torsion component of the Brauer group of k and cyclic group of order
3 or to 3-primary torsion component of the Brauer group of k. Also, in the first case we obtain the
representation of elements of the second summand of above mentioned direct sum by cyclic algebras.
More precisely
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Theorem. Let E be the elliptic curve with additive reduction over general local field k, chark 6= 3.
If 3nBrE ∼= 3nBr(k)⊕ Z/3, E is given by Weierstrass equation:

Y 2 = X3 + (AX +B)2,

then 3nBrE is generated by the classes of the following unramified division algebras: D3n⊗k k(E), where
D3n is central over k division algebra of index 3n, and H = (Z3(E), σ, h), where h =

√
f(X) + AX +

B, f(X) = X3 + (AX + B)2, Z3(E) is unramified extension of k(E) of degree 3 and σ is appropriate
Frobenius automorphism.
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Порiвняння у розумiннi категорiї
сукупностi вiльних пiднапiвгруп напiвгрупи цiлих

лiнiйних перетворень

М. I. Сумарюк

У роботах [1-4] встановлено, що у розумiннi категорiї або мiри “бiльшiсть” пiдгруп (пiднапiв-
груп) тiєї чи iншої групи (напiвгрупи) є вiльними.

Ми розглядаємо напiвгрупу H(P) усiх цiлих лiнiйних перетворень деякого числового поля P,
i нехай Hk(P) – її довiльний k-й (k ∈ N) декартiв степiнь. Нехай Fk(P) – множина усiх кортежiв
степеня Hk(P), якi породжують вiльну пiднапiвгрупу напiвгрупи H(P). Для довiльної фiксованої
обмеженої пiдмножини X, |X| > 1, поля P на степенi Hk(P) визначимо вiддаль dk,X , де для
довiльних двох впорядкованих наборiв ϕ = (f1, f2, ..., fk) та ψ = (g1, g2, ..., gk) iз Hk(P), маємо:

dk,X(ϕ, ψ) = max
1≤j≤k

sup
z∈X

|fj(z)− gj(z)| .

У результатi отримаємо метричний простiр (Hk(P), dk,X).
НехайNk(P) = Hk(P)\Fk(P). У випадку, коли P – злiченне числове поле, маємо таке твердження.
Теорема 1. Множини Fk(P) та Nk(P) є множинами першої категорiї Бера.
Якщо P – незлiченне числове поле таке, що дiйсне поле R є його пiдполем, то у цьому випадку

правильними є наступнi твердження.
Лема 1. Множина Fk(P) є всюди щiльною в Hk(P).
Лема 2. Множина Fk(P) є множиною другої категорiї Бера.
Лема 3. Множина Nk(P) – нiде не щiльна в Hk(P).
На основi лем 1-3, у випадку поля P такого, що R ⊆ P, отримується таке твердження.
Теорема 2. Бiльшiсть k-породжених пiднапiвгруп напiвгрупи H(P) є вiльними у категорному

розумiннi Бера.
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On the structure of quantum channels

M. Thawi\, G. M. Zholtkevych\

Let H and K be finite dimensional Hilbert spaces. In the literature of quantum information theory,
a quantum channel from B(H) to B(K) is described as a linear map

ψ : B(H)′ → B(K)′ (1)

from the dual of B(H) to the dual of B(K) which holds property: linear map φ : B(H) → B(K)
defined by an equation ψ = φ′ (ψ is the adjoint map to the map φ) is a unital completely positive map.

Our aim is to describe the structure of a quantum channel from B(H) to B(K).
Suppose ρ ∈ B(H)′ and a is an arbitrary element of B(H); then define δρ ∈ B(H) by the equation

ρ(a) = Tr(a · δρ) (2)

Vice versa suppose s ∈ B(H) and a is an arbitrary element of B(H); then define
∑

[s] ∈ B(H)′ by
equation ∑

[s](a) = Tr(a · s) (3)

Proposition 1. Let ψ : B(H)′ → B(K)′ be a linear operator. Then

ψ(ρ) =

dim(H)∑

m,n=1

Tr((δρ)emn)
∑

[znm(ψ)]

where
1) {emn | m,n = 1, . . . , dim(H)} is a family of matrix units in B(H),
2) znm(ψ) = δ(ψ(

∑
[emn])) for m,n = 1, . . . , dim(H).

Theorem 1. Let ψ : B(H)′ → B(K)′ be a linear operator; then ψ is a quantum channel iff next
two conditions are held

1) suppose {an | n = 1, . . . , dim(H)} be a family of elements from B(K); then

dim(H)∑

m,n=1

Tr(amznm(ψ)a
∗
n) ≥ 0;

2) for all m,n = 1, . . . , dim(H) equality Tr(zmn(ψ)) = δmn is held.
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Corollary 1. Let ψ : B(H)′ → B(K)′ be a linear operator, Z ∈ B(H) ⊗ B(K) and Z =
dim(H)∑

m,n=1

emn⊗ znm(ψ). ψ is a quantum channel if and only if Z ≥ 0 and TrK(Z) = 1, where TrK(a⊗ b) =

Tr(b)a for all a ∈ B(H) and b ∈ B(K).

\V. N. Karazin Kharkiv National University

Nullstellensatz over quasifields

D.V. Trushin

We investigate the least studied class of differential rings – the class of differential rings of nonzero
characteristic. Namely, we develop geometrical theory of differential equations in nonzero characteristic.

Simple differential rings were studied by Yuan [1] and latter by Keigher [2] and [3], the last one
introduces the notion quasifield. We define the notion of differentially closed quasifield and classify all
such quasifields up to isomorphism. Main examples of quasifields are the Hurwitz series rings. We prove
that differentially closed quasifields are the Hurwitz series rings over more than countable algebraically
closed fields.

We prove a variant of Nullstellensatz for an arbitrary differentially closed quasifield. It allows us to
define the notion of quasivariety as a set of all common zeros for some system of differential equations
over differentially closed quasifield. The notion of regular mapping is defined in the same manner as in
algebraic geometry.

Topological properties of quasivarieties coincide with that of maximal spectra of countably generated
algebras over fields. Therefore quasivarieties are not necessarily noetherian, but there is a weaker
analogue for them. All quasivarieties are ω-noetherian, in other words, every more than countable
descending chain of closed subsets is stable.

A topological space is said to satisfy the Baire property if the intersection of any countable family
of dense open sets is not empty. A subset is called to be big enough if it contains the mentioned
intersection. The important fact that the Baire property holds for irreducible quasivarieties. In terms
of the Baire property can be described the image of a regular mapping. Namely, if the closure of the
image is irreducible, then the image is big enough in its closure.

Presented machinery can be regarded as a basis for reduction modulo p for differential equations.
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Recursive paths of quivers

S. Tsiupii

We introduce the concept of a recursive path of a quiver and use it for the study of exponent matrices.
A notion of an exponent matrix is arisen from Ring theory. Some rings are given by exponent matrices,
for example, tiled orders are. Exponent matrices are applied also in other mathematical theories, for
example, in encoding theory. Each exponent matrix can be associated with some graph called a quiver
and we can study such matrices by methods of Graph theory.

We begin with some notation.
Let Mn(Z) be a ring of square n× n-matrices over the ring of integers.
A matrix E = (αij) from the ring Mn(Z) is called an exponent matrix if the following conditions

hold:

(i) αii = 0 for all i = 1, 2, . . . , n;

(ii) αik + αkj ≥ αij for all i, j, k = 1, 2, . . . , n.

An exponent matrix E = (αij) is called reduced if αij + αji > 0 for all i 6= j.
Let E be a reduced exponent matrix, E be the identity one. Denote E (1) = E+E = (βij), E(2) = (γij),

where
γij = min

k
{βik + βkj − βij}.

A graph Q is a quiver of an exponent matrix E if the adjacency matrix of Q is equal to E (2) − E(1).
Now we introduce the concept of a recursive path.

Definition 1. A simple path Ln at a quiver Q will be called recursive if the following conditions
hold:

(i) all vertices of the quiver Q belong to Ln;

(ii) the quiver Q has no arrows from any vertex of Ln to all following vertices of Ln except for next
one.

Theorem 1. (Criterion on a triangularity of an exponent matrix). An exponent matrix E is tri-
angular up to an equivalence if and only if its quiver Q(E) has a recursive path.

We describe all recursive paths at a quiver.
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Index of exponent matrix
T. Tsiupii

A notion of an exponent matrix is arisen from Ring theory. Some rings are given by exponent
matrices, for example, tiled orders are [1]. Exponent matrices are used also in applied task, for example,
by planning multi factor experiments, by reliability test of different systems et cetera.

Let Mn(Z) be a ring of square n× n-matrices over the ring of integers.
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Definition 1. A matrix E = (αij) ∈Mn(Z) is called an exponent matrix if the following conditions
hold:

(i) αii = 0 for all i = 1, 2, . . . , n;

(ii) αik + αkj ≥ αij for all i, j, k = 1, 2, . . . , n.

An exponent matrix E = (αij) is called reduced if αij + αji > 0 for all i 6= j.
Each exponent matrix can be related with some graph called a quiver.

Let E be a reduced exponent matrix, E be the identity one. Denote

E(1) = E + E = (βij),

E(2) = (γij), where γij = min
k
{βik + βkj − βij}.

A graph Q(E) is called a quiver of an exponent matrix E if

[Q(E)] = E (2) − E(1),

where [Q(E)] is the adjacency matrix of Q(E).
Definition 2. The maximal real eigenvalue of adjacent matrix of the quiver Q(E) is called an index

of the exponent matrix E and denoted by in E .
Theorem 1. For any integers m and n (0 < m ≤ n) there exists a reduced exponent matrix En

such that
in En = m,

where n is the order of the matrix En.
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Global dimension of semiperfect and semidistributive rings
I. Tsyganivska

Let A be a prime right Noetherian semiperfect and semidistributive ring with nonzero Jacobson
radical R. Following [1, Ch. 14] a ring A is called a tiled order.

Denote by Q(A) the quiver of a tiled order A.

Theorem 1. If gl.dimA is finite, then Q(A) is the strongly connected quiver without loops.

Let O = k[[x]] be a ring of formal power series over the field k with the prime element x = π.

Consider A =
4∑

i,j=1
eijπ

αijO, where the eij are the matrix units of M4(O). Let (αij) ∈ M4(Z) has the

following form:




0 0 0 0
1 0 0 0
4 4 0 0
4 4 1 0


. The quiver Q(A) is the following:

i.e., Q(A) has no loops and gl.dimA is infinite.
Let s be the number of vertices of Q(A). We give a list of tiled orders A with finite global dimension

for 1 ≤ s ≤ 5.
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The semigroups of correspondence of groups

Tetyana Turka

Let A be a universal algebra. If subalgebra of A × A is considered as a binary relation on A, then
the set S(A) of all subalgebras from A×A is a semigroup under the products of relations [1]. Semigroup
S(A) is called a semigroup of correspondence of algebra A. Each endomorphism ϕ : A −→ A is naturally
interpreted as subalgebra of A×A, which gives a natural immersion EndA ↪→ S(A). We shall also notice
that S(A) contains all congruences of algebra A. Some properties of semigroup S(A) are described in
[2].

We study semigroup S(A) when A is a finite group.

Theorem 1. If Cn is a cyclic group of order n, then

|S(Cn)| =
∑

k,l|n
g.c.d.(k, l).

Theorem 2. If Dn is a dihedral group of degree n, then

|S(Dn)| =
∑

k,l|n
(g.c.d.(k, l) +

n2

kl

(
1 +

∑

d|g.c.d.(k,l)
d · ϕ(d)

)
+ 2τ(n)σ(n),

when n is odd.

|S(Dn)| =
∑

k,l|n
(g.c.d.(k, l) + 2n ·

[∑

k|n

τ(n)

k
+
∑

k|n

τ(n2 )

k
+
∑

k|n
2

τ(n2 )

k

]
+

+
n2

kl

(
1 +

∑

d|g.c.d.(k,l)
d · ϕ(d)

)
+ 12

∑

k,l|n,
k≡l≡0(2)

n2

kl
+ 4

∑

k,l|n
k≡0(2)
l≡0(2)

n2

kl
,

when n is even.
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On Quivers of Serial Rings

H. V. Usenko

All rings are associative with 1 6= 0. Let A be a serial ring with the Jacobson radical R. Denote by
Q(A) the Gabriel quiver of A and by PQ(A) the prime quiver of A [1, Ch. 11].

A ring A is decomposable if A is a direct product of two rings, otherwise A is indecomposable.

Theorem 1. Let A be a right Noetherian serial indecomposable ring and Q(A) = PQ(A). Then A
is right and left Artinian. Conversely, let A be a semiprimary serial ring, then A is two-sided Artinian
and PQ(A) = Q(A).

Let Γ(A) be a Pierce quiver of a serial ring A [1, Ch. 11].

Theorem 2. Let A be a serial indecomposable ring and Q(A) = Γ(A). Then A is two-sided Artinian
and R2 = 0.
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Exponential sums on the sequences of inversive
congruential pseudorandom numbers

S. Varbanets

Let p > 2 be a prime number, n ≥ 2 be a positive number.
H. Niederreiter and I. Shparlinski[1] investigated the inversive congruential pseudorandom numbers {xk}
that generated by the recursive relation

xk+1 ≡ ax−1k + b(mod pn), (1)

where (a, p) = 1, b ≡ 0(mod p), (x0, p) = 1, xkx
−1
k ≡ 1(mod pn).

In our work we study some exponential sums on the sequence of inversive congruential pseudorandom
numbers {yk} defined by the recursion

yk+1 ≡ ay−1k + b+ cyk(mod p
n), (y0, p) = 1, k = 0, 1, 2, . . . , (2)

where p > 2 is a prime number, a, b, c, x0 ∈ Z, (a, p) = 1, b ≡ c ≡ 0(mod p), bc ≡ 0(mod pn).
The sequence {yk} is a particular case of the sequence {xk} defined by (1).
We proved that yk can be represented as the polynomials of k with the coefficients depending on y0:
if bc ≡ 0 (mod pn), νp(b

`−1) < n ≤ νp(b
`), ` ≥ 3, then

y2k−1 = kb+ kcy0 + (a+ b2f1(k))y
−1
0 + bf2(k)y

−2
0 +

+ ((k − 1)ca2 + b2f3(k))y
−3
0 + b3f(k, y−10 )y−40 ;

y2k = kb+ kca−1y−10 + (1 + b2g1(k))y0 + bg2(k)y
2
0+

+ (−kca−1 + b3g3(k))y
3
0 + b3g4(k, y0)y

4
0,
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where

fi(u), gj(u) ∈ Z[u], f(u, v), g(u, v) ∈ Z[u, v], deg fi(u), deg gi(u) ≤ ` (i, j = 1, 2, . . .)

The polynomials f(u, v), g(u, v) have degree at most ` in each variable. It enables us to prove the
following assertions

Theorem 1. The following estimates

∑

ω∈R∗n
epn(h1ωk + h2ω`) ≤





2p
n+s

2 , if gcd
(
h1 + h2, h1

[
k
2

]
+ h2

[
`
2

]
, pn
)
= ps,

s < n, and k, ` are integers of identical
parity;

2
n+1

2 p
n+t
2 , if gcd (h1, h2, p

n) = pt, s < n, and
k, ` are integers of different parity;

hold.
Consider the sequence of points {Yk}, where Yk = (yk, yk+1, . . . , yk+r−1) and yk is defined by the

recursion (2). Let D
(3)
N denote the discrepancy of points {Y

(3)
k

pn } ∈ [0, 1)3, k = 0, 1, 2, . . . , N − 1.

Theorem 2. Let the sequence {yk} be generated by (2) and have a maximal period τ = 2pn−ν .
Then we have

D(3)
τ ≤ 1

pn
+

1

p
n−2ν

2

(
1 +

1

pν

(
2

π
logpn +

7

5

)3)

These results can be considered as the generalizations of appropriate assertions from [2]-[4].
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Products of normal subgroups of finite groups and
n-multiply ω-saturated formations

A. F. Vasil’ev∗, D. N. Simonenko]

All groups considered are finite. In 1972 Bryce and Cossey proved the following famous result.
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Theorem. (Bryce and Cossey [1]). A subgroup-closed Fitting formation of soluble groups is totally
saturated.

Let ω be a set of primes. Recall [2], that a formation F is said to be ω-saturated if the condition:
G/L ∈ F for a normal subgroup L ⊆ Φ(G) ∩Oω(G) always implies that G ∈ F.

In [3] A.N.Skiba proposed the concept of n-multiply saturated formations.

Every formation is 0-multiply ω-saturated. A saturated formation F is called n-multiply ω-saturated
(n ≥ 1) if F = LF (f) and for every prime p formation f(p) is either empty or (n − 1)-multiply ω-
saturated. A non-empty formation F is called totally ω-saturated if it is n-multiply ω-saturated for
every natural number.

In this talk a problem: by analogy with the theorem of Bryce and Cossey to characterize n-multiple
ω-saturated formations in terms of the certain products of normal subgroups is considered.

Definition. Let X be a class of groups. A class of groups F is called DX-closed if every group
G =MN where M and N are normal F-subgroups of G and M ∩N ∈ X belongs to F.

Theorem. Let ω be a set of primes. Let F be a subgroup-closed formation of soluble groups and
X = Nn

ω, where n is positive integer. The following statements are equivalent.

1) F is DX-closed formation;

2) F is a n-multiply ω-saturated formation.
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Projectors of products of π-decomposable groups and
Schunck π-classes

T. I. Vasilyeva[, E. A. Rjabchenko[

All groups considered are finite. We use notations and definitions from [1], [2]. Let a group G = AB
be a product of subgroups A and B. In order to determine the structure of these groups it is of interest
to know which subgroups of G are conjugate to a subgroup that inherits the factorization. A subgroup
H of a group G = AB is called factorized [3] if H = (A∩H)(B ∩H) and A∩B ≤ H. In [4-5] factorized
subgroups of group G = AB with nilpotent subgroups A and B were studied.

Let π be a set of primes and π′ the complement of π in the set of all primes. A group G is called
π-decomposable if G = Gπ ×Gπ′ and Hall π-subgroup Gπ is nilpotent. A non-empty homomorph X is
a Schunck class if any group G, all of whose primitive factor groups are in X, is itself in X. A class X

of groups is called a π-class if G/Oπ′(G) ∈ X implies G ∈ X.

Theorem. Let X be a Schunck π-class. If a π-soluble group G = AB is a product of two π-
decomposable subgroups A and B and π(A) ∩ π(B) ⊆ Char(X), then G has a unique factorized X-
projector.
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Corollary 1. Let F be a saturated formation and π-class. If a π-soluble group G = AB is a product
of two π-decomposable subgroups A and B and π(A)∩π(B) ⊆ Char(X), then G has a unique factorized
F-projector.

A π-Carter subgroup of a group G [6] is self-normalizing π-nilpotent subgroup H with |H|π′ = |G|π′ .
A π-Gaschütz subgroup of group G [6] is π-supersoluble subgroup H such that |H|π′ = |G|π′ and for all
M,N , such that H ≤ N ≤M ≤ G the index |M : N | is not a prime.

Corollary 2. Let a π-soluble group G = AB be a product of two π-decomposable subgroups A and
B. Then G has a unique factorized π-Carter subgroup.

Corollary 3. Let a π-soluble group G = AB be a product of two π-decomposable subgroups A and
B. Then G has a unique factorized π-Gaschütz subgroup.
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Geometry of ϕ̂-representation for real numbers
N. Vasylenko

Let F = {(cn) : c1, c2 ∈ R, cn = cn−1 + cn−2, n ≥ 3} be a set of real Fibonacci sequences. Then the
set 〈F ,+, ·〉 with the addition and the multiplication by a scalar is a bidimensional linear space.

Let F1 =

{
(an) : a1, a2 ∈ R, an = an−1 + an−2, n ≥ 3,

∞∑
n=1

an <∞
}

be a set of convergent Fi-

bonacci sequences.
Then

〈
F1,+, ·

〉
is one-dimensional linear subspace of the space F . Every element of this subspace

can be represented in the form:

−→a =
(
a; aϕ̂; aϕ̂2; . . . ; aϕ̂n; . . .

)
,

where a ∈ R, ϕ̂ = 1−
√
5

2 is a negative solution of the equation x2 − x− 1 = 0.
Let a = 1. Then let us consider the cylindrical representation of real numbers with the help of series

∞∑
n=0

ϕ̂n.

Theorem 1. Any real x ∈
[
−1,−ϕ̂ −1] can be represented in the form:

x =
∞∑

n=0

εn(x)ϕ̂
n = ε0(x)ϕ̂

0 + ε1(x)ϕ̂
1 + · · ·+ εn(x)ϕ̂

n + · · · , (1)

where εn(x) ∈ {0, 1}, n ∈ N0.
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A representation of x ∈
[
−1,−ϕ̂ −1] in form (1) is called ϕ̂-expansion of this number. We denote it

briefly by x = ∆ε0(x)ε1(x)...εn(x)... call ϕ̂-representation of the number x.
Let (c1c2 . . . ck) be a fixed set of figures of set {0, 1}. A set

∆c1...ck =

{
x : x =

k∑

n=1

cnϕ̂
n−1 +

+∞∑

m=k+1

εmϕ̂
m−1, εm ∈ {0, 1}

}

is called the cylindrical set of rank k with the base (c1c2 . . . ck).
In the talk the results of explorations of the properties and geometry of cylindrical sets are proposed.

The task about a number of representations of the real number in the form (1) is examined.
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Semifields with distributive lattice of congruencies
E. M. Vechtomov

In this abstract we consider distributive semifields. Semifield is an algebraic structure, which is a
commutative group with respect to addition and group with respect to multiplication, and multiplication
are distributive with respect to addition from both sides. Class of unit 1 of any congruence of semifield
is called its kernel. Set Con U of all kernels (of congruencies) of semifield U is a modular algebraic lattice
with respect to inclusion. Semifield U is called distributive (prime) if lattice Con U is distributive (two-
element). Additively idempotent semifields coincide with lattice-ordered groups; consequently, they are
distributive.

Proper kernel P of semifield U is called irreducible if A ∩ B ⊆ P involves A ⊆ P or B ⊆ P for
any A, B ∈ Con U . Semifield U is called biregular (Boolean) if its arbitrary principal kernel (a) (its
arbitrary kernel) has a complement in Con U . Semifield U is called Gelfand if for each of its different
maximal kernels A and B there exist elements a ∈ A \B and b ∈ B \A such that (a) ∩ (b) = {1}.

Notice that maximal kernels of any semifield are irreducible, biregular semifields are distributive and
Gelfand, and fact that semifield is distributive is equivalent to the fact that all its proper kernels are
intersections of irreducible kernels [1].

Considering semifields, we may use functional (sheaf) approach [1], with its help we may get following
results.

Theorem 1. Semifield is biregular if and only if it is Gelfand, and all its proper kernels are inter-
sections of maximal kernels.

Theorem 2. For arbitrary semifield U following conditions are equivalent:
(1) U is isomorphic to direct product of a finite number of prime semifields;
(2) U is Boolean, and U = (a) for same a ∈ U ;
(3) set Con U is finite, and any proper kernel in U is an intersection of maximal kernels.

Notice that if set Con U is finite then semifield U is distributive [2].
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Piltz’s divisor problem in the matrix ring M2(Z )

I. Velichko

Let Mk(Z ) denotes the ring of integer matrices of order k, GLk(Z ) is the unite group of Mk(Z ).
We denote the number of different (to association) representations of matrix C ∈ Mk(Z ) in the form
C = A1A2A3, A1, A2, A3 ∈ Mk(Z ) as τ 111k (C). It is interesting to investigate asymptotic behavior of
the sum

T 111k (x) =:
∑

n≤x

∑
′

G∈Mk(Z), |detG|=n
τ111k (G)

for different k (the second sum is taken throughout all matrices G accurate to integer unimodular factor).

G.Bhowmik and H.Menzer [1], H.-Q.Liu [2], A.Ivič [3], N.Fugelo and I.Velichko [4] studied an asymp-
totic behavior of the similar sums, but only for two factors.

Our aim is to construct the asymptotic formula for the function T 1112 (x).

Lemma. For any prime number p > p0, n ∈ N

t1112 (pn) :=
∑

G∈M2(Z)
|detG|=pn

τ1112 (G) =





(n+ 1)(n+ 3)pn(1 +O(1/p)), if n = 2k,

(n+ 1) (n+ 2)

2
pn(1 +O(1/p)), otherwise.

Corollary.

F (s) :=
∞∑

1

t1112 (n)

ns
=
ζ3(s)ζ3(2s− 1)

ζ(3s− 1)
G(s), (1)

where G(s) is absolutely convergent for Re s > 4/7.

Using (1) and the estimates of the fourth and sixth moments of ζ(s), the following result has been
obtained :

Theorem. For x→∞ and ε > 0 the estimate

T 1112 (x) = xP5(log x) +O(x69/88+ε)

holds, where P5(u) is a polynomial of degree 5.
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The Cauchy-Laurent integral and Laplas transformation
for a formal power series

K. Verbinina

It will be presented the Laplas transformation for a formal power series in Bourel form
∮

|ζ|=ε
f(ζ)e−sζdζ,

where contour integral is specially defined for a formal power series. Then will be considered an appli-
cation of Laplas transformation to solving Volterra convolution integral equations.
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On a Cyclic Decomposition of Sn

A. Verevkin

We denote by Sk = Aut {1, . . . , k} and Ck = <(1 . . . k)> — subgroups of Sn, and S1 = C1 = {e}.
Lemma. We have Cn ·Sn−1 = Sn−1 ·Cn = Sn and any σ∈Sn can be written in the form: σ = c ·τ =

τ̃ · c̃ uniquely, where c, c̃ ∈ Cn, τ , τ̃ ∈ Sn−1.
Proof: if we have c1 · τ1 = c2 · τ2, then c−12 · c1 = τ2 · τ−11 ∈ Sn−1 ∩ Cn = {e}, because Sn−1 = StSn(n)
and StSn(n) ∩ Cn ⊆ StCn(n) = {e}.

Corollary 1. The elements of Sn−1 are the representatives of distinct residue classes (left or right)
Sn : Cn, also the elements of Cn are the representatives of distinct residue classes (left or right) Sn : Sn−1.

Corollary 2. Sn = Cn ·Cn−1 · . . . ·C2 = C2 ·C3 · . . . ·Cn and any σ∈Sn can be written in the form:

σ = (1 . . . n)an(1 . . . n−1)an−1 . . . (12)a2 = (12)b2(123)b3 . . . (1 . . . n)bn

uniquely, where 0 ≤ ak, bk ≤ k−1.
Enumeration of Sn: if we associate φ : σ → (anan−1 . . . a2), 0 ≤ ak ≤ k−1 and define the lexicographic
order on the φ(Sn), we get the enumeration of permutations, which respects the embedding: S1 ⊂ S2 ⊂
S3 ⊂ · · · ⊂ Sn.
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Example. Let us enumerate in this way permutations of the set {1, 2, 3, 4}:

1234, 2134, 2314, 3214, 3124, 1324, 2341, 3241, 3421, 4321, 4231, 2431,

3412, 4312, 4132, 1432, 1342, 3142, 4123, 1423, 1243, 2143, 2413, 4213.

This algorithm in the beginning reminds the Knuth’s procedure of the enumeration of permutations
with the Sims’s table [1, chap. 7.2.1.2], but with the differing result. Thus, if we change an order of
the cyclic decomposition and a choice of the cycles generating Ck, we receive the different ways of the
enumeration of Sn.

We acknowledge the support of RFFI for the research grant 04–01–00739.
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Compound Inversive Congruential Generator with Prime
Power Modulus

Helen Vernygora

Let p1, ..., pr be different prime numbers, pi ≥ 5, i = 1, ..., r , and let m1, ...,mr be natural numbers.
Consider the pairs of numbers (ai, bi), such that (ai, pi) = 1, bi ≡ 0 (mod pi), i = 1, ..., r. Take fixed

y
(i)
0 ∈ Zpmii , (y

(i)
0 , pi) = 1, and consider for each i = 1, ..., r inversive congruential generator

Gi : y
(i)
n+1 ≡

ai

y
(i)
n

+ bi(mod pi), n = 0, 1, 2...

Generators Gi provide periodic sequence with period τi ≤ 2pmi−νi
i , where νi is the power with

which pi appears in the canonical decomposition of bi. It is known that if a2i 6≡ (y
(i)
0 )4(mod pi), then

τi = 2pmi−νi .
Take fixed ci ∈ Zpmii , (ci, pi) = 1, and consider recursion

G0 : z
(i)
n+1 ≡ aic

2
i (z

(i)
n )−1 + cibi(mod p

mi

i ), z
(i)
0 ≡ ciy

(i)
0 (mod pmi

i )

Then the sequence {xn}, where

xn ≡ x(1)n + ...+ x(r)n (mod 1), n ≥ 0,

where

x(i)n =
z
(i)
n

pmi

i

will be called compound inversive sequence of pseudorandom numbers (PRN), and the generator G0 —
the compound inversive generator.

Generator G0 is the generalization of compound inversive generator, it was first studied in works of
J.Eichenauer[1, 2, 3].
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The purpose of our research was the construction of top and bottom estimations of discrepancy
function on periodic parts of two sequences of s-dimensional points.

xn = (xsn, xsn+1, ..., xsn+s−1) ∈ [0, 1)s(”non-overlapping” points)
x̃n = (xn, xn+1, ..., xn+s−1) ∈ [0, 1)s(”overlapping” points).
It was proved, that for ”almost all” gangs c1, ..., cr the following right inequations hold

(2
√
s)rN−

1
2 ¿ D

(s)
N (x0, ..., xN−1)¿ (2

√
s)rN−

1
2 (log τ)r,

where τi = 2pm1−ν1
1 ...pmr−νr

r , N À τ
1
2 ,

D
(s)
N (x0, ..., xN−1) := sup

∆⊂[0,1)s

∣∣∣ AN (∆)

N
− | ∆ |

∣∣∣

AN (∆) – number of points of sequence x0, x1, ..., xN−1, that got into parallelepiped ∆; | ∆ | – cubage
of ∆ , and sup is taken over all ∆ from [0, 1)s.

Similar estimations are fair also for points x̃n, if s < min(p1, ..., pr).
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Vector Bundles over Noncommutative Nodal Curves
D. E. Voloshyn

We investigate certain noncommutative projective curves such that all their singularities are nodal
algebras [1]. They generalize projective configurations considered in the paper [2]. We prove that these
noncommutative nodal curves are vector bundles tame and describe vector bundles over them. The proof
uses the technique of ”matrix problems”, which was also used in [2], or, more exactly, ”representations
of bunches of semi-chains” [3].
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Random walk on finite 2-transitive group generated by its
natural character

A. L. Vyshnevetskiy

Let P be a probability on a finite group G, U(g) = 1
|G| the uniform probability on G, P (n) = P ∗. . .∗P

(n times) an n-fold convolution of P . Under well known conditions P (n) → U if n → ∞ (see e.g. [1]).
A lot of estimates for the rate of that convergence are found in different norms ([2]). We give exact
formula for some groups in the norm ‖F‖ =∑g∈G |F (g)|, where F is a function on group G.

Let G be 2-transitive permutation group of degree d, χ the natural permutation character of G. The
function P (g) = 1

|G|
∑

g∈G χ(g) is a probability on the group G.

Theorem 1.

‖P (n) − U‖ = 2R

(d− 1)n−1|G| ,

where R is the number of regular (i.e. without fixed points) permutations in G.

Let

Ed =
d∑

r=0

(−1)r
r!

.

Corollary 1. 1) If G is a symmetric group of degree d, then

‖P (n) − U‖ = 2Ed
(d− 1)n−1

.

2) If G is an alternating group of degree d, then

‖P (n) − U‖ = 2(Ed−2 + 2
d!(−1)d−1(d− 1))

(d− 1)n−1
.

3) If G is a Zassehaus group, then

‖P (n) − U‖ = |G| − (d− 1)(d− 2)

(d− 1)n−1|G| .

A Zassehaus group is a 2-transitive group in which stabilizer of any three distinct points is trivial.
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On minimal subgroups of finite groups

Nanying Yang, L. A. Shemetkov‡

All groups considered are finite.
Let G be a group. A minimal subgroup of G is a subgroup of prime order. For a group of even

order, it is also helpful to consider cyclic subgroups of order 4. There has been a considerable interest
in studying the group structure under the assumption that minimal subgroups and cyclic subgroups of
order 4 are well-situated in G.

Definition 1. (see [1]). (1) An element x of a group G is called Q-central if there exists a central
chief factor A/B of G such that x ∈ A \B.

(2) An element x of a group G is called QU-central if there exists a cyclic chief factor A/B of G
such that x ∈ A \B.

Definition 2. (see [2]). An element x ∈ G is called a Q8-element if there exists a section A/B of
G such that xB ∈ A/B, A/B ' Q8 (the quaternion group of order 8) and the order of x is equal to the
order of xB in A/B.

Theorem 1. Let G be a finite group, and H a normal subgroup of G. If all elements of prime
order in H and all Q8-elements of order 4 in H are QU-central in G, then every G-chief factor of H is
cyclic.

Theorem 2. Let G be a finite group, and H be a normal subgroup of G. If all elements of prime
order in H and all Q8-elements of order 4 in H are Q-central in G, then H is contained in the hypercenter
of G.

Theorem 3. Let F be a saturated formation containing N. Suppose that every Q8-element of order
4 in F ∗(GF) is Q-central in G. If G /∈ F, then there exists an element of prime order in F ∗(GF)\ZF(G).

Here ZF(G) is the F-hypercenter of G.
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On the divisibility of partial isotone transformations

V. A. Yaroshevich

Denote by T (X) the semigroup of all transformations α : X → X of a set X. If X is a partially
ordered set then a mapping α : X → X is called isotone when ∀x, y ∈ X x 6 y ⇒ xα 6 yα. The set
of all isotone transformations α : X → X we denote by O(X).

Let S be a semigroup and a, b ∈ S. We say that a is left divided by b (and we write a 6l b) if
a ∈ S1b. The Green’s relation L can be defined as follows: L =6l ∩ >l. The relations 6r, R are defined
dually.
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An arbitrary linearly ordered set is called a chain.
The structure of Green’s relations on the semigroup T (X) is well known. Namely, (i) if α, β ∈ T (X)

then αRβ ⇔ kerα = kerβ; (ii) if α, β ∈ T (X) then αLβ ⇔ imα = imβ.
If we take O(X) instead of T (X) then propositions (i), (ii) will be wrong in general. However the

following propositions are right ([1]):

Proposition 1. (i) If X is an arbitrary chain and α, β ∈ O(X) then α 6l β ⇔ imα ⊆ imβ; (ii) if
X is a finite chain and α, β ∈ O(X) then α 6r β ⇔ kerα ⊇ kerβ.

Corollary 1. (i) If X is an arbitrary chain and α, β ∈ O(X) then αLβ ⇔ imα = imβ; (ii) if X
is a finite chain and α, β ∈ O(X) then αRβ ⇔ kerα = kerβ.

Let P (X,Y ) be the set of all partial mappings α : X → Y , i.e., the mappings which are defined
maybe for not all x ∈ X. If X = Y we write P (X) instead of P (X,Y ). The domain domα of
α ∈ P (X,Y ) is the set {x | ∃y : y = xα}, and the image imα is the set {y | ∃x : y = xα}. The kernel of
α is the set kerα = {(x, y) |xα = yα}. It is an equivalence relation on the set domα (but not on the
set X, generally).

Let (X,6) and (Y,6′) be the partially ordered sets. A mapping α ∈ P (X,Y ) is called isotone if
∀x, y ∈ domα (x 6 y ⇒ xα 6′ yα).

The set of all isotone transformation α ∈ P (X,Y ) we denote by PO(X,Y ).

Proposition 2. Let Γ1, Γ2 and Γ3 be chains, α ∈ PO(Γ1,Γ2) and β ∈ PO(Γ3,Γ2). Then (∃γ ∈
PO(Γ1,Γ3) (α = γβ)) ⇔ (imα ⊆ imβ).

Corollary 2. (i) If X is an arbitrary chain and α, β ∈ PO(X) then α 6l β ⇔ imα ⊆ imβ; (ii) if
X is an arbitrary chain and α, β ∈ PO(X) then αLβ ⇔ imα = imβ.

The dual proposition of Corollary 2(i) is wrong. The dual proposition of Corollary 2(ii) has the
following form.

Proposition 3. Let Γ1,Γ2,Γ3 be chains, α ∈ PO(Γ1,Γ2), β ∈ PO(Γ1,Γ3). There are the trans-
formations δ1 ∈ PO(Γ2,Γ3) and δ2 ∈ PO(Γ3,Γ2) such that αδ1 = β, βδ2 = α exist if and only if
kerα = kerβ.
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A commutative Bezout ring of stable range 2 with right
(left) Krull dimension is an elementary divisor ring

B. Zabavsky

Throughout this notes R is assumed to be a commutative ring with 1 6= 0. Following Kaplansky
[1] if for every matrix A over a ring R there exist invertible matrices P,Q such that PAQ is a diagonal
matrix (dij) with the property that every dij is a divisor of di+1,i+1, then R is an elementary divisor ring.
If every 1 by 2 matrix over R admits diagonal reduction then R is an Hermite ring [1]. By a Bezout ring
we mean a ring in which all finitely generated ideals are principal. A ring R is a ring of stable range 2 if
for every a, b, c ∈ R such that aR+bR+cR = R there exist x, y ∈ R such that (a+cx)R+(b+cy)R = R
[2].

Note that a Bezout ring is a Hermite ring if and only if the stable range of R is equal to 2 [2].
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Theorem 1. Let R be a Bezout ring of stable range 2 with right (left) Krull dimension. Then R
is an elementary divisor ring.

Theorem 2. Let R be a Bezout ring of stable range 2 with Noetherian spectrum. Then R is an
elementary divisor ring.
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On the distribution of inverse congruential pseudorandom
Gaussian numbers

S. Zadorozhny

Let p be a prime Gaussian, N(p) denote the norm of p. Let α and β belong to the ring of Gaussian
integers, (α, p) = 1, β = 0 (mod p). We define the following recursion

wn+1 = αw−1n + β (mod pm) (1)

Where m ∈ N, w0 ∈ Z[i], (w0, p) = 1 are fixed, w−1 denotes a multiplicative inverse of w mod pm

The sequence {wn} generated by (1) is called the sequence of inverse congruential pseudorandom
Gaussian numbers. This definition is an analog of the sequence of pseudorandom numbers over Z which
was first introduced by Niederreiter and Shparlinski [1].

We obtain the estimate of special exponential sum

σr(p
m) =

∑

w0∈Zpm

(w0,p)=1

e
πiSp(

wr−w0
pm

)

where Sp(z) = 2Rez, z ∈ C.

Theorem 1. For m ≥ 2 and odd r we have

σr(p
m) << N(p)

m
2 .

Theorem 2. Let β = β0p
b, (β0, p) = 1 and r is even. We have

σr(p
m) ≤ DN(p)

m+b+εb
2 , εb =

{
0 if m = b (mod 2),

1 if m 6= b (mod 2),

where D is the number of solutions of the congruence

2β0u
3 = (−1)r/2 (mod pm1), m1 = [(m− b)/2].

These results allow to obtain a non-trivial estimate for the discrepancy of the sequence { wn
N(p)m } in

the square [−1, 1]2.
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On Local Fischer Classes

E. N. Zalesskaya\, S. N. Vorob’ev\

We use standard notation and terminology taken from [1]. All groups considered are finite.
The idea of localization is a leading one in the theory of groups. In this paper we deal with the

local methods in the theory of Fischer classes which are analogous to the local methods in the theory
of normal Fitting classes.

We remind that a Fitting class F is called a Fischer class if from G ∈ F, H ⊆ K ⊆ G, K C G and
H/K ∈ N it always follows that H ∈ F where N is the class of all nilpotent groups.

Definition. Let Y be a subgroup-closed formation. A Fitting class F is called a Fischer Y-class if
from G ∈ F, H ⊆ K ⊆ G, K CG and H/K ∈ Y it always follows that H ∈ Y.

It is clear that Fischer Y-class is a Fischer class in the case Y = N.
Let us define the operator SFY on the class of groups X in the following way:

SFYX = (G : H ⊆ G ∈ X and HY CCG).

It is easy to see that the operator SFY is a closure operator, i.e. for any classes of groups X and Z

it is true that:
(1) X ⊆ SFYX;
(2) from X ⊆ Z it follows that SFYX ⊆ SFYZ;
(3) SFYX = SFY(SFYX).
We have proved the following theorem.

Theorem. A Fitting class F is a Fischer Y-class if and only if F is an SFY-closed class.

If Y = N we obtain the well-known result of Hawkes [2].
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Abelian groups of triangular matrices

R. Zatorsky

Two abelian groups of triangular matrices were constructed using sets Ξ(n) and parafunction of
triangular matrices.
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On the algebraic curves over pseudoglobal fields

L. Zdomska

According to [1] by a pseudoglobal field we mean an algebraic function field in one variable over a
pseudofinite constant field. Recall [2] that a field k is called pseudofinite, if it is perfect, has unique
extension of degree n for every positive integer n, and each nonempty absolutely irreducible variety over
k has a k-rational point.

Let XK be a connected smooth absolutely irreducible curve over K. For a valuation v denote by
Kv the corresponding completion of K, Br (X) denotes the Brauer group of X, and Ш(A) is the Tate-
Shafarevich group of the Jacobian A of X.

M. Artin and J. Milne [3] showed that these two groups are closely related. Subsequently, the study of
relationships between them was continued by C.D. Gonzalez-Avilez [4]. The purpose of this announcement
is to investigate similar relationships for curves over a pseudoglobal field.

Theorem 1. Let X be a connected smooth absolutely irreducible curve over a pseudoglobal field K
of characteristic zero. Suppose that X has index δ and period δ′. Then there exists an exact sequence

0 −→ T0 −→ T1 −→ Br (X)′ −→ Ш(Pic (X)) −→ Q/∆−1Z,

where T0 and T1 are finite groups of orders (δ/δ′) · [A(K) : Pic0(XK)] and
∏
δv/∆ respectively, and ∆

is the least common multiple of local indices δv of X.

Corollary. Suppose that all local indices δv of X are equal to 1. Then: i) The index of X equals 1;
ii) Br (X) = Ш(A).

The proof is based on the Hasse principle for the Brauer groups of K, the Tate-Shafarevich duality
for abelian varieties over pseudolocal fields as well as on the arguments used in the case of a global ground
field, see [3], [4]. We also extend Lichtenbaum’s theorem [5] to the case of curves over pseudoglobal fields.

Theorem 2. Let X be a curve of genus g over a pseudolocal field K, and let δ′ and δ be period and
index of X. Then: a) δ′|(g − 1); b) δ = δ′ or 2δ′; and c) If δ = 2δ′, then (g − 1)/P is odd.
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Hypercritical graphical quadratic forms and minimal
tournaments with non-sign definitely Tits forms

M. V. Zeldich

In the classic monograph of C. Ringel [1] there was introduced the concept of a graphical integral
quadratic form, which is a generalization of the notion of the Tits form of partially ordered set, and
were described the all critical (i.e. minimal non-weakly positive) graphical integral quadratic forms in
the shape of an explicit list of ”dotted” graphs (i.e. undirected graphs without loops and multiple edges,
the all ones of which are dotted) corresponding to them. In presented report, this result is generalized
by the author at the case of hypercritical (i.e. minimal non-weakly non-negative) graphical integral
quadratic forms.

On the other hand, in the work of the author [2] there was introduced the concept of the Tits
quadratic form of tournament i.e. anti-symmetric reflexive relation on a finite set (which naturally
generalizes the notion of the Tits quadratic form of partially ordered set) as well as there was introduced
the concept of (0,1) -equivalence of (dotted) graphs (this equivalence arise from a certain special integer
linear transformation of corresponding graphical integral quadratic forms). At the same time, in [2] it
was proved that the minimal tournaments (in particular, partially ordered sets) Tits form of which is not
positive /respectively, non-negative/ definitely (called by the author as weakly critical / respectively,
weakly hypercritical/ tournaments) are exactly those, underlined (dotted) graphs of which are (0,1)
-equivalent to (dotted) graphs of critical /respectively, hypercritical/ graphical integral quadratic forms
(or, that is the same, Tits quadratic forms of such tournaments must be (0,1) -equivalent to some
critical /respectively, hypercritical/ graphical integral quadratic forms).

The obtained results allow to give an explicit description of the all weakly critical and, respectively,
weakly hypercritical tournaments (in particular, of corresponding partially ordered sets).
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Of the connection of involutions in the rings of matrices

V. Zelisko†, M. Kuchma‡

Let K be a commutative principal ideal domain with involution ∇ [1].
In [2] involution ∇ is defined on the ring of matrices Mn(K) as:

A∇ = (aij)
∇ = (a∇ji). (1)

In [3] for matrices A ∈M2n(K) of a form

A =

(
A1 A2
A3 A4

)

a simplectic involution ∗ is defined as:

A∗ =
(

A4
∗ −A2∗

−A3∗ A1
∗

)
, (2)

where Ai
∗ is again defined by (2) in the ring M2n−1(K).

In a ring M2n(K) we can define a mixed involution as:

A# =

(
A1 A2
A3 A4

)#
=

(
A4
∇ −A2∇

−A3∇ A1
∇

)
,

where Ai
∇ are defined by (1).

A matrix A ∈ Mn(K) is called ∇− symmetric if A∇ = A. Similarly, A ∈ M2n(K) is called ∗−
symmetric if A∗ = A, and A ∈M2n(K) is #−symmetric if A# = A.

Theorem 1. For any matrix A ∈M2n(K) with involution ∗ and for matrix J =

(
0 −1
1 0

)
holds

A∗ = (J⊗n)tAtJ⊗n,

where J⊗n = (J⊗. . .⊗(J⊗J))︸ ︷︷ ︸
n

and J⊗n = = ±(J⊗n)t.

In particular, if n = 2k + 1, then J⊗n = −(J⊗n)t, if n = 2k, then J⊗n = (J⊗n)t.

Theorem 2. For any matrix A ∈M2n(K) with involutions ∗, # and transpose involution ∇ (∇ = t)
holds

A∗ = (J⊗n)∇A#J⊗n.

Theorem 3. A direct product of ∇− symmetric matrices is #− symmetric matrix.
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Socle sequences of abelian regular semiartinian rings

J. Žemlička

A module M is said to be semiartinian if it contains a smooth strictly increasing (so called Loewy)
chain of submodules (Sα | α ≤ σ) such that Sα+1/Sα = Soc(M/Sα) and we say that a ring R is
right semiartinian provided that the right module RR is semiartinian. It is shown in [2, Théorème 3.1,
Proposition 3.2] that structure questions about commutative semiartinian rings can be translate to those
over commutative regular semiartinian rings, namely, a commutative ring R is semiartinian iff R/J(R)
is (commutative) regular and the Jacobson radical J(R) is T-nilpotent (cf. [3, Lemma 3.5]).

Suppose that R is an abelian regular (i.e. every finitely generated right ideal is generated by some
central idempotent) right semiartinian ring and denote by (Sα | α ≤ σ + 1) its Loewy chain. We
investigate a family of cardinalities λα = gen(Sα+1/Sα) which forms a natural invariant of such rings.
Since Sα+1/Sα ∼=

⊕
β<λα

Kαβ , where simples Kαβ have natural structure of skew-fields, there exist
injective ring-homomorphisms ϕα : R/Sα →

∏
β<λα

Kαβ . As a consequence of this fact we can formulate

Proposition. If α ≤ β ≤ σ, then |σ| ≤ 2λ0 and λβ ≤ 2λα.

Applying classical results of combinatorial set theory (including properties of partitions proved in
[1]) we can enhance Proposition by

Theorem. Suppose that the Generalized Continuum Hypothesis holds and α and δ are ordinals
satisfying α+ δ ≤ σ. If cf(λα) > max(|δ|, ω), then λα+δ ≤ λα. Otherwise λα+δ ≤ (λα)

+.

On the other hand, we present constructions (based on tools introduced in [3]) of abelian regu-
lar semiartinian algebras with specified transfinite sequences (λα| α ≤ σ). Finally, several examples
illustrate the fact that both our methods and results depend on a model of set theory.
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Canonical form of pairs of 4-by-4 Hermitian matrices under
unitary similarity

Nadya Zharko

This is joint work with Vladimir Sergeichuk.
We give canonical matrices of pairs of self-adjoint operators in a four-dimensional unitary space.

Their matrices are Hermitian, thus we obtain a canonical form of pairs of Hermitian matrices for
unitary similarity.

Each square complex matrix M is uniquely represented in the form

A+Bi, A :=
M∗ +M

2
, B :=

M∗ −M
2

i,
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in which A and B are Hermitian, and so this classification problem could be reduced to the canonical
form problem for 4 × 4 complex matrices up to unitary similarity, which can be solved by Littlewood
algorithm [2]. However, the canonical form of (A,B) obtained in such a way is rather complicated.
That is why it is preferred to consider these problems separately. Note that invariants of 4× 4 matrices
under orthogonal and unitary similarities and their applications are considered in [1].

Our list of canonical pairs of 4-by-4 Hermitian matrices under unitary similarity is too long to be
put here, but we give an analogous result for 3-by-3 Hermitian matrices in the following theorem.

Theorem 1. Each pair of 3-by-3 Hermitian matrices is unitary similar to exactly one pair from
the following list:





α 0 0
0 α 0
0 0 α


 ,



λ 0 0
0 µ 0
0 0 ν




 ,





α 0 0
0 α 0
0 0 γ


 ,



λ 0 a
0 λ 0
a 0 ν




 ,





α 0 0
0 α 0
0 0 γ


 ,



λ 0 a
0 λ′ b
a b ν




 ,





α 0 0
0 β 0
0 0 γ


 ,



λ a b
a µ c
b c̄ ν




 ,

in which α, β, γ are distinct real numbers, λ, λ′, µ, ν are real numbers, λ 6= λ′, a, b are nonnegative real
numbers. In the last pair, c is a complex number and if a = 0 or b = 0 then c is a nonnegative real
number.
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On commutative dimonoids

Anatolii V. Zhuchok

Jean-Louis Loday [1] introduced the notion of a dimonoid. A set D equipped with two associative
operations ≺ and Â satisfying the following axioms:

(x ≺ y) ≺ z = x ≺ (y Â z),

(x Â y) ≺ z = x Â (y ≺ z),

(x ≺ y) Â z = x Â (y Â z)

for all x, y, z ∈ D is called a dimonoid. If the operations ≺ and Â coincide, then the dimonoid becomes
a semigroup.

We introduce the notion of a diband of dimonoids. We call a dimonoid (D,≺, Â) an idempotent
dimonoid or a diband if x ≺ x = x = x Â x for all x ∈ D. Let J be some idempotent dimonoid. We
call a dimonoid (D,≺,Â) a diband of subdimonoids Di (i ∈ J) if D =

⋃
i∈J Di, Di

⋂
Dj = ∅ for i 6= j

and Di ≺ Dj ⊆ Di≺ j , Di Â Dj ⊆ DiÂj for all i, j ∈ J . If J is a band (=idempotent semigroup), then
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we say that (D,≺,Â) is a band J of subdimonoids Di (i ∈ J). If J is a commutative band, then we
say that (D,≺,Â) is a semilattice J of subdimonoids Di (i ∈ J).

We call a dimonoid (D,≺, Â) commutative if both semigroups (D,≺) and (D,Â) are commutative.
We say that a commutative dimonoid (D,≺, Â) is archimedean if both semigroups (D,≺) and (D,Â)
are archimedean.

Theorem 1. A semigroup (D,≺) of a commutative dimonoid (D,≺, Â) is archimedean (respec-
tively, regular) if and only if a semigroup (D,Â) of a commutative dimonoid (D,≺, Â) is archimedean
(respectively, regular). Every commutative dimonoid (D,≺, Â) is a semilattice Y of archimedean sub-
dimonoids Di, i ∈ Y .

This result is a generalization of a theorem by Tamura and Kimura [2] about the decomposition of
commutative semigroups into semilattices of archimedean subsemigroups.

In addition, we construct a free commutative dimonoid and describe the least idempotent congruence
of this dimonoid.
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J -, D- and H-cross-sections of symmetric inverse
0-category

Y. Zhuchok

Let Mapb(A;B) be the set of all bijective mappings of A on a set B, and let BSymX be the union
of all sets Mapb(A;B), where A,B ⊆ X,A 6= ∅ 6= B. On the set BSym0X = BSymX ∪ {0} we will
define an operation ∗ by the rule: if ϕ 6= 0 6= ψ and Imϕ = Domψ, then ϕ ∗ ψ = ϕ ◦ ψ, where ◦ is
the ordinary composition of mappings, otherwise ϕ ∗ ψ = 0. Under such operation, the set BSym0X
is a semigroup which is called the symmetric inverse 0-category on the set X. Symmetric semigroups
and their different properties have been studied by many authors (see e.g. 1-4). Here cross-sections of
Green relations J , D and H on semigroup BSym0X are investigated.

Lemma 1. Let ϕ,ψ ∈ BSym0X. Then
(i) (ϕ;ψ) ∈ J ⇔ (ϕ;ψ) ∈ D ⇔ (ϕ = ψ = 0 ∨ ϕ 6= 0 6= ψ, |Imϕ| = |Imψ|);
(ii) (ϕ;ψ) ∈ H ⇔ (ϕ = ψ = 0 ∨ ϕ 6= 0 6= ψ,Domϕ = Domψ, Imϕ = Imψ).

Let ρ be an equivalence relation on a semigroup S. A subsemigroup T of S is called a ρ-cross-section
if T contains exactly one element from every equivalence class. For all i ∈ I = {1, 2, ..., n} we will put
S0i = {ϕ ∈ BSymX||Domϕ| = i} ∪ {0}, |X| = n.

Lemma 2. For every i ∈ I subsets {0, ϕ} ⊆ S0i , where ϕ
2 = ϕ or ϕ2 = 0, and only these subsets

are J-cross-sections of semigroup S0i .

Denote by q(ρS) the quantity of all ρ-cross-sections of the semigroup S and by C l
k the quantity of

all l-element subsets of a k-element set.
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Theorem. Let X be a n-element set. Then

q(JBSym
0X) = q(DBSym0X) =

n∏

i=1

(Ci
n + ((Ci

n)
2 − Ci

n)i!).

The quantity of allH-cross-sections of the symmetric inverse 0-category on finite set is also described.
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Alternative superalgebras on one odd generator

Natalia Zhukavets

For every variety of algebras V, one can consider the corresponding V-Grassmann algebra, which is
isomorphic as a vector space to the subspace of all skew-symmetric elements of the free V-algebra. It
seems interesting to construct a base for this subspace. Due to [3, 6], the problem is reduced to the free
V-superalgebra on one odd generator, which is easier to deal with.

In [4] we constructed a base of the free alternative superalgebra A on one odd generator. As a
corollary we obtained a base of the alternative Grassmann algebra. We also described the nucleus and
the center of A and found a new element of minimal degree in the radical of the free alternative algebra.

The knowledge of a base of the free alternative superalgebra A on one odd generator permits to
investigate the structure of skew-symmetric identities and central elements in any given alternative
algebra. In [5] we classified all super-identities and central functions of the free quadratic alternative
superalgebra on one odd generator. We also proved that in characteristic 0 the skew-symmetric identities
and central functions of octonion algebras coincide with those for the class of all quadratic alternative
algebras.

In case of alternative algebras, the Dubnov-Ivanov-Nagata-Higman theorem is not true in general,
but the Zhevlakov theorem establishes that every alternative nil-algebra is solvable. In [2] we constructed
bases of free alternative nil-superalgebras of indices 2 and 3 on one odd generator and computed their
indices of solvability. We considered also the corresponding Grassmann algebra and showed that the well
known Dorofeev’s example [1] of solvable non-nilpotent alternative algebra is its homomorphic image.
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FEL ČVUT, Prague
natalia@math.feld.cvut.cz

Rigid quivers

D. V. Zhuravlyov

In the paper [1] described some classes of finite partially ordered sets, which have rigid associate to
them quiver.

Denote by Mn(Z) the ring of all square n× n-matrices over the ring of integers Z. Let E ∈Mn(Z).

Definition 1. An integer-valued matrix E = (αij) ∈Mn(Z) is called exponent matrix, if

(1) αii = 0 for all i = 1, . . . , n;

(2) αij + αjk ≥ αik for 1 ≤ i, j, k ≤ n.

An exponent matrix E is said to be reduced, if αij + αji > 0, i, j = 1, . . . , n; i 6= j.

Let E = (αij) be a reduced exponent matrix. Put E (1) = (βij), where βij = αij for i 6= j and
βii = 1 for i = 1, . . . , n, and E (2) = (γij), where γij = min

1≤k≤n
(βik + βkj). Obviously, [Q] = E (2) − E(1)

is an (0, 1)-matrix. We call a quiver Q by simply laced if its adjacency matrix [Q] is an (0,1)-matrix, i.
e., in Q there is not multiple arrows and multiple loops.

The matrix [Q] = E (2) − E(1) is the adjacency matrix of a strongly connected simply laced quiver
Q = Q(E).

Definition 2. The quiver Q(E) is called the quiver of a reduced exponent matrix E.
Definition 3. An strongly connected simply laced quiver is said to be admissible, if it is the quiver

of a reduced exponent matrix.

Definition 4. An admissible quiver Q is said to be rigid, if, up to equivalence, there exists a unique
exponent matrix E such that Q = Q(E).

Let Q = Q(X,U) be a quiver with the set of all vertices X and set of all arrows U . Denote by b(u)
the start vertex of arrow u and by e(u) the end vertex of arrow u.

Theorem 1. The admissible quiver Q = Q(X,U), |X| ≥ 2, in which all cycles pass through a single
point, is rigid.

Theorem 2. If for the admissible quiver Q = (X,U) there are two admissible quivers Q1 = (X1, U1)
and Q2 = (X2, U2) such that X = X1∪X2, X1∩X2 = ∅, Ui = {(b(u), e(u))|{b(u), e(u)} ⊂ Xi}, i ∈ {1, 2},
then the quiver Q = (X,U) is not rigid.
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Projective covers of modules over tiled order

V. N. Zhuravlyov

Let Λ = {O, E(Λ) = (αij)} be a tiled order, M = {O, E(M) = (αi)} be a irreducible Λ-module,
M1, . . . ,Ms be all maximal submodules of M and E(Mi) = E(M)+eji , where ek = (0, . . . , 0︸ ︷︷ ︸, 1, 0, . . . , 0).

Denote by P (M) the projective cover of M . Then M =
s∑
i=1

παjiPji and P (M) =
s⊕
i=1

παjiPji .

Let ϕ : P (M)→M the epimorphism defined by formula ϕ(m1, . . . ,ms) = m1+. . .+ms,K be a kernel
of epimorphism ϕ. For l = 1, . . . , s denote by Kl the kernel of epimorphism ϕl :

⊕
i6=l
παjiPji →

∑
i 6=l
παjiPji .

Then the module P (K) is a direct summand of P (Kl)⊕ P
(
∑
i6=l
παjiPji

)
.

Theorem. If projective modules P

(
∑
i6=1

παjiPji

)
, . . . , P

(
∑
i6=s

παjiPji

)
do not have a common direct

summand, then the module P (K) does not have isomorphic direct summand.

If projective modules P

(
∑
i6=1

παjiPji

)
, . . . , P

(
∑
i6=s

παjiPji

)
have a common direct summand P ′, then

the module P (K) have direct summand (P ′)n−1.
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Last Minute Abstracts

On the Piltz divisor problem over Z[i] with convergence
conditions

Popovych Polina

Let k = p + q, where p and q are natural numbers. We denote by τ ∗k (α) the number of ways
to represent the Gaussian integer α as a product of k factors, p of which satisfy certain convergence
condition :

τ∗k (α) = #{(δ1, δ2, . . . , δk) ∈ Z[i] : δ1 . . . δk = α, αj ≡ βj(modγj), j = 1, . . . , p},

where βj , γj are given Gaussian integers with N(βj) < N(γj).
Let F (s) be the generating function for τ ∗k (α). Put

Fm(s) = N(γ)s
∑

α∈Z[i]

α6=0

τ∗k (α)e
4miarg(α)

N(α)s
= Zm(s)

q
q∏

j=1

ξm(s, δj),

where Zm(s) is the Hecke Zeta-function with Grossencharacter, λm(α) = e4miarg(α), ξm(s, δj) =
∑
α

e4miarg(α+δj)

N(α+δj)s
, Res > 1, m ∈ Z. Then we have

∑

N(α)≤x
τ∗k (α) =

∑

s=0,1

res

(
F0(s)

(
x

N(γ)

)s
· 1
s

)
+ Ek(x),

where
∑
s=0,1

res(F0(s)(
x

N(γ))
s · 1s ) is the main term and Ek(x) is the error term.

The object of the work is the construction of the upper and lower estimations of E(x) and the
analysis of the distribution of meanings for τ ∗k (α) in sharp sectors: S := {α : ϕ1 < argα < ϕ2}.

The paper is the generalization of the W.Nowak results.
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Diophantine equations with quadratic forms in thin sectors
Antonina Radova

In the works [1]-[2] the classic additive divisor problem is investigated

x1x2 − y1y2 = 1, (1)

x1, x2 < N, x1, x2 ∈ N.
In our paper we study an equivalent to the equation (1)

f(x, y, z)− ϕ(u, v) = 1, (2)

f(x, y, z) ≤ N,x, y, z, u, v ∈ Z, where f(x, y, z) (according ϕ(u, v)) is a positively definite quadratic form
of three (according two) variables.

We shall build an asymptotic formula for the number Qs(N ; k, l) of solutions of the equation (2),
when

f(x, y, z) = x2 + y2 + z2, ϕ(u, v) = u2 + v2, (3)

arg(u + iv) ∈ S, where S is a section ά1 ≤ ά2 ≤ 1, ά1 − ά2 → 0 when x → ∞ and values of quadratic
form ϕ(u, v) = u2+ v2 are l-free, f(x, y, z) = x2+ y2+ z2 are k-free, k ≥ 2, l ≥ 2, Mt is the set of t-free
numbers.

The number Qs(N ; k, l) of solutions of the equation (3) is defined by the sum

Qs(N ; k, l) =
∑

n=u2+v2≤N
arg(u+iv)∈S

(n+1)∈Mk

n∈Ml

r3(n+ 1)r(n),

where r(n) denotes the number of representations of the integer n by two squares and r3(n) denotes the
number of representations of the integer n by three squares.

We prove the following

Theorem 1. Let Qs(N ; k, l) denote the number of the solutions of diophantine equations

f(x, y, z) = ϕ(u, v) + 1,

f(x, y, z) ≤ N, f(x, y, z) ∈Mk, ϕ(u, v) ∈Ml,

when N →∞ and 0 ≤ ά1 − ά2 ≤ N−η the following asymptotic formula

Qs(N ; k, l) =
2α

π
C0A(k, l)

∏

p>2

(1− p2 − 1

(p2 + 1)pk
)
∏

p>2

(1− g(k, l, p)

pl
)N3/2 +O(N5/4+1/4h+ε),

where C0 > 0, A(k, l) > 0 depends only of k, l, η = 1
4 +

1
4h + ε, C0 = 2π2

5
ξ(2)
ξ(4) , A(k, l) = (1 − 3

2k+1 )(1 −
2k+2

2l(5·2k−3)), g(k, l, p) =
pk(p2+1)(p+χ4(p))((p−χ4(p))g(l)+pχ4(pl))

pl(pk+2+pk−p2+1)(p2+χ2
4(p))

, g(l) =
l−1∑
u=0

χ4(p
u), h = min(k, l) ≥ 2, ε > 0

holds.
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